From the ATLAS pixel detector to probing the coupling of the Higgs to quarks

Heather M. Gray Lawrence Berkeley Laboratory IUPAP Young Scientist Award ICHEP 2018, Seoul, Korea

Previously

Pixel Detector

Charged particle multiplicity

PLB688 (2010) 21-42

New J. Phys. 13 (2011) 053033

PLB 758 (2016) 67

EPJC 76 (2016) 502

Material and Alignment

JINST 12 (2017) P12009 ATL-INDET-PUB-2015-001 IDTR-2015-011

Material description in simulation describes data to within 20%

Cluster Splitting with Neural Networks

- Improved impact parameter resolution
- Reduces shared clusters in jet cores by factor of 3: better tracking in boosted jets

JINST 9 (2014) P09009

Probing Higgs-Quark Couplings

- Higgs discovered via its decays to bosons
- Fermionic couplings added by hand to the Lagrangian
 - Not needed for electroweak symmetry breaking

Higgs-Quark Couplings

- Indirect
 - ggF production
 - $H \rightarrow \gamma \gamma$ decay

• Direct

- H→bb decay
- H→cc decay
- ttH production

Main Higgs Decay Modes

- Decay branching fractions for $m_H = 125 \text{ GeV}$
 - H→bb: 58 %
 - H→WW*:21%
 - H→τ⁺τ∹ 6.3%
 - H→ZZ*: 2.6%
 - H→γγ: 0.2%

Key Higgs Production Modes

More details in talk by G. Piacquadio

Higgs couplings at the end of Run-I

Generally very good agreement with SM

JHEP 08 (2016) 045

Much better precision for bosons than fermions No direct evidence for Higgs coupling to quarks

Results from Run-I ATLAS and CMS Higgs combination

Higgs coupling to top quarks

- Indirect constraints of O(15%) by the end of Run-I
- Measure the top-Higgs Yukawa coupling directly with ttH production
 - Probes NP contributions
- Tiny cross-section of 0.5 pb (100x smaller than ggF)
 - Combine information from multiple top and Higgs decays
- Four analyses used to probe ttH production: $\gamma\gamma$, ZZ, bb, multilepton*
 - All channels include at least two b-jets from the top decay (+ 2W's)

*Mostly WW + TT

More details in talk by Y. Horii

ttH(Multilepton)

- Select events by the number of light leptons and hadronic-T
- Single or dilepton triggers
- \geq | b-jet; 2-4 jets
- BDT to extract ttH signal from ttW, ttZ,VV and tt background
- 5D multinomial BDT used in the 3I channel: extract signal and define control regions simultaneously

Categories

Selected ttH(ML) Challenges

Phys. Rev. D 97 (2018) 072003

10

Background modelling

Cross-check analysis extracting background from data

Non-prompt lepton backgrounds

Estimated from control regions

Observation of ttH Production

Phys. Rev. D 97 (2018) 072003

11

- ttH(multilepton) results
- Expected significance: 2.8σ
- Observed significance: 4.1σ

- Combination of all channels and all analysed data
- Expected significance: 5.1 σ
- Observed significance: 6.3σ

Higgs coupling to bottom quarks

- Largest branching ratio (58%), but challenging due to large backgrounds
- ATLAS probes:VBF, VH and ttH
- Most powerful channel is VH (V=W, Z)
- Three channels
 - 0-lepton: $Z(\nu\nu)H(bb)$
 - I-lepton:W(Iv)H(b)
 - 2-lepton: Z(II)H(bb)
- Lepton or MET triggers
- Two b-jets
- BDT to extract Higgs from large V+jets and tt backgrounds
- Complex profile likelihood fit to extract signal and constrain backgrounds

More details in talk by Y. Enari

JHEP 12 (2017) 024 JHEP 01 (2015) 069 ATLAS-CONF-2018-036

12

Selected H→bb Challenge: Backgrounds

Getting to H→bb observation

Higgs coupling to charm quarks

- We've observed the coupling of the Higgs to third generation quarks only
 - Rich flavour structure
- Can we probe the second generation quark coupling using charm?
- Analogous strategy to VH(bb)
 - Only 2-lepton; fit dijet invariant mass
- Crucial element
 - Efficient charm tagging
 - Exploit capabilities of IBL
- Obtain limit of ~100x SM
 - Strongest direct limit on charm
 - HL-LHC projection: ~6 x SM

Density ₆0

10-4

PRL 120 (2018) 21180

Conclusion

- An exciting ten years since the start of the LHC and six years since the Higgs discovery
- Excellent detector and software performance has been key to many of our important physics results
- This summer we've observed the coupling of the Higgs to quarks via its interactions with both top and bottom quarks
- So far, these results (and the Higgs sector in general) are compatible with the Standard Model but observation is only the beginning
 - What will we learn about nature from future LHC data ?

Many thanks to all my collaborators