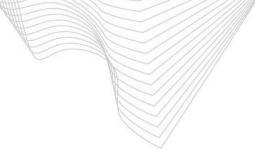


IBEX based CdTe Detectors for Spectral Applications at High X-ray Energies

P. Trüb, P. Zambon, M. Rissi, C. Brönnimann IWORID 2018

IBEX: By Sandro CC-BY-SA-3.0 via Wikimedia Commons


DECTRIS Ltd. 5405 Baden-Dättwil Switzerland www.dectris.com

The IBEX ASIC

Feature	Value	Remarks	
Number of pixels	256 x 256	65k pixel	
Counter size	16 / 32 bit	$2 \times 2 \times 16$ bit counters for continuous readout or high dynamic range and 2 thresholds	
Continuous readout	V	16 bits mode	
Count rate [Mcps/pixel]	10	Instant Retrigger technology	
Signal carriers	holes	For Si sensors	
	electrons	For CdTe sensor	

High Resolution Mode		Spectral Mode	
Pixel size [µm ²]	75 x 75	Pixel size [µm ²]	150 x 150
Energy thresholds	2	Energy thresholds	4

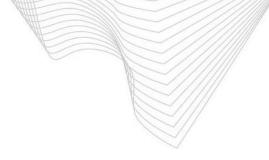
Bochenek, M. et al. (2018), IBEX: Versatile Readout ASIC with Spectral Imaging Capability and High Count Rate Capability. IEEE Trans. Nucl. Sc., doi: 10.1109/TNS.2018.2832464.

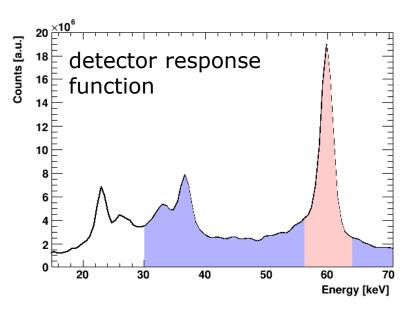
Part I

Spectral Efficiency as a Figure of Merit for Spectral Applications

Trueb, P., Zambon, P. and Broennimann, C. (2017), Assessment of the spectral performance of hybrid photon counting x-ray detectors. Med. Phys., 44: e207-e214. doi:10.1002/mp.12323.

Zambon, P. et al. (2018) Spectral response characterization of CdTe sensors of different pixel size with the IBEX ASIC. NIMA, Volume 892, 106-113. doi: 10.1016/j.nima.2018.03.006.

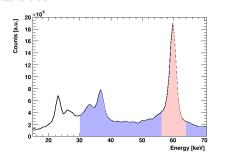



Spectral Efficiency

photons measured with correct energy

number of incoming photons

- **blue** photons contributing to quantum efficiency
- **red** photons contributing to spectral efficiency



Spectral Efficiency

Formal definition

$$SE(E_{\gamma}, \Delta E) = \int_{E_{\gamma}-\Delta E}^{E_{\gamma}+\Delta E} DR(E_{\gamma}, E) dE \ = QE(E_{\gamma}, E_{\gamma} - \Delta E) - QE(E_{\gamma}, E_{\gamma} + \Delta E)$$

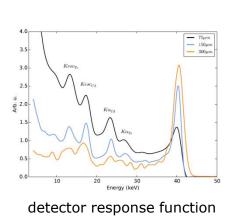
detector response function

- SE spectral efficiency
- E_{v} photon energy
- ΔE energy window of the order of the energy resolution
- DR normalised detector response
- QE quantum efficiency as function of photon energy and energy threshold

Discussion

Advantages

Well defined even for response functions distorted by

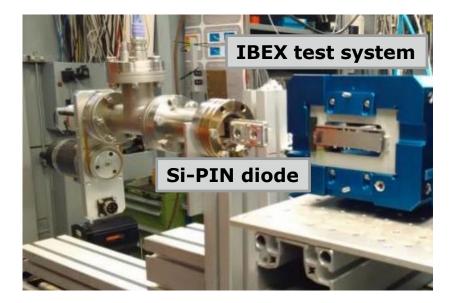

- charge sharing
- fluorescence effects
- pulse pile-up

Simple comparison of different detector designs

Disadvantages

Measurement requires determination of incoming flux

Measurements at Synchrotron (BESSYII)

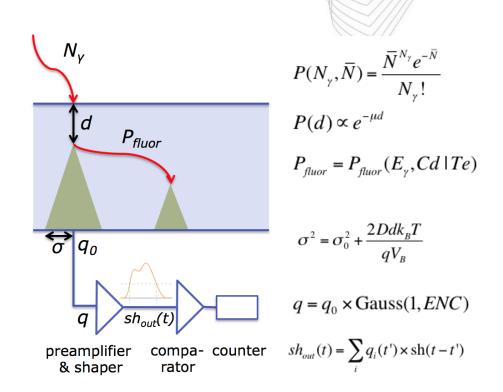

In collaboration with the Physikalische Technische Bundesanstalt (PTB) group at the BAMLine

IBEX test systems with pixel sizes of

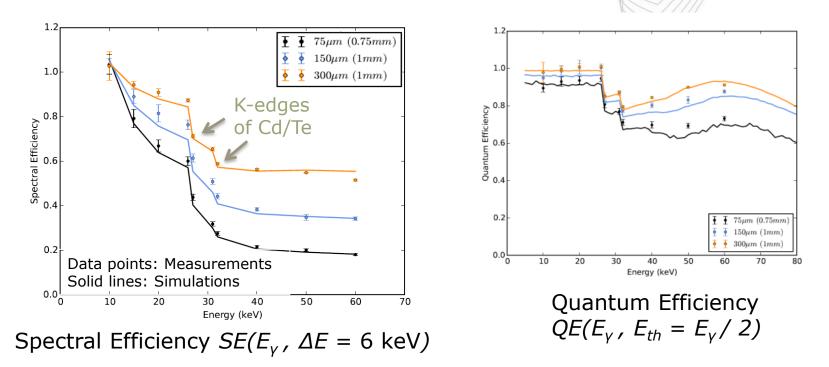
- 75µm
- 150µm
- 300µm

CdTe sensors of 750µm, 1000µm thickness

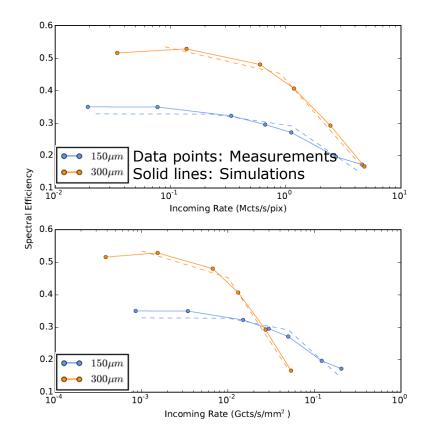
Energy Range of 10 – 60 keV



Monte-Carlo Simulation


Simulated effects

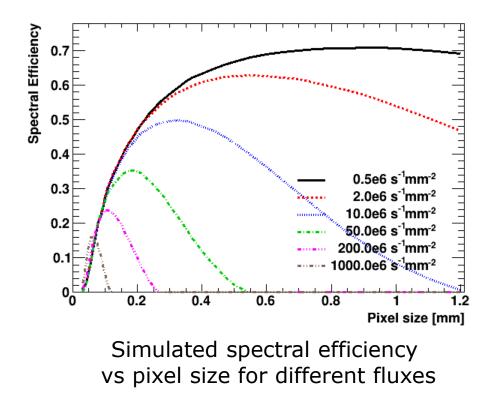
photon statistics absorption depth k-edge fluorescence charge diffusion preamplifier noise pulse pileup


Spectral Efficiency vs Photon Energy

Larger pixels have less charge sharing and fluorescence effects!

Spectral Efficiency vs Photon Flux

Spectral Efficiency vs Count Rate


Photon energy 60 keV Reduction at high count rates due to pulse pile-up

Spectral Efficiency vs Photon Flux

300µm pixel performs better at low flux 150µm pixel performs better at high flux

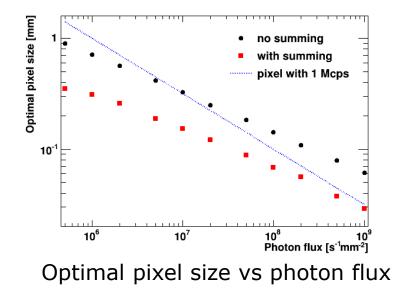
Pixel Size Optimisation

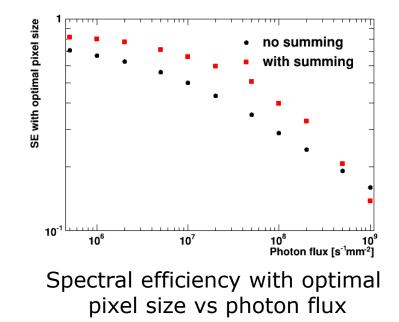
Small pixels

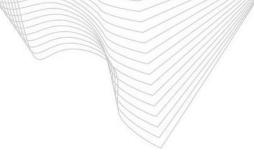
Charge sharing Fluorescence effects

Large pixels

Pulse pile-up


Simulation parameters


Photon energy 60 keV CdTe thickness 750 µm Pulse width 76 ns ENC 700 eV


Large Pixels or Charge Summing?

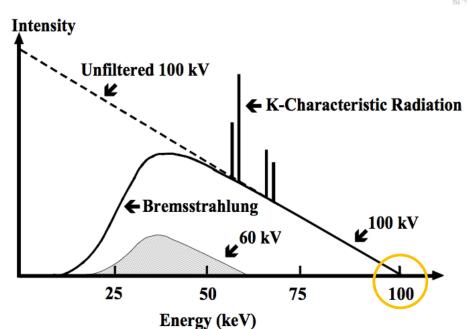
Spectral Efficiency as a tool to quantify the benefits of a simulated charge summing architecture

Part II

Threshold Equalisation up to 150 keV with a Bremsstrahlung Spectrum

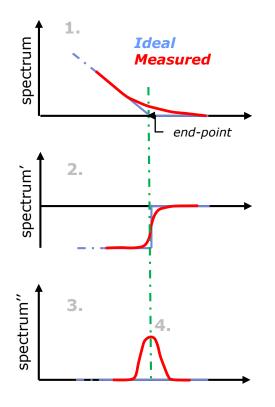
High-Energy Calibration

X-ray energy references


K and L fluorescence lines up to Pb (75 keV) K-edges in transmission spectrum up to Pb (90 keV) Radioactive decay lines (²⁴¹Am, ⁹⁹Tc, ⁵⁷Co, ...) End-point of X-ray tube spectrum

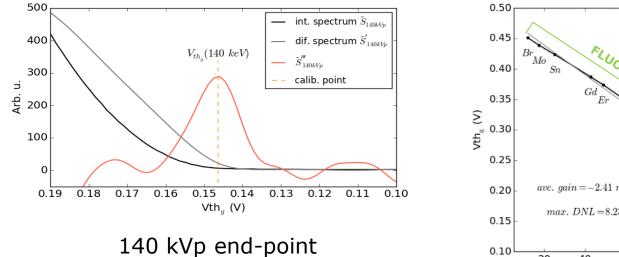
End-point of X-ray tube spectrum

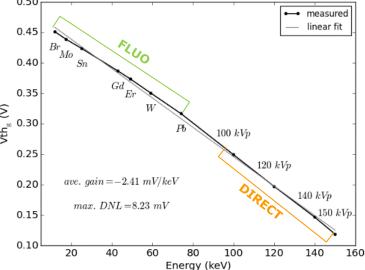
- + Usability / Safety
- + Sufficient photon flux
- End-point smeared out by energy resolution



Bremsstrahlung spectrum of X-ray tube with linear decrease up to peak acceleration voltage of the tube (kVp).

Extraction of Spectrum End-point


- Spectrum = derivative of threshold = ramp function convoluted with a Gaussian energy resolution
- Spectrum' = step function convoluted with a Gaussian


- Spectrum" = delta function convoluted with a Gaussian = Gaussian.
- 4. The peak is the calibration point

Global Threshold Calibration

IBEX CdTe with 150 μm pixel

Global calibration curve

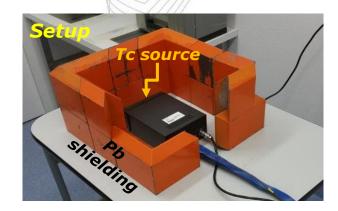
^{99m}Tc Measurement at Kantonsspital Baden

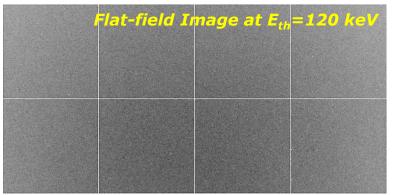
Source

Metastable nuclear isomer of Tc-99

Most used medical radioisotope

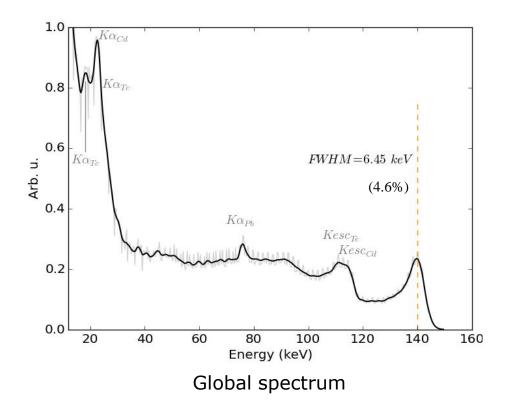
 $\gamma = 140.5 \text{ keV} (98\%) + 142.6 \text{ keV} (1.4\%)$


T = 6.0058 h \rightarrow 93.7% decay after 24 h


Detector

IBEX 150 µm pixel size

1 mm CdTe


Calibration range: 25 - 140 keV

^{99m}Tc Spectrum

Global Offset ≤ 0.5 keV ≤ 1%

Threshold Dispersion

- ~ 1.7 keV (rms)
- \sim 40% of energy resolution

Of making many books there is no end

Ecclesiastes

IBEX based CdTe detectors evaluated for spectral applications

Spectral efficiency **defined** as useful figure of merit for spectral performance of counting detectors

Spectral efficiency **measured** and **simulated** as function of X-ray energy and flux

IBEX based CdTe detector **calibrated** in the energy range 100 - 150 keV with endpoint peak in second derivative of bremsstrahlung spectrum

Calibration **validated** with ⁹⁹Tc at 140 keV to accuracy of 0.5 keV and precision of 1.7 keV

Acknowledgement

If I have seen further than others, it is by standing upon the shoulders of giants

Isaac Newton

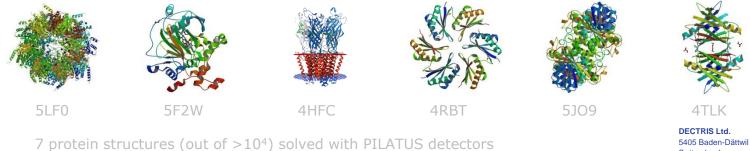
Research & Physics group (DECTRIS)

ASIC design group (DECTRIS)

L. Cibik, S. Schreiber and M. Krumrey, PTB Synchrotron Radiometry department (HZB)

C. Ludwig, Nuclear Medicine Department (KSB)

DECTRIS Workshop 2018



4Y05

Switzerland www.dectris.com

Thank you for your attention!

