

Searches for new physics in FCNC top decays in multilepton final states

Grigore TARNA

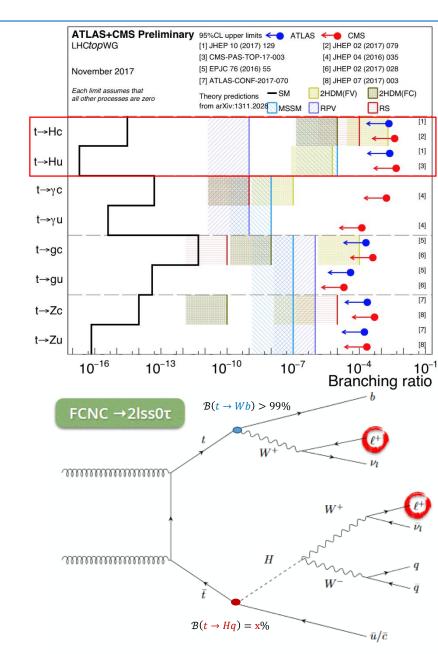
for the ATLAS collaboration

CPPM, Aix-Marseille Université, CNRS/IN2P3 (FR) IFIN-HH Bucharest (RO)

CORFU2018, Corfu, 03-Sept-2018

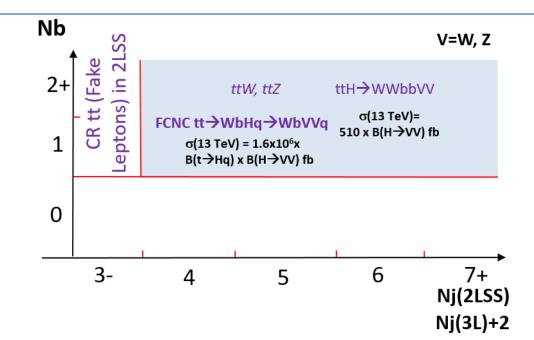
Introduction

• Flavor-changing neutral currents (FCNC) are forbidden at tree level and strongly suppressed at higher order in SM, ex.


 $t \rightarrow Hq, (q = u, c)$

- Large enhancements in branching ratio are possible in some beyond Standard Model (SM) scenarios, $\mathcal{B}(t \to Hc) \sim 0.1\%$ ($\sim 10^{-15}$ in SM)
- Search for FCNC in $t\bar{t}$ decays, $\sigma_{FCNC} = \sigma_{t\bar{t}} \cdot \mathcal{B}_{FCNC} \cdot (1 \mathcal{B}_{FCNC}) \cdot 2$
- ATLAS Run 1 results: 95% CL observed (expected) upper limit on \mathcal{B} • $\mathcal{B}(t \rightarrow Hu) < 0.45(0.29)\%$ • $\mathcal{B}(t \rightarrow Hc) < 0.46(0.25)\%$
- ATLAS Run 2 analyses (by Higgs boson decay):
 - $H \rightarrow \gamma \gamma$: $\mathcal{B}(t \rightarrow Hc) \leq 0.22(0.16)\%^*$
 - $H \rightarrow WW^*$, ZZ^* , $\tau_{lep}\tau_{lep}$: this presentation
- Decay chain example (assuming $H \rightarrow WW^*$):

$$t\bar{t} \rightarrow Wb + Hq \rightarrow 3W + b + q \qquad \qquad 4 \text{ jets (incl. 1b)} + 2\ell SS^{**} + E_T^{miss}$$


$$2 \text{ jets (incl. 1b)} + 3\ell + E_T^{miss}$$

*JHEP10(2017) 129 **Same sign

Analysis strategy

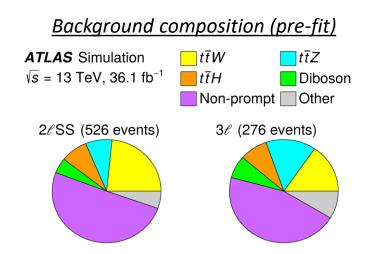
- The analysis is based on 36.1 fb⁻¹ of data at $\sqrt{s} = 13$ TeV
- Two relaxed (pre-MVA*) regions with no τ_{had} :
 - **1.** $2\ell SS : N_{jet} > = 4 + N_{b-jet} > = 1$
 - *2.* $3\ell: N_{jet} >= 2 + N_{b-jet} >= 1$
 - Constrain on N_{jet} comes from fake lepton estimate (need a Control Region with N_{jet}=2,3 to measure fake lepton rate)

• In the pre-MVA region the background is dominated by **ttV** and **fake leptons** (coming from b decays in $t\bar{t}$ events)

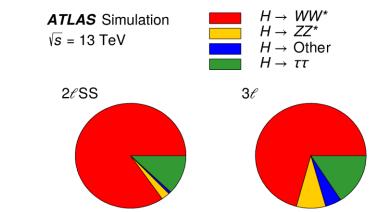
$$t\bar{t}V \rightarrow 2W + V + 2b \rightarrow 4j$$
 (inc. 2b) $+2\ell SS + E_T^{\text{miss}}$ or 2-4j (inc. 2b) $+3\ell + E_T^{\text{miss}}$

$$t\bar{t} \rightarrow 2W + 2b \rightarrow 3j$$
 (inc. 1b) $+2\ell SS + E_T^{\text{miss}}$ or 1j (inc. 1b) $+3\ell + E_T^{\text{miss}}$

- Main backgrounds treatment
 - 1. dedicated algorithm to reduce leptons from b decays (at the level of pre-MVA region)
 - 2. dedicated MVA to separate FCNC from ttV and fake leptons (on top of the pre-MVA region)
- Fit data distribution of the MVA discriminant


*Multivariate Analysis

I. Event yields in pre-MVA region


- Pre-MVA basic selections
 - 2*lSS*
 - p_T leptons($l_0^{\pm} l_1^{\pm}$) >(20,20) GeV
 - *N_{jet}>=4, N_{b-jet}=1,2*
 - 0 *τ*_{had}
 - 3*l*

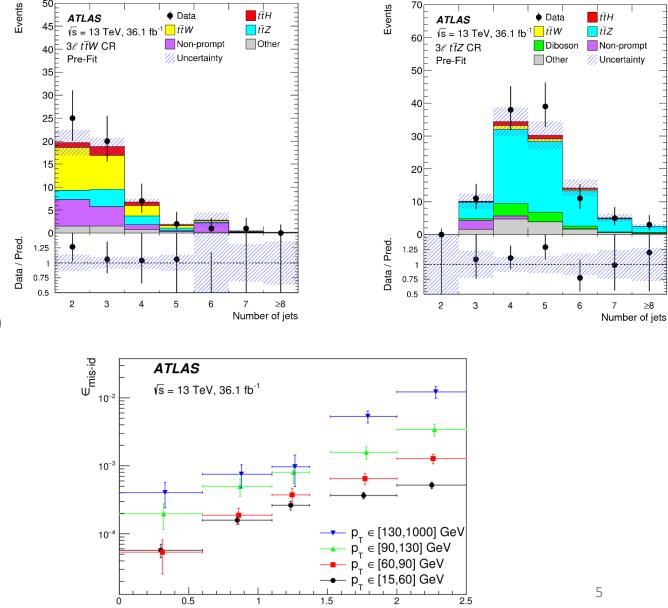
٠

- p_T leptons($l_0^{\pm} l_1^{\pm} l_2^{\pm}$) >(10,15,15) GeV
- *N_{jet}>=2, N_{b-jet}>=1*
- 0 *τ*_{had}
- Pre-fit event yields

$t \rightarrow Hq$ signal composition

Category	Non- prompt	ttV	ttH	Diboson	Other prompt SM	Total SM	FCNC** $\underline{t \rightarrow Hu}$	FCNC** $\underline{t \rightarrow Hc}$	Data
2 <i>ℓSS</i>	266±40	165 <u>+</u> 19	43 <u>+</u> 4	25 <u>+</u> 15	28 <u>+</u> 6	526±39	61±13	62±13	514
3 ℓ	126±31	84 <u>±</u> 8	23±3	20±11	24 <u>+</u> 5	276±33	32 <u>±</u> 6	30±6	258

**assuming $\mathcal{B}(t \rightarrow Hq) = 0.2\%$


- Around half of the background is non-prompt
- $H \rightarrow WW^*$ is dominant

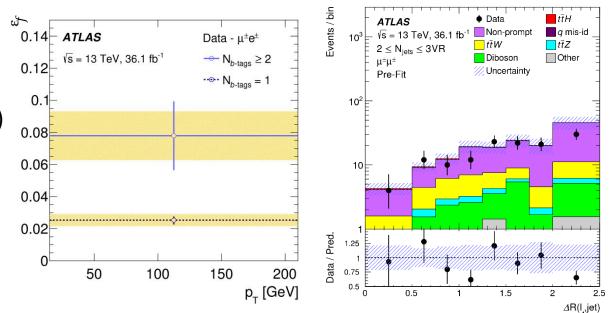
II. Background estimates (1)

- > Irreducible backgrounds
- Dominated by ttW ($2\ell SS$), ttZ(3ℓ) and Diboson
- MC models well the data in the dedicated ttV (V=W,Z) validation regions

- **Reducible backgrounds (a):** QmisID (mainly from $t\bar{t}$) (electrons with mis-identified electric charge)
- Use a data-driven method
 - Based on $Z \rightarrow e^+e^-$ events
 - Charge flip rate extracted in p_T , η bins
 - apply weight on the opposite sign events in the pre-MVA region

 $w_{QmisID} = \epsilon_{\text{mis id},1}(1 - \epsilon_{\text{mis id},2}) + \epsilon_{\text{mis id},2}(1 - \epsilon_{\text{mis id},1})$

μ


II. Background estimates (2)

> Reducible background (b): Fake Leptons (mainly from $t\bar{t}$)

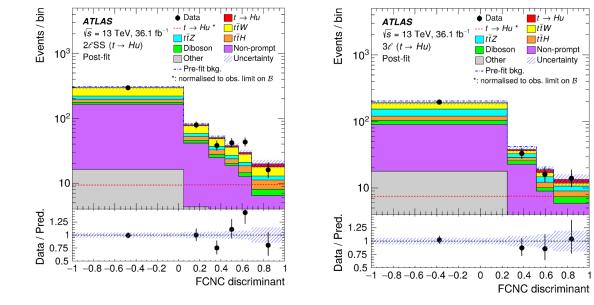
- Use Matrix Method
 - Real lepton efficiency ε_r in $t\bar{t}$ events CR (**opposite sign**)
 - Fake lepton efficiency ε_f in same sign $t\bar{t}$ events (2 3 jets)

$$\begin{pmatrix} N^{rr} \\ N^{rf} \\ N^{fr} \\ N^{ff} \end{pmatrix} = \begin{pmatrix} \varepsilon_{r,1}\varepsilon_{r,2} & \varepsilon_{r,1}\varepsilon_{f,2} & \varepsilon_{f,1}\varepsilon_{r,2} & \varepsilon_{f,1}\varepsilon_{f,2} \\ \varepsilon_{r,1}\xi_{r,2} & \varepsilon_{r,1}\xi_{f,2} & \varepsilon_{f,1}\xi_{r,2} & \varepsilon_{f,1}\xi_{f,2} \\ \xi_{r,1}\varepsilon_{r,2} & \xi_{r,1}\varepsilon_{f,2} & \xi_{f,1}\varepsilon_{r,2} & \xi_{f,1}\varepsilon_{f,2} \\ \xi_{r,1}\xi_{r,2} & \xi_{r,1}\xi_{f,2} & \xi_{f,1}\xi_{r,2} & \xi_{f,1}\xi_{f,2} \end{pmatrix}^{-1} \begin{pmatrix} N^{TT} \\ N^{TT} \\ N^{TT} \\ N^{TT} \\ N^{TT} \end{pmatrix}$$

- Good closure test with $t\bar{t}$ MC
- Validation in dedicated region:
 - Good agreement with data
- Special treatment needed because of signal contamination in the fake lepton CR
- Subtract signal in CR


$$\varepsilon_{f} = \frac{N_{data}^{tight} - N_{qmis-ID(data)}^{tight} - N_{promptlepton(MC)}^{tight} - N_{t \to Hu}^{tight}}{N_{data}^{loose} - N_{qmis-ID(data)}^{loose} - N_{promptlepton(MC)}^{loose}}$$

$$N_{\text{fake}}^{\text{new}} = N_{\text{fake}}^{\text{orig}} - \frac{\mathfrak{B}}{0.2\%} \times N_{\text{fake}}^{\text{sub}}$$

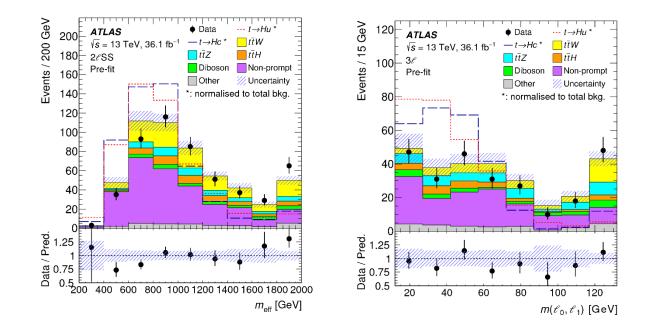

III. Event MVA

- To further reject background 2 BDTs scores are computed (per channel) against the 2 main backgrounds
 - *BDT_{ttbar}:* FCNC signal *vs* non-prompt (Data Driven)
 - *BDT_{ttV}*: FCNC signal *vs* (ttZ+ttW)

	tHu measurement	tHc measurement
2 <i>ℓSS</i>	(tHu+tHc) <i>vs</i> non-prompt (tHu+tHc) <i>vs</i> ttV	(tHu+tHc) <i>vs</i> non-prompt (tHu+tHc) <i>vs</i> ttV
3 ℓ	tHu <i>vs</i> non-prompt tHu <i>vs</i> ttV	tHc <i>vs</i> non-prompt tHc <i>vs</i> ttV

$$FCNC \ discriminant = \frac{a \cdot BDT_{ttbar} + BDT_{ttV}}{a+1}$$

$t \rightarrow Hu$ final discriminant (post-fit)


- Optimization procedure is performed in terms of best expected limit on $\mathcal{B}(t \to Hq)$ for:
 - Linear combination weight: *a*
 - Number of bins in each category : 6 bins for $2\ell SS$, 4 bins for 3ℓ
 - Bin widths: equal amount of signal events in each bin (flat signal)

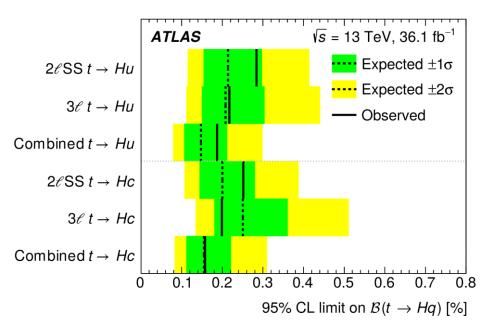
*Boosted Decision Tree

III. Event MVA input variables

• List of input variables used in BDTs training in the two categories

p_T of higher- p_T lepton p_T of lower- p_T lepton p_T of lepton ℓ_0 p_T of lepton ℓ_1 p_T of lepton ℓ_2 Dilepton invariant masses (all combinationsTrilepton invariant massBest Z candidate invariant massBest Z candidate invariant mass $ \eta $ between leptonsLepton flavorNumber of jetsNumber of b-tagged jets p_T of highest- p_T jetproperties	× × × × × × × ×	× × × × × ×
Lepton properties p_T of lepton ℓ_0 p_T of lepton ℓ_1 p_T of lepton ℓ_2 Dilepton invariant masses (all combinations Trilepton invariant mass Best Z candidate invariant mass $ \eta $ between leptons Lepton flavor Number of jets Number of b-tagged jets p_T of highest- p_T jet)* × × × ×	× × × × ×
Lepton properties p_T of lepton ℓ_1 p_T of lepton ℓ_2 Dilepton invariant masses (all combinations) Trilepton invariant mass Best Z candidate invariant mass Best Z candidate invariant mass $ \eta $ between leptons Lepton flavor Number of jets Number of b-tagged jets p_T of highest- p_T jet	× × ×	× × × × ×
Lepton properties p_T of lepton ℓ_2 Dilepton invariant masses (all combinations) Trilepton invariant mass Best Z candidate invariant mass $ \eta $ between leptons Lepton flavor Number of jets Number of b-tagged jets p_T of highest- p_T jet	× × ×	× × × ×
propertiesDilepton lepton t_2 Dilepton invariant masses (all combinations)Trilepton invariant massBest Z candidate invariant massBest Z candidate invariant mass $ \eta $ between leptonsLepton flavorNumber of jetsNumber of b-tagged jets p_T of highest- p_T jet	× × ×	××××
$\begin{array}{c c} Trilepton invariant mass \\ Best Z candidate invariant mass \\ Best Z candidate invariant mass \\ \eta between leptons \\ Lepton flavor \\ Number of jets \\ Number of jets \\ Number of b-tagged jets \\ p_T of highest-p_T jet \end{array}$	× × ×	×××
$\begin{array}{r llllllllllllllllllllllllllllllllllll$	×	× ×
$\begin{array}{c c} \eta \text{ between leptons} \\ \hline Lepton flavor \\ \hline Number of jets \\ \hline Number of b-tagged jets \\ p_T of highest-p_T jet \\ \end{array}$	×	×
Jet Number of jets Number of b-tagged jets properties	×	
JetNumber of jets P_T of highest- p_T jet	×	
Jet Number of b -tagged jets $p_{\rm T}$ of highest- $p_{\rm T}$ jet		
$p_{\rm T}$ of highest- $p_{\rm T}$ jet	×	×
$p_{\rm T}$ of highest- $p_{\rm T}$ jet		
		×
$p_{\rm T}$ of second highest- $p_{\rm T}$ jet		×
$p_{\rm T}$ of highest- $p_{\rm T}$ b-tagged jet		×
$\Delta R(\ell_0,\ell_1)$		×
$\Delta R(\ell_0, \ell_2)$		×
Angular $\Delta R(v_0, v_2)$ $\Delta R(higher-p_T lepton, closest jet)$	×	
distances ΔR (lower- $p_{\rm T}$ lepton, closest jet)	×	
$\Delta R(\ell_1, \text{closest jet})$		×
Smallest $\Delta R(\ell_0, b$ -tagged jet)		×
Global <u>E^{miss}</u>	×	
	×	×

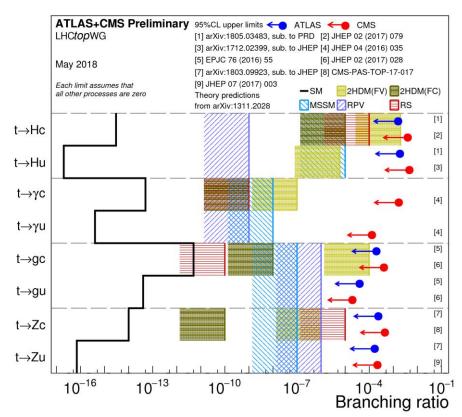
- Signal particularities (compared to main backgrounds) :
 - Relatively soft events (lower m_{eff})
 - Lower $m(l_0, l_1)$ and $\Delta R(l_0, l_1)$ for 3I
 - Only one true b-jet


$$m_{eff} = E_{T}^{miss} + \sum p_{T}^{lep} + \sum p_{T}^{jet}$$

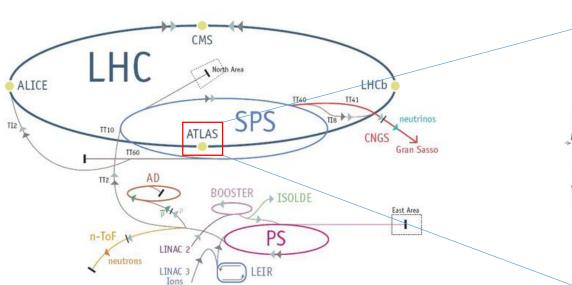
*3 combinations for 31

IV. Fit results summary

• Upper limit @95% CL under background only hypothesis on top FCNC branching ratio in %:


	Bes	Best-fit Observed (Expect		
	$\mathcal{B}(t \to t)$	Hu) [%]	Upper Limit on	$\mathcal{B}(t \to Hu) \ [\%]$
	stat.	stat. + syst.	stat.	stat. + syst.
2ℓSS	$0.08 \ ^{+0.08}_{-0.08}$	$0.08 \ ^{+0.11}_{-0.10}$	0.23 (0.15)	0.28 (0.21)
3ℓ	$0.01 \ {}^{+0.09}_{-0.08}$	$0.01 \begin{array}{c} ^{+0.10}_{-0.09} \end{array}$	0.20 (0.18)	0.22 (0.21)
Combined	$0.04 {}^{+0.06}_{-0.06}$	$0.04 \ ^{+0.08}_{-0.07}$	0.17 (0.12)	0.19 (0.15)
	Bes	t-fit	Observed	(Expected)
	$\mathcal{B}(t \to t)$	Hc) [%]	Upper Limit on	$\mathcal{B}(t \to Hc) [\%]$
	stat.	stat. + syst.	stat.	stat. + syst.
2ℓSS	$0.05 \ ^{+0.08}_{-0.08}$	$0.05 \ ^{+0.11}_{-0.10}$	0.22 (0.15)	0.25 (0.20)
3ℓ	$-0.09 {}^{+0.10}_{-0.09}$	$-0.09 {}^{+0.11}_{-0.11}$	0.19 (0.23)	0.20 (0.25)
Combined	-0.01 + 0.06	$-0.01 {}^{+0.08}_{-0.08}$	0.15 (0.13)	0.16 (0.15)

- Results still dominated by statistical uncertainty
- Results comparable with latest ATLAS FCNC result on $t \to Hc \ (H \to \gamma\gamma)$ with 36.1 fb⁻¹ of pp collisions at 13 TeV
 - observed (expected) limit is 0.22% (0.16%) (JHEP10(2017) 129)

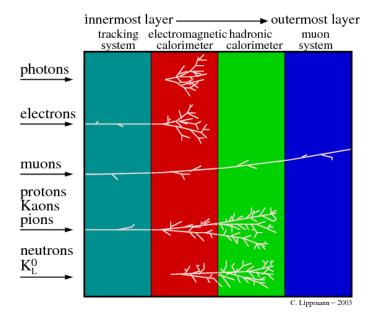

Summary & Conclusions

- A search for flavor-changing neutral currents (FCNC), $t \rightarrow Hq$ (q = u, c), with $H \rightarrow WW, ZZ, \tau_{lep}\tau_{lep}$ based on 36.1 fb^{-1} (13TeV) was presented
 - 1. Consider $2\ell SS$ and 3ℓ channels (no hadronic τ decay)
 - 2. Optimize an MVA against fake lepton and ttV, combined into a final discriminant
- Combined $2\ell SS + 3\ell$ fit for \mathcal{B} compatible with 0:
 - $\mathcal{B}(t \to Hu)$: **0.04**^{+0.08}_{-0.07}%
 - $\mathcal{B}(t \to Hc) : -0.01^{+0.08}_{-0.08}\%$
- Combined $2\ell SS + 3\ell$ observed (expected) upper limit at 95% CL :
 - $\mathcal{B}(t \to Hu) : 0.19\% (0.15\%)$
 - $\mathcal{B}(t \to Hc) : \mathbf{0.16\% (0.15\%)}$
- Statistics limited results
- Best limits to date on $\mathcal{B}(t \to Hu)$ and $\mathcal{B}(t \to Hc)$
- Results already published: Phys. Rev. D 98 (2018) 032002

BACKUP

LHC and ATLAS

- The Large Hadron Collider (LHC):
 - proton-proton accelerator, $\sqrt{s} = 14^* \text{ TeV}$
- Linac2 →Booster →PS →SPS →LHC


Run #	Period	\sqrt{s} [TeV]	integrated luminosity $[fb^{-1}]$
Run 1	2010-2011	7	5.5
	2012	8	22.8
Run 2	2015-2016	13	43.1
	2017	13	50.4
	2018**	13	40.1

 Muon Detectors
 Electromagnetic Calorimeters

 Solenoid
 Solenoid

 Orward Calorimeters
 Enclose Toroid

Hadronic Calorimeters

*design **as of 21st of August 2018

Object Reconstruction

• Trigger: Lowest unprescaled single-lepton and di-lepton trigger chain

L* - less loose (Loose+isolated + non-prompt BDT)

• Use standard objects:

- Jets : anti- k_t algorithm with R=0.4
- B-tagging working point (70% efficiency): *MV2c10*
- Loose and tight leptons (table)

	<i>e</i> μ			μ		
	L	L* T		L L* T		Т
Isolation	No Yes No			Ye	S	
Non-prompt lepton MVA	No Yes No		Ye	S		
Identification	Loose Tight		I	Loose		
Charge mis-assignment veto	No Yes N/A		N/A			
Tranverse impact parameter significance	$< 5\sigma$ $< 3\sigma$					
$ d_0 /\sigma_{d_0}$						
Longitudinal impact parameter	< 0.5 mm					
$ z_0 \sin \theta $						

ttHML: Phys. Rev. D 97 (2018) 072003

- Use dedicated algorithms for reducible background:
 - Non-prompt lepton MVA:
 - Used to reduce leptons from b decays (non-prompt leptons) at the level of the pre-MVA regions
 - Charge flip MVA :
 - Used to reduce events with **electrons** that have wrongly reconstructed charge at the level of the pre-MVA regions

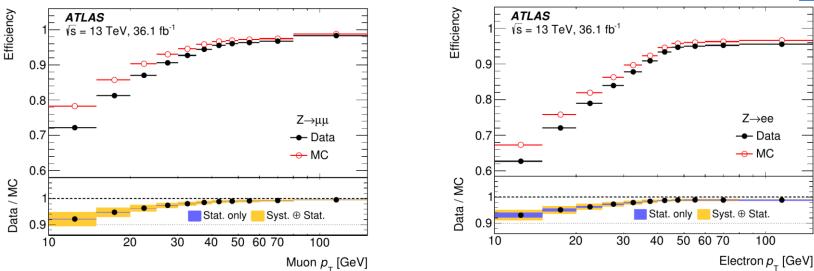
Lepton MVAs: Non-prompt lepton MVA

Variable	Description
N _{track} in track jet	Number of tracks collected by the track jet
IP2 $\log(P_b/P_{\text{light}})$	Log-likelihood ratio between the b and light jet hypotheses with the IP2D algorithm
IP3 $\log(P_b/P_{\text{light}})$	Log-likelihood ratio between the b and light jet hypotheses with the IP3D algorithm
N_{TrkAtVtx} SV + JF	Number of tracks used in the secondary vertex found by the SV1 algorithm
	in addition to the number of tracks from secondary vertices found by the JetFitter algorithm with at least two tracks
$p_T^{\text{lepton}}/p_T^{\text{track jet}}$	The ratio of the lepton p_T and the track jet p_T
ΔR (lepton, track jet)	ΔR between the lepton and the track jet axis
p_T VarCone30/ p_T	Lepton track isolation, with track collecting radius of $\Delta R < 0.3$
E_T TopoCone30/ p_T	Lepton calorimeter isolation, with topological cluster collecting radius of $\Delta R < 0.3$

Lepton MVAs: charge flip MVA

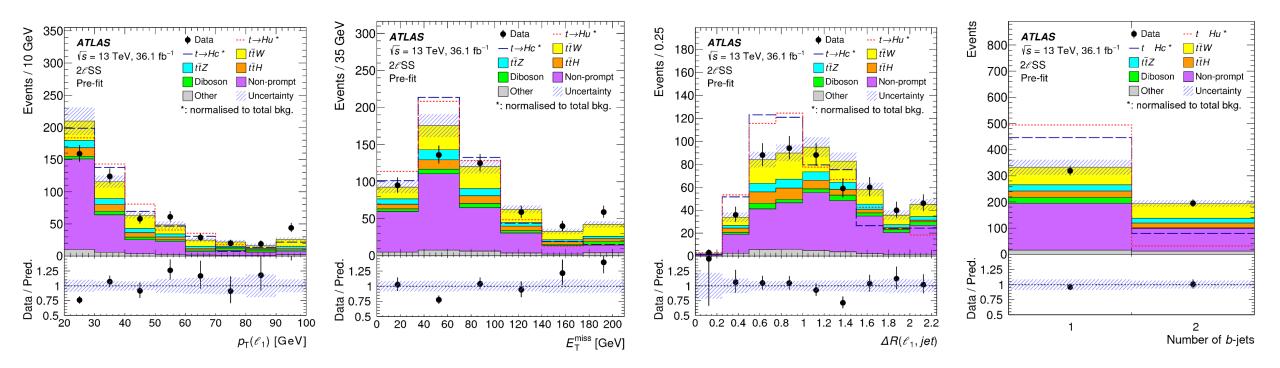
Variable	Description
$p_{\rm T}$	Transverse momentum
η	Pseudo-rapidity
charge $\times d_0$	Electric charge times the transverse impact parameter
E/p	Ratio of the cluster energy to the track momentum
R_{ϕ}	Ratio of the energy in 3×3 cells over the energy in 3×7 cells centred at the electron cluster position
$\Delta \phi_1$	$\Delta \phi$ between the cluster position in the strip layer and the extrapolated track
$\Delta \phi_{rescaled}$	$\Delta \phi$ between the cluster position in the middle layer and the extrapolated track,
	where the track momentum is rescaled to the cluster energy before extrapolating the track to the middle layer
$\frac{q/p}{\sigma_{q/p}}$	Significance of the curvature of the track defined as the ratio of the reconstructed charge to the track momentum

Lepton MVAs

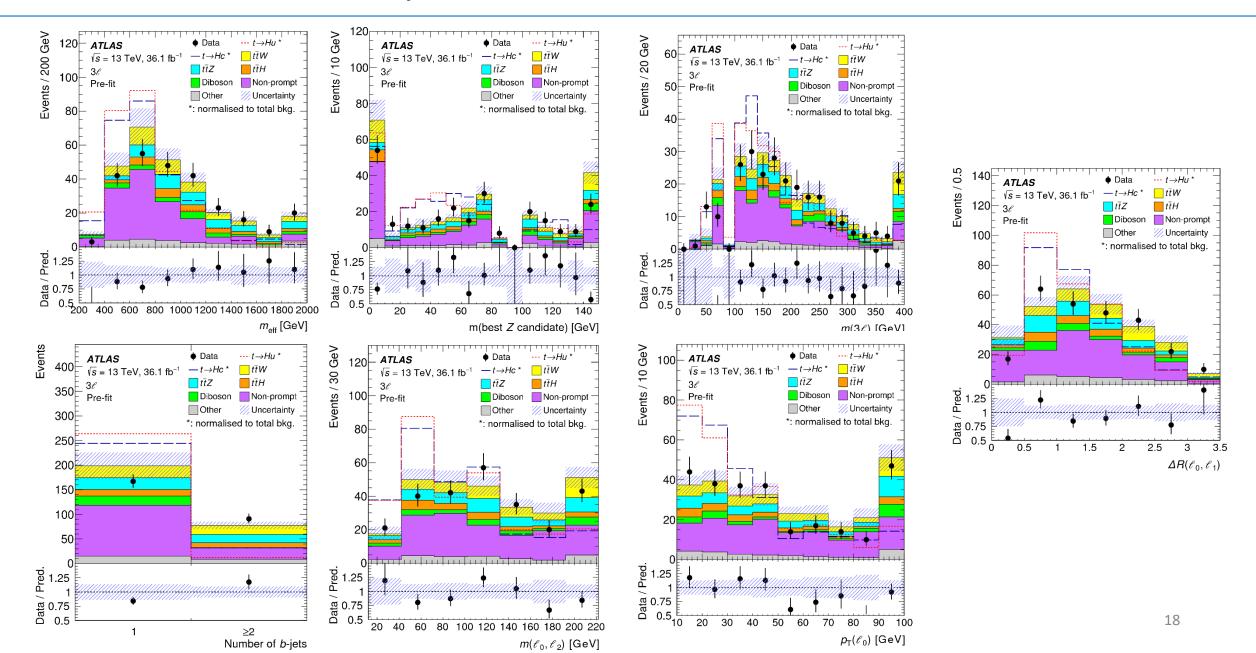

- Non-prompt lepton MVA:
 - uses lifetime information to veto non-prompt leptons that otherwise pass standard isolation selections

Find a track jet within $\Delta R < 0.4$ from selected e (μ) (99% of cases)

Use track jet information to train BDT (ttbar MC)


Check if track jet + lepton compatible with a *b* or *c* jet

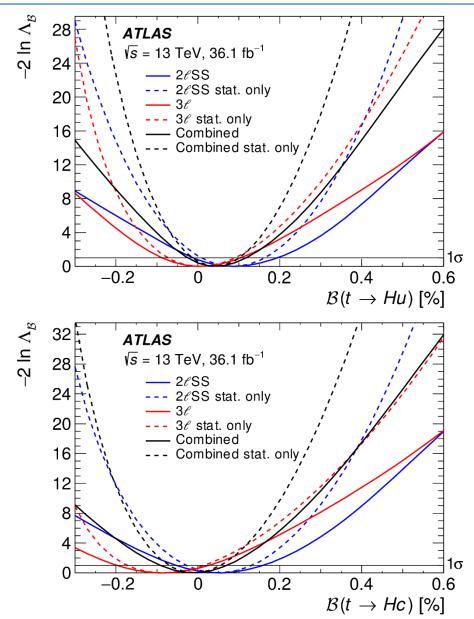
- Input variables:
 - Use lepton and overlapping track jets properties variables
 - lepton track/calorimeter isolation variables
- Improves over combination of *impact parameters cuts* + *isolation* + *lepton identification*
- Charge flip MVA:
 - Use electron track and calorimeter information
 - Factor 17x background rejection for a 95% signal efficiency
- Calibration performed with dedicated method in $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$ events



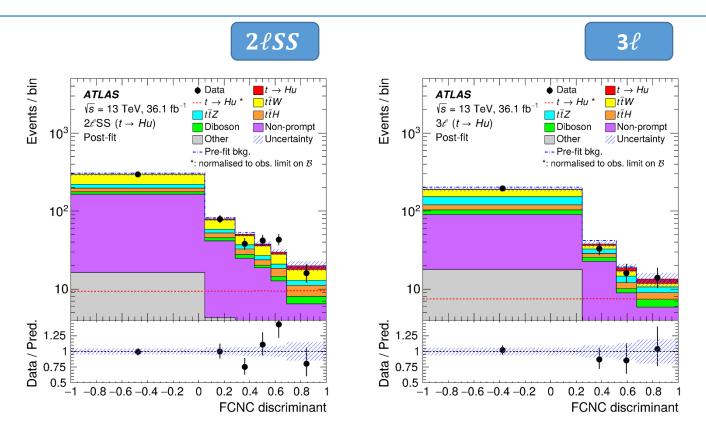
ttHML: Phys. Rev. D 97 (2018) 072003

Event MVA input variables: 2lss

Event MVA input variables: 31


IV. Fit model

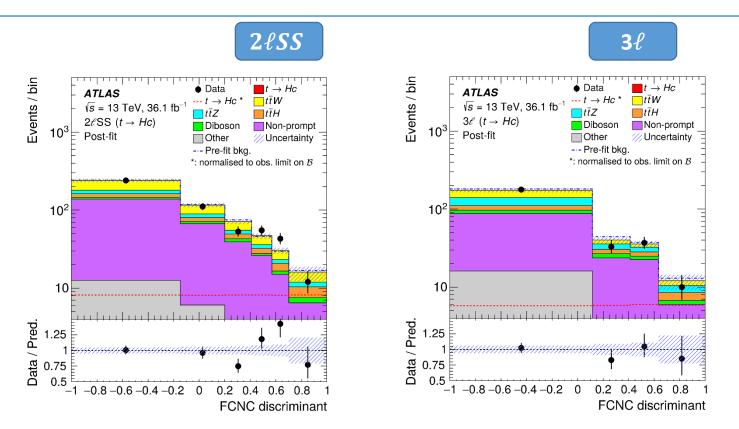
- Maximum-likelihood fit is performed on 2ℓss and 3ℓ channels simultaneously to extract the branching ratio B and its 95% CL upper limit under background-only hypothesis.
- The test statistic, $q_{\mathcal{B}}$, is constructed from the profile log-likelihood ratio:


$$q_{\mathcal{B}} = -2\ln\Lambda_{\mathcal{B}} = -2\ln\frac{\mathcal{L}(\mathcal{B},\hat{\vec{\theta}})}{\mathcal{L}(\hat{\mathcal{B}},\hat{\vec{\theta}})}$$

where $\widehat{\mathcal{B}}$ and $\vec{\hat{\theta}}$ are the parameters that maximize the likelihood and $\vec{\hat{\theta}}$ are the nuisance parameters (NPs) that maximize the likelihood for a given \mathcal{B}

- The same likelihood is also used to obtain 95% CL upper limit on ${\mathcal B}$ using the CLs method.
- One parameter of interest (POI): $\mathcal{B}(t \rightarrow Hu)$ with $\mathcal{B}(t \rightarrow Hc) = 0$ and vice-versa
- Smooth distributions for the logarithmic likelihood (plots)

IV. Fit: Results $t \rightarrow Hu$


- Fit performed on optimized combined BDTs
- Combined fit 2lss & 3l
- $\mathcal{B}(t \rightarrow Hc)$ assumed to be 0
- Fitted $\mathcal{B}(t \rightarrow Hu)$ compatible with 0

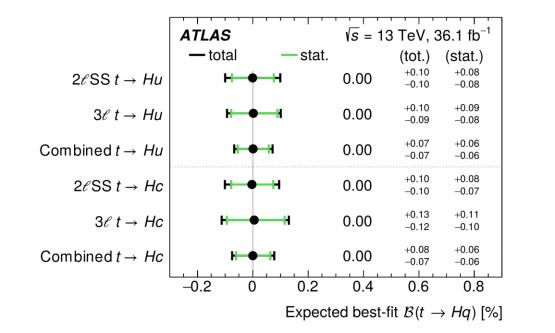
	Best-fit					
	$\mathcal{B}(t \to Hu) [\%]$					
	stat.	stat. + syst.				
2ℓSS	$0.08 \ ^{+0.08}_{-0.08}$	$0.08 \ ^{+0.11}_{-0.10}$				
3ℓ	$0.01 \begin{array}{c} ^{+0.09}_{-0.08} \end{array}$	$0.01 \ ^{+0.10}_{-0.09}$				
Combined	$0.04 \ ^{+0.06}_{-0.06}$	$0.04 \ {}^{+0.08}_{-0.07}$				

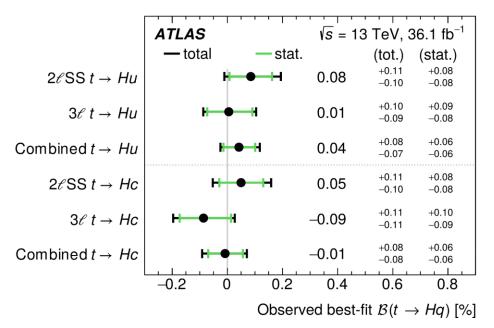
Stat limited

Catego	ory	Non-prompt	$t\bar{t}V$	tĪH	Diboson	Other	Total SM	FCNC	Data
		leptons				prompt SM			
				t —	→ Hu				
2ℓSS	Pre-fit	266 ± 40	165 ± 19	43 ± 4	25 ± 15	28 ± 6	526 ± 39	61 ± 13	514
2100	Post-fit	240 ± 37	167 ± 18	43 ± 4	24 ± 14	28 ± 6	502 ± 33	13 ± 21	514
20	Pre-fit	126 ± 31	84 ± 8	23 ± 3	20 ± 11	24 ± 5	276 ± 33	32 ± 6	250
3ℓ	Post-fit	104 ± 20	84 ± 8	23 ± 3	19 ± 10	24 ± 5	254 ± 18	7 ± 11	258

IV. Fit: Results $t \rightarrow Hc$

Catego	ory	Non-prompt	$t\bar{t}V$	tĪH	Diboson	Other	Total SM	FCNC	Data
		leptons				prompt SM			
$t \to Hc$									
2ℓSS	Pre-fit	266 ± 40	165 ± 19	43 ± 4	25 ± 15	28 ± 6	526 ± 39	62 ± 13	514
	Post-fit	264 ± 41	165 ± 18	42 ± 4	20 ± 11	28 ± 6	520 ± 36	-3 ± 25	514
3ℓ	Pre-fit	126 ± 31	84 ± 8	23 ± 3	20 ± 11	24 ± 5	276 ± 33	30 ± 6	258
	Post-fit	116 ± 21	84 ± 8	23 ± 3	15 ± 8	23 ± 5	262 ± 19	-1 ± 12	238


- Fit performed on optimized combined BDTs
- Combined fit 2lss & 3l
- $\mathcal{B}(t \rightarrow Hu)$ assumed to be 0
- Fitted $\mathcal{B}(t \rightarrow Hc)$ compatible with 0


	Best-fit				
	$\mathcal{B}(t \to Hc)$ [%]				
	stat.	stat. + syst.			
2ℓSS	$0.05 \ ^{+0.08}_{-0.08}$	$0.05 \ ^{+0.11}_{-0.10}$			
3ℓ	$-0.09 \ {}^{+0.10}_{-0.09}$	$-0.09 \ {}^{+0.11}_{-0.11}$			
Combined	$-0.01 \ {}^{+0.06}_{-0.06}$	$-0.01 {}^{+0.08}_{-0.08}$			

Stat limited

• No $t \rightarrow Hc$ visible in post-fit because of negative fitted value

Fit results: expected best fit

