
Rapidly moving data from ROOT to Numpy and Pandas

Jim Pivarski

Princeton University – DIANA-HEP

February 28, 2018

1 / 32

The what and why of uproot

What is uproot?

A pure Python + Numpy implementation of ROOT I/O.

Why does it exist?

1. To extract columnar data (branches) from a ROOT file without invoking the
event-handling infrastructure of the ROOT framework.

2. As a faster and fewer-dependencies alternative to root numpy and root pandas.

3. To express the semantics and conventions of the ROOT file format independently
of ROOT, in lieu of a formal specification.

2 / 32

Why reimplement ROOT I/O?

0

5

10

15

20

25

30

35

40

1980 1985 1990 1995 2000 2005 2010 2015 2020

nu
m

be
r

of
 im

pl
e

m
en

ta
tio

n
s

inception year

FITS (38)

netCDF (27)

ROOT (7)

ProtoBuf (20)
Thrift (15)

Avro (13)

Parquet (5)

Arrow (7)

HDF4 (31)

HDF5 (26)

ASDF (2)

It’s more common to
define a specification
and implement many
interpreters than not.

Most connect the
format to different
contexts, such as
different languages.

(Take these numbers
with a grain of salt:
HDF5 is criticized
because many of its
bindings depend on
only two C libraries!)

3 / 32

ROOT I/O implementations

ROOT C++ ROOT itself The ROOT Team

FreeHEP I/O
→ spark-root

Java/Scala For Spark and other Big Data
projects that run on Java

Started by Tony Johnson in 2001,
updated by Viktor Khristenko

RIO →
inlib/exlib

C++ Intended as an alternative,
now embedded in GEANT-4

Guy Barrand

JsRoot Javascript For interacting with ROOT in
web browsers or standalone

Bertrand Bellenot, Sergey Linev
(in the ROOT Team)

go-hep/rootio Go HEP analysis ecosystem in Go Sebastien Binet

uproot Python For quickly getting ROOT
data into Numpy and Pandas
for machine learning

Jim Pivarski (me)

alice-rs/root-io Rust ALICE ecosystem in Rust Christian Bourjau
4 / 32

Why Python + Numpy?

I Physicists are already using Python for data analysis.

I PyROOT has excellent coverage of the ROOT ecosystem, but calling individually
wrapped C++ methods from Python is slow and the two languages have different
(often conflicting) memory management.

I Performance-oriented tools like root numpy and root pandas compile into a specific
version of ROOT, which complicates upgrades. Also, asking for arrays through
interfaces designed for event processing is a severe performance penalty.

I The scientific Python ecosystem, including much of machine learning, is designed
around a fundamental abstraction called the Numpy array.

I Working with computer scientists is easier when you can say, “pip install uproot.”

I Implemented correctly, Python + Numpy doesn’t have to be slow.

I Finding the columnar data in a ROOT file may be done in slow Python, as long as
decompression and array manipulations are done by compiled code.

5 / 32

More context: BulkIO

Last summer, Brian Bockelman started a project called “BulkIO” to
bypass the event processing framework in ROOT itself, providing direct
access to branches as columns.

I added a BulkIO-to-Numpy interface in PyROOT in the same pull
request [#943] and intend to maintain it, when it’s approved.

I wrote uproot while the pull request is in progress, based on the same
BulkIO technique.

6 / 32

https://github.com/root-project/root/pull/943

A tour of uproot

7 / 32

A tour of uproot

Install uproot and download a sample file.

$ pip install uproot --user
$ wget http://scikit-hep.org/uproot/examples/Zmumu.root

Start using it in Python.

>>> import uproot
>>> file = uproot.open("Zmumu.root") # or root:// or http://

ROOT files, directories, and trees are like Python dicts with keys() and values().

>>> file.keys()
[’events;1’]
>>> tree = file["events"]
>>> tree.keys()
[’Type’, ’Run’, ’Event’, ’E1’, ’px1’, ’py1’, ’pz1’, ’pt1’, ’eta1’,
’phi1’, ’Q1’, ’E2’, ’px2’, ’py2’, ’pz2’, ’pt2’, ’eta2’, ’phi2’,
’Q2’, ’M’]

8 / 32

A tour of uproot

uproot’s main purpose is to read branches from ROOT files as Numpy arrays.

>>> tree["px1"].array()
array([-41.195287, 35.118049, 35.118049, ..., 32.377491,

32.377491, 32.485393])

>>> tree.arrays(["px1", "py1", "pz1"])
{’px1’: array([-41.195287, 35.118049, 35.118049, ..., 32.377491,

32.377491, 32.485393]),
’py1’: array([17.43324 , -16.570362, -16.570362, ..., 1.199405,

1.199405, 1.20135]),
’pz1’: array([-68.964961, -48.775246, -48.775246, ..., -74.532430,

-74.532430, -74.808372])}

9 / 32

A tour of uproot

Iteration lets us fetch data in batches— large enough to be efficient in Python but
small enough to fit in memory.

>>> for arrays in tree.iterate(entrysteps=10000):
... do_something(arrays) # all arrays in chunks of 10k events

>>> for arrays in uproot.iterate("/path/to/files*.root", "Events"):
... do_something(arrays) # this is like a TChain

The array-fetching methods share most parameters: you can specify a subset of
branches in iterate just as you would in arrays.

If unspecified, entrysteps defaults to the ROOT file’s cluster size, reading whole
baskets at a time.

10 / 32

A tour of uproot

One of these array-fetching methods fills a Pandas DataFrame.

>>> tree.pandas.df(["pt*", "eta*", "phi*"])
eta1 eta2 phi1 phi2 pt1 pt2

0 -1.217690 -1.051390 2.741260 -0.440873 44.7322 38.8311
1 -1.051390 -1.217690 -0.440873 2.741260 38.8311 44.7322
2 -1.051390 -1.217690 -0.440873 2.741260 38.8311 44.7322
3 -1.051390 -1.217690 -0.440873 2.741260 38.8311 44.7322
...
2300 -1.482700 -1.570440 -2.775240 0.037027 72.8781 32.3997
2301 -1.570440 -1.482700 0.037027 -2.775240 32.3997 72.8781
2302 -1.570440 -1.482700 0.037027 -2.775240 32.3997 72.8781
2303 -1.570440 -1.482700 0.037027 -2.775240 32.3997 72.8781

[2304 rows x 6 columns]

Features like this are easy now that the core ROOT-reading functionality is in place.
11 / 32

A tour of uproot

uproot follows Pythonic customs: high-level yet explicit. For example, asking for the
same array twice reads it from the file twice.

>>> arrays = tree.arrays() # reads all data
>>> arrays = tree.arrays() # reads all data again

That is, unless you give it a cache (anything that acts like a dict).

>>> cache = {}
>>> arrays = tree.arrays(cache=cache) # reads all data
>>> arrays = tree.arrays(cache=cache) # gets it from the cache
>>> len(cache)
20

>>> limitedcache = uproot.cache.MemoryCache(5*1024) # limit to 5 kB
>>> arrays = tree.arrays(cache=limitedcache)
>>> len(limitedcache)
18

12 / 32

A tour of uproot

Same for concurrency: it’s single-threaded unless you give it an executor (anything
with a map method returning a non-blocking generator of results).

>>> from concurrent.futures import ThreadPoolExecutor

>>> executor = ThreadPoolExecutor(8) # 8 threads
>>> arrays = tree.arrays(executor=executor) # read, decompress all

baskets in parallel

There’s also a non-blocking form that returns a function. Processing happens in the
background until you call this function, which waits for and returns the array data.

>>> wait = tree.arrays(executor=executor, blocking=False)
>>> wait
<function wait at 0x7a1d744515f0>
>>> wait() # now get the arrays
...

13 / 32

A tour of uproot

A lot of ROOT trees are not flat tables, but contain arbitrary-length lists of particle
attributes. Numpy only deals with n-dimensional arrays, so we need a new container.

>>> tree = uproot.open("http://scikit-hep.org/uproot/"
... "examples/HZZ.root")["events"]
>>> ja = tree.array("Jet_E")
>>> ja
jaggedarray([[],

[44.137363],
[],
...,
[55.95058],
[229.57799 33.92035],
[]])

>>> ja[0]
array([], dtype=float32)
>>> ja[1]
array([44.137363], dtype=float32)

14 / 32

A tour of uproot

This is much faster than root numpy’s behavior (arrays as objects in an object array)
because uproot only loads the information needed to identify subarrays (contiguous in
memory) without constructing them all (randomly in memory).

>>> ja.content
array([44.13, 230.34, 101.35 ... 55.95, 229.57, 33.92], dtype=float32)
>>> ja.offsets
array([0, 0, 1 ... 2771, 2773, 2773])

There are also string types, vector of strings, vector of vector of numbers, etc.
Eventually, uproot will be able to interpret any data type. To see if your branch’s type
is currently supported, call tree.show() and check the third column for None.

>>> tree.show()
NJet (no streamer) asdtype(’>i4’)
Jet_E (no streamer) asjagged(asdtype(’>f4’))
Jet_ID (no streamer) asjagged(asdtype(’>bool’))
...

15 / 32

A tour of uproot

uproot uses a ROOT file’s streamer info to know how to deserialize classes, staying abreast of
changes. Thus, any type of object may be extracted from a ROOT file.

$ wget "https://github.com/HEPData/hepdata-submission/blob/master/examples/submission/"\
"TestHEPSubmission/root_file.root?raw=true" -O hepdata.root

>>> file = uproot.open("hepdata.root")
>>> dict(file.classes())
{’hpx;1’: <class uproot.rootio.TH1F>, ’hpxpy;1’: <class uproot.rootio.TH2F>,
’hprof;1’: <class uproot.rootio.TProfile>, ’ntuple;1’: <class uproot.rootio.TNtuple>}
>>> histogram = file["hpx"]
>>> histogram.fTitle
’This is the px distribution’
>>> histogram.fFunctions[0]
<TPaveStats ’stats’ at 0x71cb4586df90>

>>> histogram.fXaxis.__dict__ # all the fields are there, without interpretation
{’fTitleFont’: 42, ’fLabelColor’: 1, ’fNdivisions’: 510, ’fXmin’: -4.0,
’fTimeDisplay’: False, ’classversion’: 1, ’fLabelFont’: 42, ’fNbins’: 100,
’fLabels’: None, ’fXbins’: [], ’fTitleColor’: 1, ’fLabelOffset’: 0.004999999888241291,
’fName’: ’xaxis’, ’fLast’: 0, ’fAxisColor’: 1, ’fLabelSize’: 0.03500000014901161,
’fTitleOffset’: 1.0, ’fTitle’: ’’, ’fFirst’: 0, ’fXmax’: 4.0,
’fTickLength’: 0.029999999329447746, ’fTimeFormat’: ’’, ’fBits2’: 0,
’fTitleSize’: 0.03500000014901161} 16 / 32

A tour of uproot

All that remains is to give these objects Pythonic interpretations.
>>> histogram.bokeh.plot() # basic implementation, somewhat clunky
>>> histogram.holoviews.plot() # only works in a Jupyter notebook

>>> histogram.fit(lambda x, a, b, c: a*exp(-(x - b)**2 / c)) # dreaming...

>>> histogram.show() # surprisingly useful
0 2410.8
+--+

[-inf, -3) 0 | |
[-3, -2.4) 68 |** |
[-2.4, -1.8) 285 |******* |
[-1.8, -1.2) 755 |******************* |
[-1.2, -0.6) 1580 |*************************************** |
[-0.6, 0) 2296 |*** |
[0, 0.6) 2286 |*** |
[0.6, 1.2) 1570 |*************************************** |
[1.2, 1.8) 795 |******************** |
[1.8, 2.4) 289 |******* |
[2.4, 3) 76 |** |
[3, inf] 0 | |

+--+
17 / 32

Performance

18 / 32

Performance: comparison to root numpy (uncompressed)

In terms of functionality, uproot is most similar to root numpy. Depending on basket
size and whether the array is flat (fixed width per event) or jagged (variable width),
uproot can be as much as 40 times faster.

The 13 lines are different physics distributions from CMS NanoAOD (mileage varies).
Speedup increases with basket size because more work is done in Numpy, not Python.

19 / 32

Performance: comparison to root numpy (gzip-compressed)

The distinction drops to a factor of 3 when flat data are compressed, but still there’s a
factor of 10 for jagged data because of the way root numpy handles this type.

20 / 32

Performance: comparison to ROOT (uncompressed)

For sufficiently large baskets, uproot even compares favorably to ROOT because
uproot bypasses the event processing framework.

When the BulkIO feature is added to ROOT, it will be about 30 times faster than this
baseline, so ROOT TBranch::GetEntry � uproot � ROOT BulkIO.

21 / 32

Performance: comparison to ROOT (gzip-compressed)

As you add compression, the distinction washes out because both processes spend
more of their time in the same decompression algorithm.

For read performance, no compression ∼ lz4 � gzip � lzma.

22 / 32

If you are preparing data for uproot

. . . make large baskets:

// 100 kB to 1 MB baskets
tree->Branch("branch", &data, "branch/F", 1024*1024);

// negative flush size is size of all branches in a cluster
tree->SetAutoFlush(-1024*1024 * numbranches);

. . . and use LZ4 compression:

file->SetCompressionAlgorithm(ROOT::kLZ4); // ROOT::kLZ4 is 4
file->SetCompressionLevel(3);

23 / 32

Last performance plot: multithreaded scaling

Although Python locks all threads at each step in its interpreter (the “GIL”), compiled
code escapes this limitation and can scale on multicore machines.

In the above, we iterated through a thousand lzma-compressed branches (lzma requires
the most CPU time to decompress), distributed as described on page 13.

24 / 32

Activity, status, and future

25 / 32

Download statistics (via “pip install”)

Number of unique country code/OS distribution/version combinations (“users”): 127.

Client in NL requests every version; others request only the latest.

Popular with Linux laptops (Ubuntu); I want to know who’s using it on a Raspberry Pi!

GitHub issues not posted by me: 33; stars: 72; watchers: 10.
26 / 32

Status and future

I uproot has reached a stable plateau, I’m mostly responding to bugs and
feature requests now— no deep overhauls.

I This summer, Pratyush Das (an undergrad) will be adding write support
for file output.

I uproot will always be an I/O-only library. However, it may accrue
features that connect it to other packages, such as

tree.pandas.df()

and

histogram.bokeh.plot()

which can eventually make it part of a Pythonic analysis environment.

27 / 32

Status and future

Yesterday, Chris Burr implemented a pyparsing-based translator from
ROOT’s TFormula language to numexpr. This would make it possible
for uproot to reproduce all functionality currently found in root numpy.

Is there interest in

import uproot.root numpy as root numpy

as a drop-in replacement?

28 / 32

Last slide: thanks for listening!

pip install uproot --user

https://github.com/scikit-hep/uproot

http://uproot.readthedocs.io

https://groups.google.com/forum/#!forum/uproot-users/join

29 / 32

https://github.com/scikit-hep/uproot
http://uproot.readthedocs.io
https://groups.google.com/forum/#!forum/uproot-users/join

BACKUP

30 / 32

Code used for performance studies

For all (prewarmed cache eliminates dependence on disk, which was SSD anyway):
$ vmtouch -t filename

For uproot:

import uproot
tree = uproot.open(filename)[treename]

startTime = time.time()
tree.array(branchname)
return time.time() - startTime

For root numpy:

import root_numpy
file = ROOT.TFile(filename)
tree = file.Get(treename)

startTime = time.time()
root_numpy.tree2array(tree, [branchname])
return time.time() - startTime

31 / 32

Code used for performance studies

For C++ ROOT:

TFile *file = new TFile(filename);
TTree *tree;
file->GetObject(treename, tree);

float MET_pt;
float Muon_pt[8];

TBranch *branch;
if (branchname == "Muon_pt") {

branch = treein->GetBranch("Muon_pt");
}
else if (branchname == "MET_pt") {
branch = treein->GetBranch("MET_pt");

}

branch->SetAddress(&MET_pt);
branch->SetAddress(&Muon_pt);

struct timeval startTime, endTime;

Long64_t nEvents = tree->GetEntries();
Long64_t iEvent;
gettimeofday(&startTime, 0);
for (iEvent = 0; iEvent < nEvents; ++iEvent) {

// not tree->GetEntry(iEvent) because
// that would touch all branches!
branch->GetEntry(iEvent);

}
gettimeofday(&endTime, 0);

double microsecs =
1000000*(endTime.tv_sec - startTime.tv_sec)

+ (endTime.tv_usec - startTime.tv_usec);

return microsecs / 1000000.0;

32 / 32

