Large high-Z pixel detectors with LAMBDA readout

David Pennicard, Julian Becker, Sergej Smoljanin, Florian Pithan, Hagen Stawitz, Yuelong Yu, Andre Rothkirch, Martin von Zimmermann, Heinz Graafsma – DESY, Hamburg, Germany
Georgy Shelkov, Alexey Zhemchugov, Sergey Kotov - Joint Institute for Nuclear Research (RU)
Anton Tyazhev - Tomsk State University, Michael Fiederle - University of Freiburg
Introduction

- Hard X-ray experiments and LAMBDA
- GaAs
- CdTe
- Building and applying large systems
Hard X-ray detection at synchrotrons

- Study structure of matter down to atomic scale
- Hard X-ray experiments: large samples, sample environments etc.
 - High-Z hybrid pixels offer high sensitivity and speed

PETRA-III synchrotron

Photoelectric absorption of X-rays

- Silicon (500um)
- Ge / GaAs (500um)
- CdTe (500um)
LAMBDA detector

- Hybrid pixel with Medipix3 chip (CERN)
- Photon-counting operation
- 55 µm pixel size
- 2000 fps readout

Module – up to 6 x 2 chips (1536 x 512 pixel)

1536 x 1536 pixel 3-module – 2M
Introduction

- Hard X-ray experiments and LAMBDA
- GaAs
- CdTe
- Building and applying large systems
Cr-compensated GaAs

Tomsk State University
Thanks to Anton Tyazhev et al.

Technology of HR GaAs

GaAs:Cr with ρ up to $10^9 \Omega \cdot \text{cm}$

Evaporation of Cr
Annealing
Polishing

n-GaAs
Gallium Arsenide sensors

- 500 µm-thick GaAs(Cr) from Tomsk State University / RID Ltd.
- Ohmic contacts, 55µm pixel size
- Bump bonding at Uni Freiburg, Fraunhofer IZM, Advacam

3 x 2-chip layout from 3” GaAs wafer
Gallium Arsenide sensors

- 500 µm-thick GaAs(Cr) from Tomsk State University / RID Ltd.
- Ohmic contacts, 55µm pixel size
- Bump bonding at Uni Freiburg, Fraunhofer IZM, Advacam
Gallium Arsenide sensors

> 500 µm-thick GaAs(Cr) from Tomsk State University / RID Ltd.
> Ohmic contacts, 55µm pixel size
> Bump bonding at Advacam

6 x 2-chip layout from 4” GaAs wafer

84 mm, 1536 pixel

28 mm, 512 pixel
Gallium Arsenide – 3” wafer performance

- Variation 21% RMS in raw image, 0.15% after flat-field correction
- 0.24% bad pixels

Flat field (Mo tube @ 40kV, -300V bias)
New GaAs sensor from 4” wafers

- Sensor very similar to previous 3” wafer sensors (21% RMS variation)
- PbSn bonds – good yield (0.12% bad), but wafer bending (400 µm)

Flat field (Mo tube @ 40kV, -300V bias)
New GaAs sensor from 4” wafers

- Sensor very similar to previous 3” wafer sensors (21% RMS variation)
- PbSn bonds – good yield (0.12% bad), but wafer bending (400 µm)

Circuit board image – flatfield corrected
Introduction

- Hard X-ray experiments and LAMBDA
- GaAs
- CdTe
- Building and applying large systems
Cadmium Telluride

- 1 mm-thick CdTe sensors produced by Acrorad
- Ohmic contacts, 55µm pixel size
 - Higher leakage current than Schottky, but typically less polarisation
- Bump bonding by Advacam

3 x 2-chip layout from 3” CdTe wafer
CdTe performance

- Variation 8.0% RMS in raw image
- 0.06% bad pixels

Flat field (Mo tube @ 40kV, -300V bias)
CdTe performance

- Variation 8.0% RMS in raw image
- 0.06% bad pixels

Flatfield corrected image
Change in response over time

- Comparison after 16 hours with low X-ray flux (18 keV energy)
- Intensity of lines falls, appearance of brighter patches

Change in CdTe response over 16 hours
Introduction

- Hard X-ray experiments and LAMBDA
- GaAs
- CdTe
- Building and applying large systems
LAMBDA GaAs 2M system

Thanks to X-Spectrum GmbH
Extreme conditions experiments

Diamond Anvil Cell (DAC)

370 Gpa
5000 K
• Thanks to HP Liermann, Z. Konopkova, W. Morgenroth (DESY)

Z. Jenei, W. J. Evans, Y. Kono (LLNL)
Experiments at PETRA P02.2

Bi sample
Rapid compression
- 30 GPa in 5 ms

Bi-I (As-type, orthorhombic)
 \[\downarrow 2.55 \text{ GPa} \]

Bi-II (mC4, monoclinic)
 \[\downarrow 2.7 \text{ GPa} \]

Bi-III (incommens. host-guest)
 \[\downarrow 7.7 \text{ GPa} \]

Bi-V (bcc, cl2)
 \[\downarrow 5.5 \text{ ms} \]
Conclusions

- GaAs sensors produced from 4” wafers - similar results to 3”
- CdTe sensors show good pixel yield, but some long-term instability
- Multi-megapixel systems used in synchrotron experiments
Thanks for listening
Medipix3 charge sharing compensation

- High charge sharing leads to double counting or lost hits
- Medipix3 chip incorporates charge sharing compensation

Charge cloud shared between pixels
Medipix3 charge sharing compensation

- High charge sharing leads to double counting or lost hits
- Medipix3 chip incorporates charge sharing compensation

Medipix3 RX charge summing

[Diagram showing Medipix3 RX charge summing with arbitration and summing nodes.]
Beam scan test (CdTe) – charge summing off

- Mapped total detector response with 71 keV pencil beam - PETRA P08

threshold = 33000

- 20 µm x 2 µm beam
Beam scan test (CdTe) – charge summing activated

Results with **charge summing activated**

threshold = 17000

- 20 µm x 2 µm beam

![Graph showing beam scan test results with charge summing activated. The graph has a threshold of 17000, indicating the charge summing activation.]
Medipix3 charge summing functionality

- Charge sharing correction in Medipix3 ASIC
- Pencil beam scan shows hits consistently counted once and only once
Cr-compensated GaAs

Tomsk State University
Thanks to Anton Tyazhev et al.

Technology of HR GaAs

Evaporation of Cr
Annealing
Polishing

GaAs:Cr with ρ up to $10^9 \, \Omega \times \text{cm}$

n-GaAs
Gallium Arsenide – 3” wafer performance

- 0.24% bad pixels
- Variation 21% RMS in raw image, 0.15% after flat-field correction

USB stick, FF corrected
Medipix3 readout chip

> Photon counting readout chip developed by collaboration of 20 groups
 - Chip design at CERN
> 2 counters and thresholds per 55 µm pixel
 - Additional interpixel communication circuitry
> Main synchrotron configurations:
 - “Continuous read write” at 2000 fps (12-bit counter depth)
 - Single 24-bit counter (1 ms readout)
> Other interesting possibilities
 - 110um pixel sensor, 4-8 energy bins for “colour” imaging
 - 6- or 1-bit depth with 4000 or 24,000 fps
Gallium Arsenide – typical imaging performance

> Good stability, including under high flux (within limits of chip)

- See e.g. E. Hamann PhD thesis (Uni Freiburg, 2013), M Veale et al (2017 JINST 12 P02015)

USB stick, FF corrected
Pros and cons of GaAs for diffraction at synchrotrons

> Relative stability and high-flux capability

> Relative robustness of material for large production

> Significantly less efficient than CdTe above 50 keV

 - Many synchrotron experiments in 20-50 keV range
 - CdTe suffers more from fluorescence effects at 25+ keV

> Greater nonuniformity

 - This is more correctable in monochromatic beam experiments
LAMBDA module design

- Ceramic circuit board (up to 6 x 2 chips)
- Readout and control board with FPGA
- Power and interconnect board
- Detector assembly (sensor + Medipix3 ASIC)

2 x 10 Gigabit Ethernet
Detector head

- 6 by 2 chips (1536 by 512 pixels)
 - Large Si sensor
 - 300µm Si sensor here
 - 2 x “Hexa” high-Z sensors

- Ceramic circuit board (LTCC)
 - Good match to semiconductor CTE
 - Cooling through thermal vias

- 500-pin connector on board
 - Full parallel readout (8 LVDS data outputs per chip)
High-speed electronics

> DESY high-speed readout card (also used for AGIPD and PERCIVAL)
 - Virtex-5 FPGA with PowerPC
 - Up to 4 * 10 Gigabit Ethernet links
 - DDR2 RAM (8GB)

> “Signal distribution” board connects to det. head
 - Space for vacuum barrier with germanium detector
Gallium Arsenide – typical imaging performance

- Good stability (within limits of chip)
 - See e.g. Elias Hamann PhD thesis (Uni Freiburg, 2013)
Beam scan test (CdTe) – charge summing off

- Mapped total detector response with 71 keV pencil beam - PETRA P08

threshold = 47000

- 20 µm x 2 µm beam
Beam scan test (CdTe) – charge summing off

> Mapped total detector response with 71 keV pencil beam - PETRA P08

 threshold = 19000

- 20 µm x 2 µm beam
3-module DAQ

- 3 modules x 2 optical links x 10 Gigabit
 - 60 Gbit/s total readout speed
- 2 high-end server PCs used to control detector
 - First PC – 1 module data reception, “master” control and visualisation
 - Second PC – 2 modules data reception
 - Co-ordinated and controlled using “Tango” beamline control system
Multi-module software

- Runs within “Tango” beamline control system
 - Tango controls many devices spread across many computers
- Each module can be read out by a different PC
- “Master” software then controls modules in parallel
Experiments at PETRA P02.2

Transition pressure increases with compression rate

Z. Jenei et al., 5th Workshop on High Pressure Planetary and Plasma Physics