

Single-photon imaging detector with sub-100 ps and <10 µm resolutions

<u>M. Fiorini</u>^a, J. Alozy^b, M. Bolognesi^a, M. Campbell^b, A. Cotta Ramusino^a, P. Hufschmidt^c, X. Llopart^b, T. Michel^{c,d}, A. Tremsin^e, J. Vallerga^e

^a INFN and University of Ferrara, ^b CERN, ^c University of Erlangen ^d Max Planck Institute Erlangen, ^e University of California at Berkeley

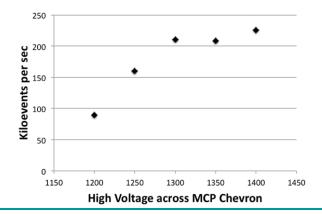
20th International Workshop on Radiation Imaging Detectors Sundsvall (Sweden), 25-28 June 2018

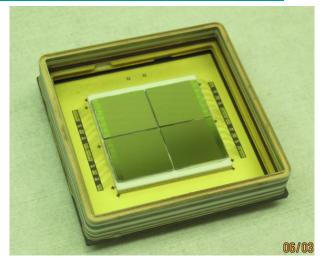
Outline

- Optical imaging tube
 - Proof of concept based on Medipix2
 - Electron tracking using a quad-Timepix
 - Detection of non-classical light
- Single-photon imager with sub-100 ps and <10 μm resolutions
 - Detector specifications
 - Timepix4-based read-out
 - Time-walk correction
 - Data acquisition system
 - Application example: high-energy physics
- Conclusions

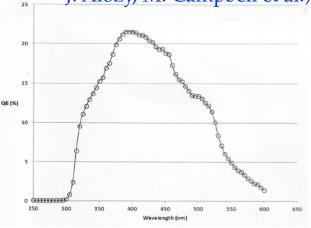
Optical imaging tube

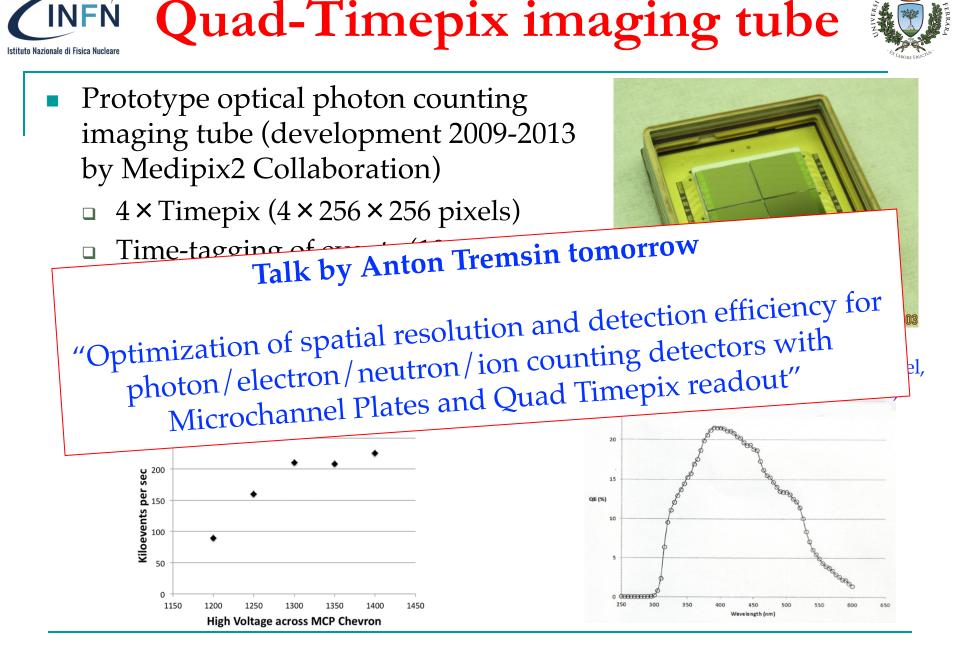
- Optical imaging tube fabricated in-house: ASIC embedded in vacuum tube (J. Vallerga, A. Tremsin et al., 2008)
- Multi-alkali photocathode S20
 - Quantum Efficiency (QE): maximum 4% at ~400 nm
- Chevron MCP pair
- Based on Medipix2 ASIC
 - □ 256 × 256 pixels
 - Only photon counting
 - No timing information
- Successful sealing of the tube

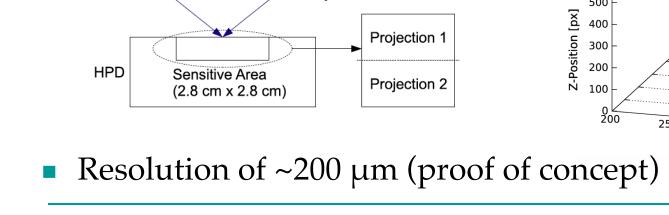

Proc. SPIE 7021 2008 (J. Vallerga, A. Tremsin et al.)

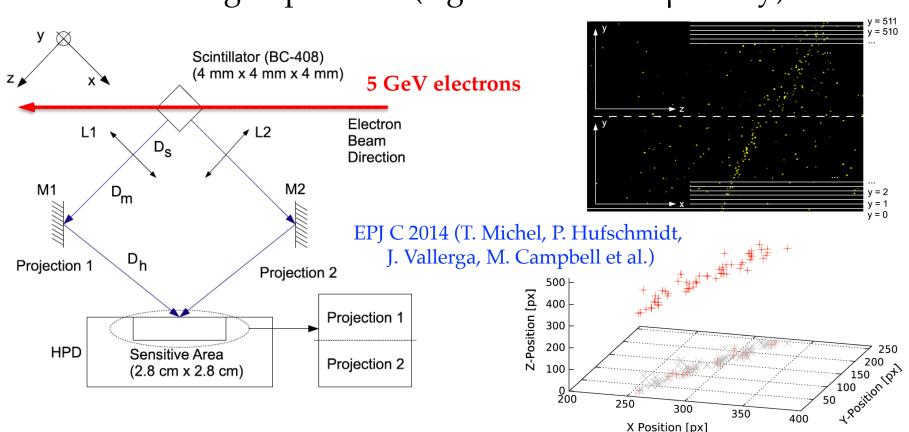

- CMOS ASIC survived high-temperature processing steps
- Proof of concept

CINFN Quad-Timepix imaging tube




- Prototype optical photon counting imaging tube (development 2009-2013 by Medipix2 Collaboration)
 - $4 \times \text{Timepix} (4 \times 256 \times 256 \text{ pixels})$
 - Time-tagging of events (10 ns) or
 Time-over-Threshold measurement
 - □ 50 mm square tube (Photonis)
 - Bi-alkali photocathode (22% max QE)
 - Chevron MCP pair (25 μm pores)

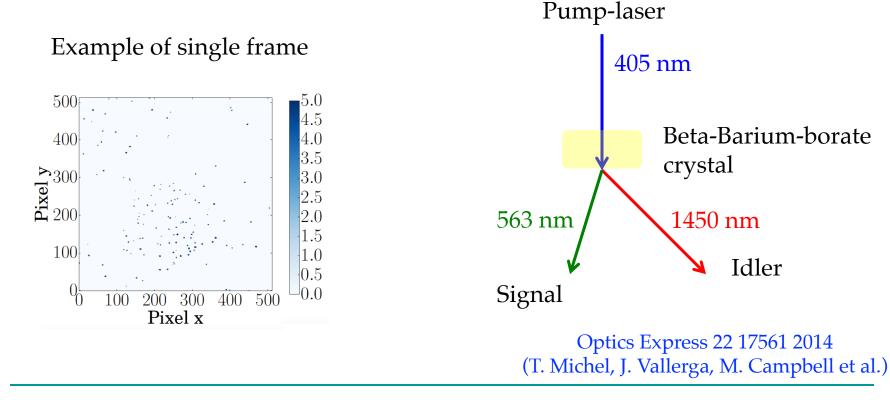




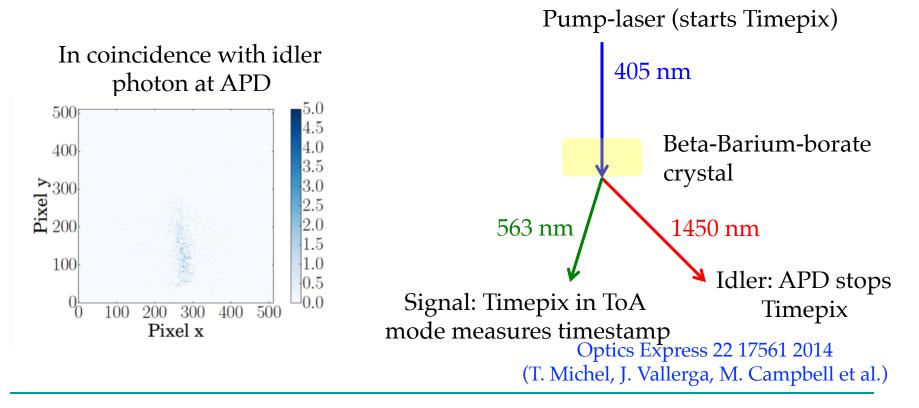
JINST 9 C05055 2014 (J. Vallerga, A. Tremsin, T. Michel, J. Alozy, M. Campbell et al.)

Reconstruction of particle trajectories to distinguish between charged particles (e.g. HEP and $0\nu 2\beta$ decay)

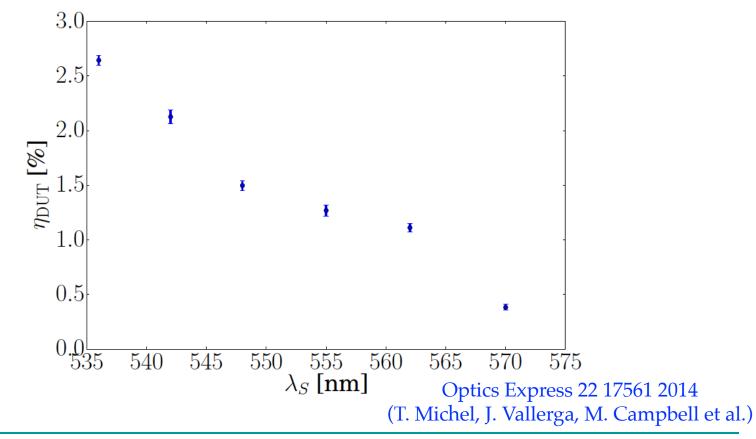
Electron tracking

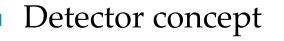


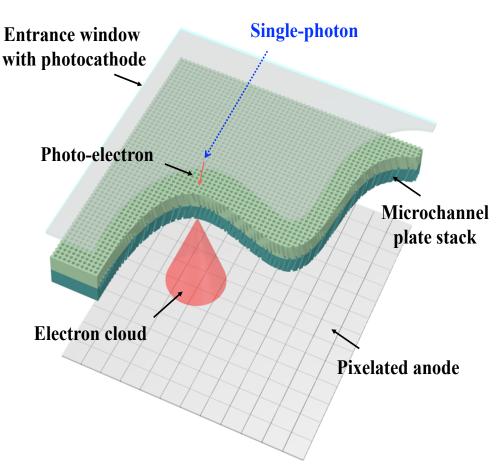
- Detection of non-classical light from "spontaneous parametric down-conversion"
 - Use of two-photon correlations for an absolute quantum efficiency measurement



- Detection of non-classical light from "spontaneous parametric down-conversion"
 - Use of two-photon correlations for an absolute quantum efficiency measurement

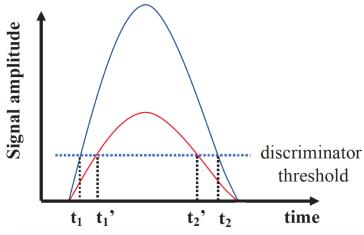


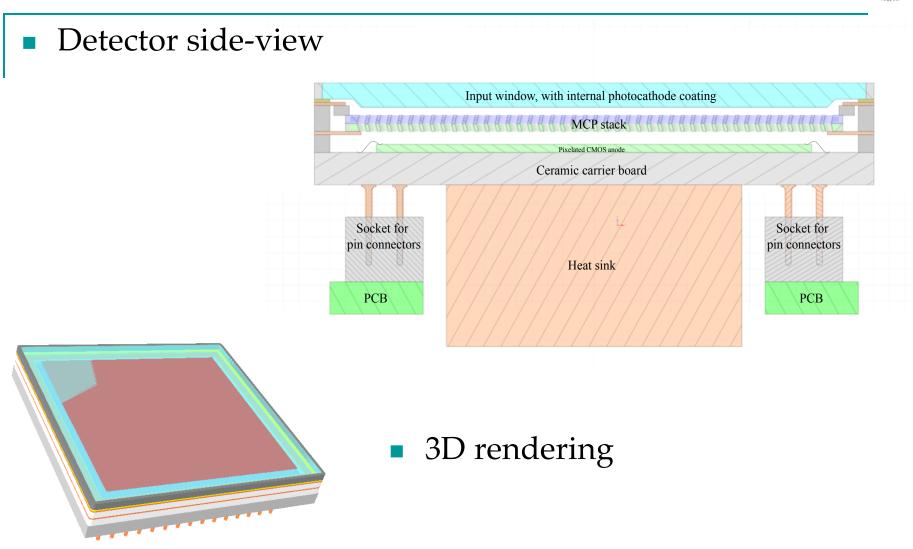



- This approach allows absolute Quantum Efficiency measurement
 - No need for a reference calibrated detector

- Up to 10^9 individually detected photons per second, with simultaneous measurement of position (<10 µm resolution) and timing (few tens of picosecond)
- Large active area (7 cm^2) and low dark count rate at room temperature $(10^2 - 10^3 \, \text{Hz} / \text{cm}^2)$
- Pixelated anode based on the Timepix4 ASIC

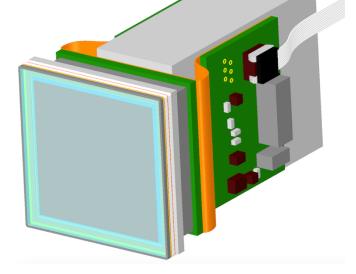
- Optimized bi-alkali photocathode
- MCP with 5-10 µm pore diameter, operated at low gain (a few 10⁴) and with atomic layer deposition (ALD) for lifetime increase to >10 C/cm² integrated charge
- Photocathode-to-MCP distance preserves impact position information
- Optimized MCP-to-anode distance spreads the electron cloud over a number of pixels
 - Improve spatial resolution (ultimately limited by pore size)
 - Improve timing resolution (multiple sampling)
 - Compromise between achievable resolutions and data rate
- Key expected performances per single-photon: few tens of picosecond timing resolution, 5-10 μm position resolution


Technology			CMOS 65 nm
Pixel Size			55 μm × 55 μm
Pixel arrangement			4-side buttable 512×448 (0.23 Mpixels)
Sensitive area			$6.94 \text{ cm}^2 (2.82 \text{ cm} \times 2.46 \text{ cm})$
Read-out Modes	Data driven	Mode	TOT and TOA
		Event Packet	64-bit
		Max rate	178.8 Mhits/cm ² /s
	Frame based	Mode	CRW: PC (8 or 16-bit)
		Frame	Full Frame (without pixel addr)
		Max count rate	~800 Ghits/cm ² /s
TOT energy resolution (Si sensor)			< 1 keV
Time resolution			~200ps
Readout bandwidth			≤81.92 Gbps (16× @5.12 Gbps)
Equivalent noise charge			50-70 e⁻
Target global minimum threshold			<500 e-

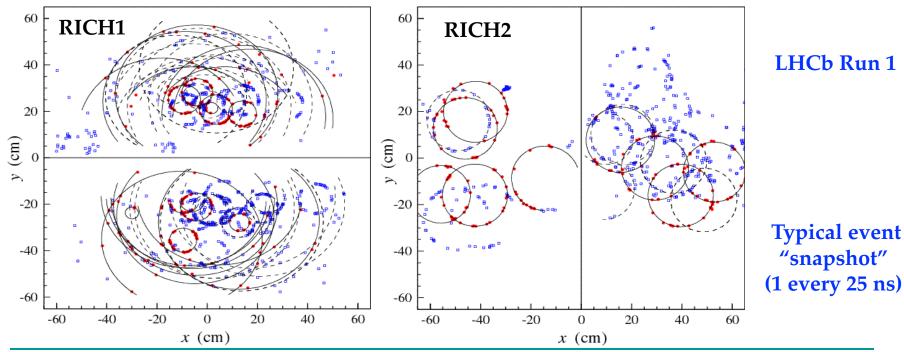

Adapted from X. LLopart

- Timepix4 allows to time-stamp leading time and measure Time-over-Threshold (ToT) for each individual pixel
 - □ 195 ps LSB TDC (~60 ps rms resolution for 1 pixel)
 - ToT measured with 1.6 ns precision (time-walk correction possible for each pixel hit)
- One photon creates an electron cloud that typically hits >1 pixel, and a centroid algorithm can be used to improve spatial and timing resolution
- A weighted average of the cluster pixels position can be calculated using their ToT information
 - Possible to reach 5-10 µm resolution with optimised geometry

Vacuum tube design



- Front-end electronics architecture is data driven
 - 64 bit for each pixel hit
 - 80 Gbps maximum data rate for a total photon rate of 1.2 Ghits/s
- Flexible design: electro-optical transceivers will link the ASIC to an FPGA-based board for the exchange of configuration and the collection of event data



- FPGA far from detector
- The FPGA will perform serial decoding and send the data directly to a PC for storage using fast serial data links

- Single-photon detectors are crucial for fundamental research in high-energy physics (HEP)
 - Used for detection of Cherenkov and scintillation light
- For example, experiments use Ring Imaging Cherenkov (RICH) detectors for charged particle identification (PID)

- High-Luminosity upgrade of the LHC
 - Large increase in detector occupancy \rightarrow pile-up (many events within 25 ns time window) \rightarrow reconstruction inefficiencies
- Interactions are spread in space but also time
 - □ Use time-tagging detectors (few tens of ps resolution) → discriminate overlapping events exploiting time-association of the hits → timing as new handle for pattern recognition
- A RICH detector equipped with such device could deliver unprecedented information and allow efficient PID:
 - High granularity (Cherenkov angle resolution improvement), high rate capabilities, timing resolution (simplify pattern recognition improving efficiency), very small dark count rate (negligible detector-related background), robust in magnetic fields (thanks to MCP and tube geometry)

Conclusions

- The use of a bare CMOS ASIC inside a vacuum tube with a MCP has proved to be a solid approach for the detection of single photons
- A new detector concept has been presented, which will allow to detect up to 10⁹ photons/s with simultaneous measurement of time and position with unprecedented resolutions (few tens of ps and <10µm respectively)</p>
 - Fully exploit both timing and position resolutions of a MCP
 - □ High-performance data acquisition (up to 80 Gbps)
- Many potential applications
 - High-energy physics, quantum optics, life sciences