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Spectroscopic Chain
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Effects of the saturation on the 
signal shape of a CSP
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HPGe

Amplitude = Energy Information
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• Signal amplitude proportional 
to the energy deposited in the 
detector

• Decay constant determined by 
the RC product of the CSP

• Corrupted energy information
• Dead time that can be much 

longer than the decay constant 
of the preamplifier
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• Not suitable in case of high channel 
density

• Components tolerant to higher bias 
voltages -> High dynamic range

• Higher power consumption
• Design flexibility

Discrete 
preamplifiers

Towards a progressive integration of 
the front-end electronics

• Suitable in case of high channel density
• Components tolerant to lower bias 

voltages -> Low dynamic range
• Low power consumption
• Radio-purity

Integrated 
preamplifiers



The Fast-Reset Integrated 
preamplifier
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• Realized in AMS C35 technology
• 8 channels for anodic signals and 1 

channel for cathodic ones
• Power consumption: 12 mW/ch
• Risetime: 10 ns (4 pF det. And 1 pF FB)
• Power supply: ±2.5V
• Area = 10mm2

Layout

Microscope
view

• Carrier: PLCC68
• Digital slow control with I2C engine
• Separate power rails for cross-talk 

reduction
• Equipped with Fast-Reset circuit
• Only one external component: the 

feedback resistor



The Fast-Reset Integrated 
preamplifier
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Schmitt 
Trigger

From 
detector

Output

External feedback resistor

CF

• The Fast-Reset preamplifier is a CSP equipped 
with a Schmitt Trigger and a Current sink

• For under-threshold signals it works like a 
normal CSP

• In case of saturation the current sink is activated
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The Fast-Reset Integrated 
preamplifier
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Schmitt 
Trigger

From 
detector

Output

External feedback resistor

CF

• The Fast-Reset preamplifier is a CSP equipped 
with a Schmitt Trigger and a Current sink

• For under-threshold signals it works like a 
normal CSP

• In case of saturation the current sink is activated

Fast-Reset
Mode



The Fast-Reset mode:
Not only dead-time reduction

But also High-resolution 
Spectroscopy
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Charge-conservation
principle

Schmitt 
Trigger

From 
detector

External feedback resistor

CF

Constant and 
controlled

Current generator

High-resolution 
spectroscopy with 

Time-over-Threshold
algorithm

RESET
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Time

Energies under the 
saturation threshold

< 10 (40) MeV

Energies over the 
saturation threshold

> 10 (40) MeV

Amplitude 
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Combining offline the information collected with the two operative modes we can reconstruct
the energy spectrum over an extended range

The Fast-Reset mode:
Not only dead-time reduction

But also High-resolution 
Spectroscopy
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The Fast-Reset mode:
Not only dead-time reduction

But also High-resolution 
Spectroscopy
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Dependency of the 
energy measurement 

from the baseline value
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T1

T2

Energy of the 
previous event

-------- 1 MeV
-------- 8 Mev

• The digital TOT signal depends on 
the residual charge on CF before 
the reset process

• Need for an algorithm to correct
this dependency

• Off-line digital correction: easy to 
implement but expensive in 
computational terms
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Pile-up effects at medium counting rate

1.3 KHz

CSP out

Comparator out

Dependency of the 
energy measurement 

from the baseline value
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Pile-up effects at high counting rate

14.5 KHz

CSP out

Comparator out

Dependency of the 
energy measurement 

from the baseline value



An algorithm to correct 
the spectra from the 
baseline dependency
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Need to generate an auxiliary signal
with amplitude VREF directly

proportional to the energy of the last 
physical event (and that doesn’t depend
on the residual charge of past events! )

VREF

V1

V2

T

CSP out

Comparator out

AUXILIARY SIGNAL

𝐸𝐷𝐸𝑇 ∝ 𝑉𝑅𝐸𝐹 = 𝛼 𝐼𝑅𝐸𝑆𝐸𝑇 ∙ 𝑇 − 𝐶𝐹 ∙ 𝑉2 − 𝑉1
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Schmitt 
Trigger

From 
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CF

RF

An algorithm to correct 
the spectra from the 
baseline dependency

CSP out

𝐸𝐷𝐸𝑇 ∝ 𝑉𝑅𝐸𝐹 = 𝛼 𝐼𝑅𝐸𝑆𝐸𝑇 ∙ 𝑇 − 𝐶𝐹 ∙ 𝑉2 − 𝑉1
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Schmitt 
Trigger

From 
detector

CF

RF

An algorithm to correct 
the spectra from the 
baseline dependency

LPF

CSP out
AUXILIARY 

out

CAUX
CLPF

𝐸𝐷𝐸𝑇 ∝ 𝑉𝑅𝐸𝐹 = 𝛼 𝐼𝑅𝐸𝑆𝐸𝑇 ∙ 𝑇 − 𝐶𝐹 ∙ 𝑉2 − 𝑉1
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Schmitt 
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An algorithm to correct 
the spectra from the 
baseline dependency

CSP out
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out

𝑉𝐴𝑈𝑋 | 𝐶𝐺 =
1

𝐶𝐴𝑈𝑋
 
0

𝑇

𝐼𝑅𝐸𝑆𝐸𝑇 𝑑𝑡 =
𝐼𝑅𝐸𝑆𝐸𝑇 ∙ 𝑇

𝐶𝐴𝑈𝑋
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An algorithm to correct 
the spectra from the 
baseline dependency

Schmitt 
Trigger

From 
detector

CF

RF

LPF

CSP out
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out
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𝐸𝐷𝐸𝑇 ∝ 𝑉𝑅𝐸𝐹 = 𝛼 𝐼𝑅𝐸𝑆𝐸𝑇 ∙ 𝑇 − 𝐶𝐹 ∙ 𝑉2 − 𝑉1



Experimental results:
linearity test
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• 2 pC to 10 pC charge signals 
injected on the input node of 
the CSP with a pulser through a 
1 pF test capacitor

• The auxiliary TAC structure 
produces signals that are linear 
in amplitude with the energy!
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• 2 pC to 10 pC charge signals 
injected on the input node of 
the CSP with a pulser through a 
1 pF test capacitor

• The auxiliary TAC structure 
produces signals that are linear 
in amplitude with the energy!

Experimental results:
linearity test
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3 pC

• 3 pC charge signals injected on the input 
node of the CSP with a pulser through a 1 
pF test capacitor. From 0 to 1pC of residual 
charge on the input node

CSP out

Experimental results:
baseline rejection

• The auxiliary TAC structure 
produces signals that change in 
shape but keep the same 
amplitude!

AUXILIARY 
out
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Experimental results:
Resolution

AUXILIARY 
out

Amplitude histogram

• 2 pC to 10 pC charge signals injected on the 
input node of the CSP with a pulser through 
a 1 pF test capacitor. 100 signals acquired 
for each peak
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Experimental results:
Resolution

Peak 
resolutions

Amplitude histogram

Input
Charge
[ pC ]

Signal
amplitude

[ mV ]

Peak width
FWHM 
[ mV ]

Peak width
FWHM 

[ % ]

2 49.394 0.210 0.43

3 74.073 0.243 0.33

4 99.329 0.229 0.23

5 125.33 0.296 0.24

6 151.08 0.247 0.16

7 176.39 0.227 0.13

8 202.56 0.269 0.13

9 227.03 0.291 0.13

10 252.27 0.347 0.14

• 2 pC to 10 pC charge signals injected on the 
input node of the CSP with a pulser through 
a 1 pF test capacitor. 100 signals acquired 
for each peak

BEST-CASE RESOLUTION OF 0.13% 
FWHM OF THE TOTAL ENEGY!



Conclusions
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• A low-noise low-power CSP ASIC was presented 
with an innovative range-booster circuit

• The CSP meets the requirements of gamma 
spectroscopy (but also suitable for particle 
spectroscopy)

• The fast risetime enables to process the signals 
from this preamplifier with pulse-shape analysis 
algorithms

• An innovative technique was presented that 
extends the natural dynamic range of the 
preamplifier from 40 MeV to several hundreds 
of MeV

• The TTA algorithm was implemented in an 
analog circuit that performs the operation on-
line and is not influenced by the signal’s 
baseline



Perspectives
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New ASIC preamplifier for 
signals with opposite polarities 

already submitted to the 
foundry

Extended tests on the chip
(higher pulser energies, test 

with actual detector and 
cryogenic operation)

Finalization before end 2018 of 
the first TRACE detector array 
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Thank you

Special thanks to my supervisor Alberto Pullia
Many thanks to Giovanni Vito for the help in the experimental tests



Experimental tests with 
detector

(previous chip version)
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Silicon detector 1 mm thick, 32 active 
channels, Am-Cu-Pu mixed alpha source



Low-pass filter
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R R/2 R/4 R/8

C 2C 4C

8C
From 
CSP

To

TAC

LPF



Limits of the algorithm
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A signal risetime with time constant 
comparable to the one of the LPF (or higher) 

induces some errors in the rejection algorithm
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