## SUSY searches in ATLAS and CMS

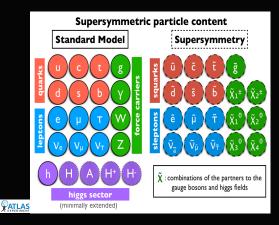
## Arka Santra

Instituto de Fisica Corpuscular, Valencia. On behalf of the ATLAS and CMS Collaborations Corfu, 2018 Greece

## September 7, 2018








Arka Santra

SUSY searches in ATLAS and CMS

• Supersymmetry: one of the most popular Standard Model (SM) extensions

- Each SM particle has its own supersymmetric partner or superpartner.
- Each superpartner of the SM particle has spin differing by 1/2 unit.
- Provides a dark matter candidate (for R-parity conserving theory).
- Provides the unification of fundamental forces at high energies.
- Provides a solution to the fine-tuning problem of the Higgs mass.

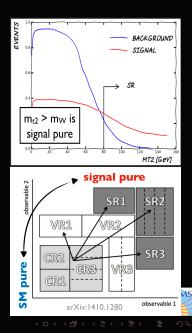


- Unfortunately, all the inclusive/wide searches did not find SUSY.
- Big jump in luminosity and energy is not possible in near future.
- Need to check if there is any hole in the search grid.



Arka Santra

SUSY searches in ATLAS and CMS


# A General Approach to SUSY Search:

## Strategy: Event selection

- Look for a signal pure region (SR) by applying cuts on observables that enhance the signal significance.
- Estimate the background: may be fully data-driven technique, or semi data driven technique where control regions (CR) are used to constrain the MC predicitons.
- Use Validation Regions (VR) to validate the background estimate.

#### Unblinding

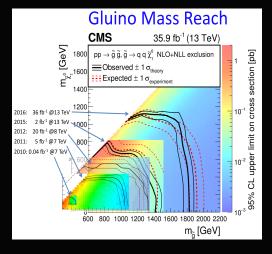
- The data in SR are not looked at unless the background estimations are properly understood and validated.
- Understand the systematic uncertainty.
- Being satisfied, look for data in SR: any excess goes to test for discovery and no excess sets upper limits in SUSY xsec and parameters.





• Strong SUSY search






a Santra

SUSY searches in ATLAS and CMS

## Strong SUSY Production

- Still one of the benchmarks of the SUSY search in LHC.
  - Higher cross-section than the electroweak production.
  - Relatively easy to search for compared to electroweak production.
  - In general: looking for high  $p_T$  particles and large  $E_T^{miss}$  .



#### Figure: courtesy: Keith Ulmer, SUSY2017



Arka Santra

**WATLAS** 

SUSY searches in ATLAS and CMS

# Impressive Strong SUSY search programs by both CMS and ATLAS

| Short Tife                                                            | Journal reference                | Date      | vis (TeV) | L                   | Links                                                           |
|-----------------------------------------------------------------------|----------------------------------|-----------|-----------|---------------------|-----------------------------------------------------------------|
| Gluino pair, squark pair, stop pair, long-lived; pixel ionisation NTW | Submitted to PLB                 | 13-AUG-18 | 13        | 36 fb <sup>-1</sup> | Documents   1808.04095   Inspire<br>Internal                    |
| Gluino pair, squark pair; 2 leptons, Z boson, edge                    | Submitted to EPJC                | 29-MAY-18 | 13        | 36 fb <sup>-1</sup> | Documents   1805.11381   Inspire<br>HepData   Briefing   Insmit |
| Stop pair; charm tagging                                              | Submitted to JHEP                | 04-MAY-18 | 13        | 36 fb <sup>-1</sup> | Documents   1806.01649   Inspire<br>HepData   Briefing   Insent |
| Gluino peir; jets, RPV                                                | Submitted to PLB                 | 10-APR-18 | 13        | 36 fb <sup>-1</sup> | Documents   1804.03568   Inspire<br>Internal                    |
| Stop pair; taus                                                       | Phys. Rev. D 98 (2018)<br>032008 | 27-MAR-18 | 13        | 36 fb <sup>-1</sup> | Documents   1803.10178   Inspire<br>HepData   Inspire           |
| Gluino pair, squark pair, chargino-neutralino pair; photons           | Phys. Rev. D 97 (2018)<br>092006 | 09-FEB-18 | 13        | 36 fb <sup>-1</sup> | Documents   1802.03158   Inspire<br>HepData   Insensi           |
| Gluino pair, squark pair, gluino-squark; 0 lepton                     | Phys. Rev. D 97 (2018)<br>112001 | 06-DEC-17 | 13        | 36 fb <sup>-1</sup> | Documents   1712.02332   Inspire<br>HepData   Internal          |
| Gaugino pair, giuino pair; disappearing track                         | JHEP 06 (2018) 022               | 06-DEC-17 | 13        | 36 fb <sup>-1</sup> | Documents   1712.02118   Inspire<br>HepData   menul             |
| Stop pair, WIMP DM pair; 1 lepton                                     | JHEP 06 (2018) 108               | 30-NOV-17 | 13        | 36 fb <sup>-1</sup> | Documents   1711.11520   Inspire<br>HepData   Insensi           |
| MET + jet search 13 TeV 2016                                          | JHEP 01 (2018) 126               | 09-NOV-17 | 13        | 36 fb <sup>-1</sup> | Documents   1711.03301   Inspire<br>HepData   Inspire           |
| Gluino pair; 0-1 leptons, many b-jets                                 | JHEP 06 (2018) 107               | 06-NOV-17 | 13        | 36 fb <sup>-1</sup> | Documents   1711.01901   Inspire<br>HepData   Insensi           |
| Stop pair; diet pairs, RPV                                            | Eur. Phys. J. C 78 (2018)<br>250 | 19-OCT-17 | 13        | 37 fb <sup>-1</sup> | Documents   1710.07171   Inspire<br>HepData   Internal          |
| Stop pair; 2 leptons, b-jets, RPV                                     | Phys. Rev. D 97 (2018)<br>032003 | 16-OCT-17 | 13        | 36 fb <sup>-1</sup> | Documents   1710.05544   Inspire<br>HepData   Inspire           |
| Gluino pair, squark pair; displaced vertices                          | Phys. Rev. D 97 (2018)<br>052012 | 13-OCT-17 | 13        | 33 fb <sup>-1</sup> | Documents   1710.04901   Inspire<br>HepData   Insenal           |
| Stop pair; 0 lepton                                                   | JHEP 12 (2017) 085               | 13-SEP-17 | 13        | 36 fb <sup>-1</sup> | Documents   1709.04183   Inspire<br>HepData   Insmit            |
| Sbottom pair, stop pair; 0-1 leptons, b-jets                          | JHEP 11 (2017) 195               | 30-AUG-17 | 13        | 36 fb <sup>-1</sup> | Documents   1708.09266   Inspire<br>HepData   Insensi           |
| Giluino pair, squark pair, 1 lepton                                   | Phys. Rev. D 96 (2017)<br>112010 | 28-AUG-17 | 13        | 36 fb <sup>-1</sup> | Documents   1708.08232   Inspire<br>HepData   Internal          |
| Stop pair; 2 leptons                                                  | Eur. Phys. J. C77 (2017)<br>898  | 10-AUG-17 | 13        | 36 fb <sup>-1</sup> | Documents   1708.03247   Inspire<br>HepData   Inorial           |
| Gluino pair, squark pair, O lepton, high jet multiplicity             | JHEP12 (2017) 034                | 10-AUG-17 | 13        | 36 fb <sup>-1</sup> | Documents   1708.02794   Inspire<br>HepData   Internal          |

## Figure: List of Recent Strong SUSY Publications by ATLAS





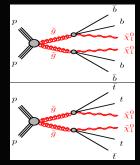
SUSY searches in ATLAS and CMS

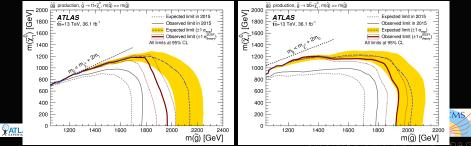
# Impressive Strong SUSY search programs by both CMS and ATLAS

| Super                                                                             | Supersymmetry Publications                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                 |  |  |  |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 101                                                                               | SUS-18-001                                                                                                                               | Constraints on models of scalar and vector leptoquarks decaying to a quark and a neutrino at $\sqrt{s}=$ 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Accepted by PRD                                                                                                                                                                                       | 25 May 2018                                                                                                                                                     |  |  |  |
| 50                                                                                | SUS-16-038                                                                                                                               | Search for natural and split supersymmetry in proton-proton collisions at $\sqrt{s}=$ 13 TeV in final states with jets and missing transverse momentum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JHEP 06 (2018) 025                                                                                                                                                                                    | 6 February 2018                                                                                                                                                 |  |  |  |
| 96                                                                                | SUS-16-040                                                                                                                               | Search for <i>R</i> -parity violating supersymmetry in pp collisions at $\sqrt{s}$ = 13 TeV using b jets in a final state with a single lepton, many jets, and high sum of large-<br>radius jet masses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Accepted by PLB                                                                                                                                                                                       | 24 December 2017                                                                                                                                                |  |  |  |
| 94                                                                                | SUS-16-046                                                                                                                               | Search for gauge-mediated supersymmetry in events with at least one photon and missing transverse momentum in pp collisions at $\sqrt{s}$ = 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PLB 780 (2018) 118                                                                                                                                                                                    | 21 November 2017                                                                                                                                                |  |  |  |
| 92                                                                                | SUS-16-050                                                                                                                               | Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PRD 97 (2018) 012007                                                                                                                                                                                  | 30 October 2017                                                                                                                                                 |  |  |  |
| 50                                                                                | SUS-16-042                                                                                                                               | Search for supersymmetry in events with one lepton and multiple jets exploiting the angular correlation between the lepton and the missing transverse momentum in proton-proton collisions at $\sqrt{s}$ = 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLB 780 (2018) 384                                                                                                                                                                                    | 28 September 2017                                                                                                                                               |  |  |  |
| 84                                                                                | SUS-16-047                                                                                                                               | Search for supersymmetry in events with at least one photon, missing transverse momentum, and large transverse event activity in proton-proton collisions at $\sqrt{5}=$ 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JHEP 12 (2017) 142                                                                                                                                                                                    | 19 July 2017                                                                                                                                                    |  |  |  |
| 79                                                                                | SUS-16-037                                                                                                                               | Search for supersymmetry in pp collisions at $\sqrt{s}$ = 13 TeV in the single-lepton final state using the sum of masses of large-radius jets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRL 119 (2017) 151802                                                                                                                                                                                 | 12 May 2017                                                                                                                                                     |  |  |  |
| 71                                                                                | SUS-16-036                                                                                                                               | Search for new phenomena with the $M_{T2}$ variable in the all-hadronic final state produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPJC 77 (2017) 710                                                                                                                                                                                    | 12 May 2017                                                                                                                                                     |  |  |  |
| 77                                                                                | SUS-16-033                                                                                                                               | Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PRD 96 (2017) 032003                                                                                                                                                                                  | 25 April 2017                                                                                                                                                   |  |  |  |
| Supersymmetry Publications                                                        |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                 |  |  |  |
| Super                                                                             | symmetry Public                                                                                                                          | ations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                 |  |  |  |
| Super<br>100                                                                      | symmetry Public<br>sus-a7-005                                                                                                            | ations<br>Search for top squarks decaying via four-body or chargino-mediated modes in single-legion final states in proton-proton collisions at $\sqrt{r}=13$ TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Submitted to JHEP                                                                                                                                                                                     | 15 May 2018                                                                                                                                                     |  |  |  |
| -                                                                                 |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Submitted to JHEP<br>Submitted to PLB                                                                                                                                                                 | 15 May 2018<br>5 January 2018                                                                                                                                   |  |  |  |
| 100                                                                               | SUS-17-005                                                                                                                               | Search for top squarks decaying via four-body or chargino-mediated modes in single-lepton final states in proton-proton collisions at $\sqrt{i}=23$ TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       |                                                                                                                                                                 |  |  |  |
| 108                                                                               | SUS-17-005<br>SUS-16-048                                                                                                                 | Search for top separity decaying via four-body or chargino-mediated modes in single-lepton final states in proton proton collisions at $\sqrt{r} = 13$ TeV<br>Search for new physics in events with hos soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at $\sqrt{r} = 13$ TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Submitted to PLB                                                                                                                                                                                      | 5 January 2018                                                                                                                                                  |  |  |  |
| 100<br>97<br>93                                                                   | SUS-17-005<br>SUS-16-049<br>SUS-17-001                                                                                                   | Search for top squarks decaying via foor-body or chargino-methated modes is single-lepton final states in proton-proton collisions at $\sqrt{2} = 13$ TV<br>Search for new physics in events with two soft oppositely charged leptons and existing transverse manentum in proton-proton collisions at $\sqrt{2} = 13$ TeV<br>Search for new physics in events with two soft opposite/charged leptons and existing transverse manentum in strates at $\sqrt{2} = 13$ TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Submitted to PLB<br>PRD 97 (2018) 032009                                                                                                                                                              | 5 January 2018<br>2 November 2017                                                                                                                               |  |  |  |
| 100<br>97<br>93<br>92                                                             | SUS-17-005<br>SUS-16-049<br>SUS-16-050<br>SUS-16-050                                                                                     | Search for top squarks decaying via two looky or chargino mediation models in single lepton fruit status is proton-proton collisions at $\sqrt{2} = 13$ TeV<br>Search for one physics in events with the safe appointed phase and an event grant status and phase status is proton-proton collisions at $\sqrt{2} = 13$ TeV<br>Search for one physics in events with the safe appointed phase phase is the phase status of phase status at $\sqrt{2} = 13$ TeV<br>Search for the phase and phase status phase and phase status phase status of phase status at $\sqrt{2} = 12$ TeV<br>Search for explorations from data sets of phase status phase status at 2 TeV status decays at the phase status of $\sqrt{2} = 12$ TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Submitted to PLB<br>PRD 97 (2018) 032009<br>PRD 97 (2018) 012007                                                                                                                                      | 5 January 2018<br>2 November 2017<br>30 October 2017                                                                                                            |  |  |  |
| 100<br>97<br>93<br>92<br>89                                                       | SUS-17-005<br>SUS-16-049<br>SUS-17-001<br>SUS-18-020<br>SUS-18-024                                                                       | Search for top squarks decaying vis hor body or chargino mediated modes in angle lepton front states in protom-proton collisions at $\sqrt{2} = 13$ TVF<br>Search for new physics in neutral with low set apposing through hybrins and manage guarantees momentum in protom-proton collisions at $\sqrt{2} = 13$ TVF<br>Search for new physics in neutral with low set data waters particles in opposite-charge dispite form status at $\sqrt{2} = 13$ TVF<br>Search for sup squarks and data matter particles in opposite-charge dispite form status at $\sqrt{2} = 13$ TVF<br>Search for supersymmetry in protom period collisions at 13 TVF areas (defineding to posite).<br>Search for supersymmetry period period period collisions (at 13 TVF areas) definition in a state at $\sqrt{2} = 13$ TVF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Submitted to PLB<br>PRD 97 (2018) 032009<br>PRD 97 (2018) 012007<br>JHEP 03 (2018) 076                                                                                                                | 5 January 2018<br>2 November 2017<br>30 October 2017<br>26 September 2017                                                                                       |  |  |  |
| 100<br>97<br>93<br>92<br>89<br>89                                                 | SUS-17-005<br>SUS-16-049<br>SUS-16-049<br>SUS-16-059<br>SUS-16-059<br>SUS-16-059                                                         | Search for top squarks decaying vis boor body or chargeloo emdiated modes in sample inplore front lates in protom-proton collisions at $\sqrt{r} = 13$ TeV<br>Search for new physics in neurosis with loss at discipancies of damaged laptimes and managed guaranteese momentum in protom-proton collisions at $\sqrt{r} = 13$ TeV<br>Search for new physics in movies with loss at disk what particles in grapacity-charge displaying functions at the same of the                                                | Submitted to PLB<br>PRD 97 (2018) 022009<br>PRD 97 (2018) 012007<br>JHEP 03 (2018) 076<br>PLB 779 (2018) 166                                                                                          | 5 January 2018<br>2 November 2017<br>30 October 2017<br>26 September 2017<br>1 September 2017                                                                   |  |  |  |
| 100<br>97<br>93<br>92<br>89<br>85                                                 | SUS-17-005<br>SUS-16-048<br>SUS-17-001<br>SUS-16-050<br>SUS-18-034<br>SUS-18-045<br>SUS-18-032                                           | Search for top squarks decaying via foor body or chargeton mediated motes in single lepton front latters in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$<br>Search for new physics in events with those self-appointed phased bargeton and measure gammarearea momentum in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$<br>Search for see physics in treated and mark matter particles in opposite-charget displants found satures at $\sqrt{s} = 13 \text{ TeV}$<br>Search for sequences and mark matter particles in opposite-charget displants found satures at $\sqrt{s} = 13 \text{ TeV}$<br>Search for sequences and mark matter particles in opposite-charget displants found satures at $\sqrt{s} = 13 \text{ TeV}$<br>Search for supersymmetry with long stocks to be opposite charget, same displants charget spaced satures are momentum in pp collisions at $\sqrt{s} = 13 \text{ TeV}$<br>Search for supersymmetry with heigh stocks to displants the stock space space shows a space | Submitted to PLB<br>PRD 97 (2018) 022009<br>PRD 97 (2018) 012007<br>3HEP 03 (2018) 076<br>PLB 779 (2018) 366<br>PLB 779 (2018) 263                                                                    | 5 January 2018<br>2 November 2017<br>30 October 2017<br>26 September 2017<br>1 September 2017<br>23 July 2017                                                   |  |  |  |
| 100<br>97<br>93<br>92<br>89<br>85<br>85<br>85<br>85                               | SUS37-005<br>SUS36-048<br>SUS37-001<br>SUS36-059<br>SUS36-034<br>SUS36-045<br>SUS36-045<br>SUS36-045<br>SUS36-042                        | Search for tog spareks becaping vis how body or chargelow mediated modes is angle lepton front status is protom-proton collisions at $\sqrt{r} = 13$ TeV<br>Search for any physics in neuron with those and equipositive physical parameters manuschan in proton-proton collisions at $\sqrt{r} = 13$ TeV<br>Search for any physics in neuron with those and the status gradients in proton-proton status at $\sqrt{r} = 13$ TeV<br>Search for any physical status with the sequence budges and the status gradients in proton-proton status at $\sqrt{r} = 13$ TeV<br>Search for any physical status with the sequence budges, status degrades, thus, and the status gradients in proton-proton collisions at $\sqrt{r} = 13$<br>Search for any physical status with the sequence budges, toxing status the status gradients in proton-proton collisions at $\sqrt{r} = 13$<br>Search for the parameters in physical status with the sequence budges bodys in the distance of the sequence budges and the status grade status of the sequence budges and the sequence b                   | Submitted to PLB<br>PRID 97 (2018) 022009<br>PRID 97 (2018) 012007<br>JHEP 03 (2018) 0120<br>PLB 778 (2018) 366<br>PLB 778 (2018) 363<br>JHEP 03 (2018) 367                                           | 5 January 2018<br>2 Norvember 2017<br>30 October 2017<br>26 September 2017<br>1 September 2017<br>23 July 2017<br>10 July 2017                                  |  |  |  |
| 100<br>97<br>93<br>92<br>199<br>85<br>85<br>85<br>85<br>85<br>82                  | 51/537.005<br>51/536.048<br>51/536.049<br>51/536.050<br>51/536.050<br>51/536.050<br>51/536.022<br>51/536.022<br>51/536.022<br>51/536.022 | Search for top squarks decaying via boor body or chargeloo molidized modes in angle lepton front latter is protom-protom collisions at i, $\zeta^2 = 13$ TeV<br>Search for new physics in neuron with low set appointing thraped hybrins and manage guarantees momentum in protom-protom collisions at i, $\zeta^2 = 13$ TeV<br>Search for new physics in model and with males and the magnetic periods are provided for the guarantee of the supervised models and the male particles in opposite change displicit for a single state of the supervised models at the supervised models and the male state is an interpret periods and the male state state is an interpret period. TeV are applied by the state visit how opposite change, same favor leptons, late, and training statements models at all states with two opposite changes, same favor leptons and late state is at $\zeta^2 = 13$ TeV<br>Bearch for new physical models and states with two opposite changes, same favor leptons in the state state is at $\zeta^2 = 13$ TeV<br>Bearch for the pair protocol states of the supervised periods and the state states at $\zeta^2 = 13$ TeV<br>Bearch for the pair protocol states of the supervised periods and the supervised by the state variables at $\zeta^2 = 13$ TeV<br>Bearch for the pair protocol states and the supervised period by the state variables at $\zeta^2 = 13$ TeV<br>Bearch for the pair protocol states and the supervised periods the state by the space state is a state-state in the supervised periods the state states at $\zeta^2 = 13$ TeV<br>Bearch for dates periods states the top state at a state state in the supervised period states in the state state state states at $\zeta^2 = 13$ TeV<br>Bearch for dates periods at the supervised period state at the supervised period states at $\zeta^2 = 13$ TeV                                                                                                                                                                                                                                                                                                                      | Submitted to PLB<br>PRD 97 (2018) 022009<br>PRD 97 (2018) 012007<br>JHEP 02 (2018) 0160<br>PLB 779 (2018) 369<br>PLB 779 (2018) 369<br>JHEP 10 (2018) 067<br>JHEP 10 (2018) 167<br>JHEP 10 (2017) 005 | 5. January 2018<br>2 Norwander 2017<br>30 October 2017<br>28 September 2017<br>1 September 2017<br>23. July 2017<br>10. July 2017                               |  |  |  |
| 100<br>97<br>93<br>93<br>99<br>86<br>85<br>85<br>85<br>85<br>83<br>82<br>80<br>80 | 51/517-005<br>51/516-048<br>51/516-048<br>51/516-049<br>51/516-049<br>51/516-049<br>51/516-049<br>51/516-049<br>51/516-049<br>51/516-049 | Search for top squarks decaying via two looks of chargelon mediated medias in angle lepton fruit status in protom-proton collisions at $\sqrt{c} = 13$ TeV<br>Bearch for exp physics in reveals with two set opposited physics and attacking transmerse measurement in proton-proton collisions at $\sqrt{c} = 13$ TeV<br>Bearch for exp physics in terms with two set opposited physics in proton-proton status at $\sqrt{c} = 12$ TeV<br>Bearch for exp physics in the entry of the physics of the entry of the physics in proton-proton collisions at $\sqrt{c} = 13$ TeV<br>Bearch for exp physics in the entry of the physics of the entry of the physics (the physics in the entry of the physics in the entry of                                  | Submitted to PLB<br>PHD 97 (2018) 022009<br>PHD 97 (2018) 022007<br>JHEP 03 (2018) 076<br>PLB 778 (2018) 166<br>PLB 778 (2018) 163<br>JHEP 10 (2018) 167<br>JHEP 10 (2018) 167<br>JHEP 10 (2017) 015  | 5. January 2018<br>2 Krowenber 2017<br>30 October 2017<br>28 September 2017<br>1 September 2017<br>23 July 2017<br>10 July 2017<br>10 July 2017<br>14 June 2017 |  |  |  |

## Figure: List of Recent Strong SUSY Publications by CMS

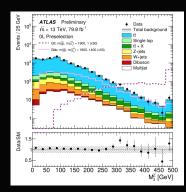


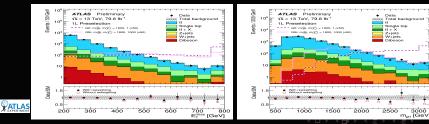




SUSY searches in ATLAS and CMS

7 / 73

## Multi-b search in ATLAS: Previous result

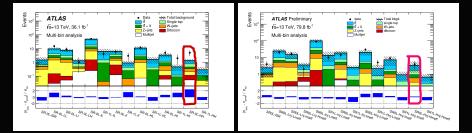

- In 2017 (arXiv: 1711.01901), ATLAS searched for SUSY with final states with  $E_T^{miss}$  and multiple b-jets with 36.1 fb<sup>-1</sup> of data.
- The target signal was gluino decaying to b and t quarks.
- No significant excess was found (slight excess in the multibin search), hence mass limits were set.
- The limit set to  $\tilde{\chi}_1^0$  mass was 300 GeV and gluino masses of less than 1.97 (1.92) TeV when gluinos decay via top (bottom).






# Update of the Multi-b search in ATLAS (ATLAS-CONF-2018-041)

- ATLAS updated the result with 79.8 fb<sup>-1</sup> of data.
- Event selection:
  - Multi-b events ( $\geq$  3 or  $\geq$ 4 b-jets for different SRs).
  - Jets  $\geq 5$  up to  $\geq 9$  for different SRs.
  - $E_T^{miss} > 300 600$  GeV.
  - High  $M_{eff}$  and  $m_{T,min}^{b-jets}$ .
  - Selecting 0 or 1 lepton events.
- One powerful variable to discriminate signal from background was total jet mass variable:  $M_J^{\Sigma} = \sum_{i \leq 4} m_{J,i}$  where  $m_{J,i}$  is the mass of the large radius (R= 1.0) re-clustered jet i in the event.



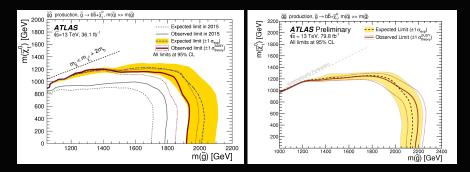



CMS

## Multi-b search: Updated Results

- There was a small excess in the multibin search previously.
- The excess is not confirmed in the recent result.








Arka Santra

SUSY searches in ATLAS and CMS

### • The limit on the gluino mass is pushed further.



• The mass limit on gluino is pushed to 2.1 TeV.





Arka Santra

SUSY searches in ATLAS and CMS

# GMSB search with one photon and one lepton (CMS-SUS-17-012)

- In general, GMSB searches look for multilepton (when  $\tilde{\chi}_1^0 \to Z/h\tilde{G}$ ) or photons (when  $\tilde{\chi}_1^0 \to \gamma \tilde{G}$ ).
- But  $\tilde{\chi}_1^{\pm} \rightarrow W\tilde{G}$  also possible when the wino content in NLSP is significant.

#### Event selection:

- At least one isolated photon ( $p_T$ > 35 GeV in  $|\eta| < 1.4442$ ) and at least one isolated electron (muon) ( $p_T$ > 25 GeV in  $|\eta| < 2.5(2.4)$ , electrons in barrel-endcap transition region excluded.)
- $E_T^{miss} > 120$  GeV and  $M_T > 100$  GeV.

Arka Santra

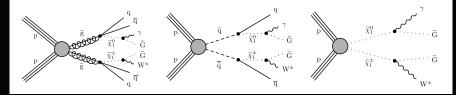
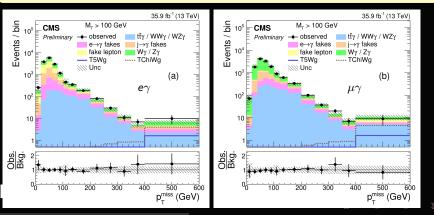



Figure: T5Wg (left), T6Wg (center) and TChiWg (right) models



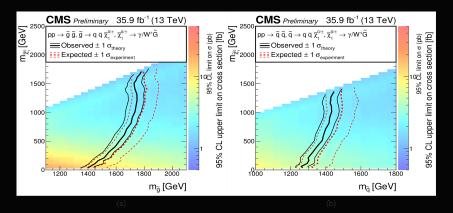



SUSY searches in ATLAS and CMS

## Background estimation

- Without prompt photon: Photon that originates from pile up determined from data by finding the rate of misidentification of photons.
- Without prompt lepton: Lepton that comes from mis-identified jets, hadronization of heavy flavor quarks - estimated from data.
- Rare electroweak processes: WW $\gamma$ , WZ $\gamma$  and  $t\bar{t}\gamma$ -found from simulation.




Arka Santra

13 / 73

CM

## GMSB search with one photon and one lepton:

- No excess was found.
- Set limits on mass of squark/gluino and neutralino.
- Gluino mass upto 1.7 TeV and squark mass upto 1.4 TeV is excluded.



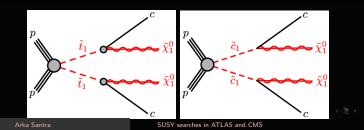
#### Figure: The left plot is interpretation with T5Wg model and the right with T6Wg model





# SUSY with charm quarks (arXiv:1805.01649)

• This ATLAS search targets direct  $\tilde{c}$  pair production ( $\tilde{c} \rightarrow c \tilde{\chi}_0^1$ ) as well as stop decays ( $\tilde{t} \rightarrow c \tilde{\chi}_0^1$ ).


#### Event selection:

- Requires 0 lepton
- At least 2 jets with at least 1 charm-tagged jets.
- Leading jet  $p_T > 250$  GeV.
- $\Delta \phi_{min}(\text{jet}, E_T^{miss}) > 0.4.$
- $E_T^{miss} > 500$  GeV.

## Charm-tagged jets

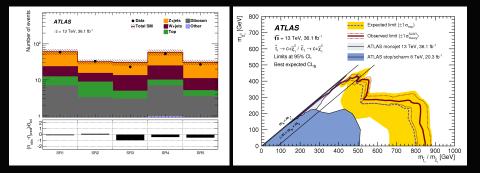
PATLA

• The challenge for this analysis is to identify charm-tagged jets.





- Multivariate discriminants, MV2c100 and MV2c1100 are used to distinguish between c-jets and jets containing bottom quarks (b-jets), and between c-jets and light flavor jets respectively.
- MV2c100: trained with b-jets as signal and background exclusively of c-jets.
- MV2c1100: trained with c-jets as signal and background exclusively of light-flavor jets.
- 'Tight' working point selected: charm-tagging efficiency of 18%, b-jet rejection factor of 20, a light-flavor jet rejection factor of 200 and hadronic τ jet rejection factor of 6 (evaluated in simulated tt sample).
- The c-jet tagging rate was found from data rich in tt
   events, where c-jets came from
   W decay.
- Adequate correction factor were applied to simulated samples in order to match with the tagging rate in data.


#### Reject hadronically decaying au

- To reject hadronically decaying  $\tau$ -leptons: the transverse mass  $m_T^{\tau} = \sqrt{2 \cdot E_T^{miss}} p_T^{\tau} \cdot (1 \cos(\Delta \phi(E_T^{miss}, p_T^{\tau})))$  was used.
- $m_T^c > 120$  GeV could reduce the hadronic au background to less than 5%.

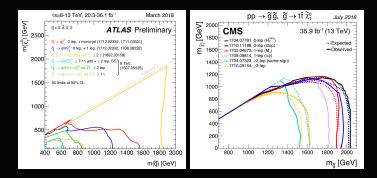
TEXPERIMENT

## The result of SUSY with charm quarks:

- Depending on  $\Delta m$ , there are five different signal regions.
- Most significant background is Z+jets (50-60% in all SRs): estimated using simulated sample.
- Other backgrounds: W+jets (W $\rightarrow \tau \nu_{\tau}$ ), diboson and  $t\bar{t}$  all estimated from MC.








Arka Santra

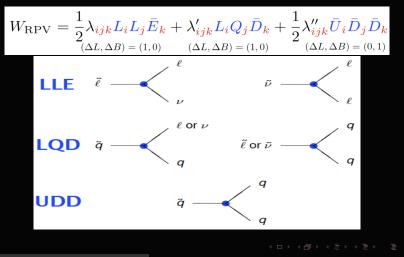
SUSY searches in ATLAS and CMS

### In simplified model approach, the mass limits are the following:

- $M_{ ilde{g}} \lesssim \mathcal{O}(1 \text{ TeV}) \mathcal{O}(2 \text{ TeV})$  @95% CL
- $M_{\tilde{q}}^{*} \lesssim \mathcal{O}(0.5 \text{ TeV}) \mathcal{O}(1.5 \text{ TeV})$  @95% CL  $M_{\tilde{t}}^{*} \lesssim \mathcal{O}(0.7 \text{ TeV}) \mathcal{O}(1.1 \text{ TeV})$  @95% CL



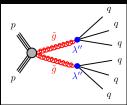


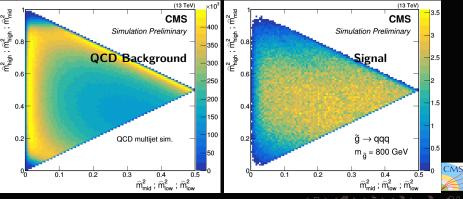



Arka Santra

SUSY searches in ATLAS and CMS

## **R-Parity violating SUSY**


- Since no sign of SUSY in RPC scenarios, the RPV scenarios are getting momentum.
- For the RPV scenario:
  - No stable SUSY particle no candidate for dark matter






# Search for pair-produced three-jet resonances (CMS PAS EXO-17-030)

- This CMS analysis searches for pair-produced resonances, each decaying into three quarks.
- This is allowed through  $\lambda^{''} \neq 0$ .
- Use of Dalitz plot variables of normalized dijet masses within each jet triplet to discriminate signal and background.

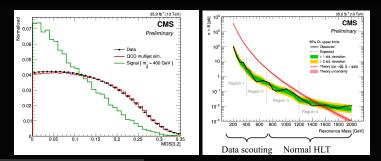




Arka Santra

SUSY searches in ATLAS and CMS

## Pair-produced three-jet resonances:


## Challenge:

- This search included region for low masses where normal trigger must be relaxed.
- But then event size is huge:  $H_T > 410$  GeV and AK4 jet  $p_T > 20$  GeV triggered at 2 kHz!

## Solution:

**VATLA** 

- Had to use particle flow scouting trigger.
  - Only feasible by storing minimal amount of information for each event: jets, leptons and photons as reconstructed at HLT.
  - This makes the event size of 10 KB/event, a managable number.

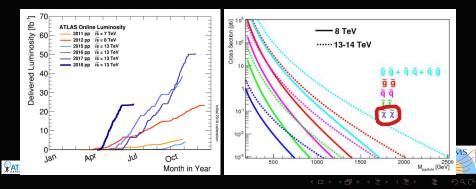




SUSY searches in ATLAS and CMS

Electroweak SUSY search



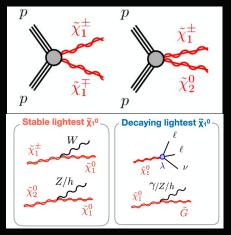



SUSY searches in ATLAS and CMS

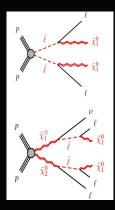
22 / 73

## Why Electroweak SUSY?

- Dominate over the strong production if the squark and gluinoes are too heavy: LHC cannot produce them.
- The strong SUSY limits are already in  $\sim$ TeV scale.
  - Electroweak SUSY has lower cross-sections, hence making the electroweak SUSY production promising.
  - Large mass ranges of EWK SUSY is still left to probe.
- This talk:
  - Impossible to cover all the searches.
  - Show classical signature searches.




Arka Santra


SUSY searches in ATLAS and CMS

# Classical SUSY EWK signals

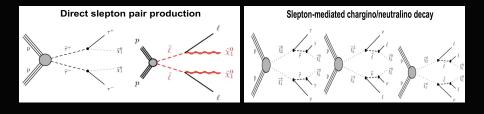
• Neutralino and chargino production



#### Slepton production



- Leptons and  $E_T^{miss}$  gives the cleanest signature.
- Main background to consider: diboson.
- To reduce  $t\bar{t}$ , jet vetoes are used.





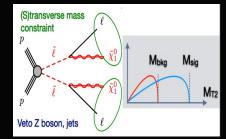

Arka Santra

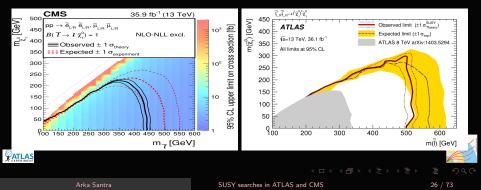
SUSY searches in ATLAS and CMS

# Summary of Slepton Searches:



| Topology                              | Final State                  | ATLAS                                                                         | CMS                                                                            |
|---------------------------------------|------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Direct light slepton                  | 2L0J+E <sup>miss</sup>       | 1803.02762 (slepton mass ~500 GeV)                                            | 1806.05264                                                                     |
|                                       |                              |                                                                               | (for left/right handed slepton mass 290 GeV/400 GeV)                           |
|                                       | 2 soft leptons+ $E_T^{miss}$ | Phys. Rev. D 97, 052010 (2018)                                                |                                                                                |
|                                       |                              | ( $\sim$ 200 GeV for $\Delta M \sim 10$ GeV)                                  |                                                                                |
| Direct stau                           | $2\tau s + E_T^{miss}$       | Phys. Rev. D 93, 052002(2016)                                                 | 1807.02048                                                                     |
| chargino/neutralino via light slepton | $2L0J/3J+E_T^{miss}$         | 1803.02762                                                                    | 1807.07799 (2L)                                                                |
|                                       |                              | ( $\sim$ 750 GeV limit on m( $\tilde{\chi}_1^{\pm}$ , $\tilde{\chi}_2^{0}$ )) | $\sim$ 800 GeV for $\tilde{\chi}_1^{\pm}$ and 320 GeV for $\tilde{\chi}_2^{0}$ |
| chargino/neutralino via stau          | $2\tau s + E_T^{miss}$       | Eur. Phys. J. C 78 (2018)                                                     | 1807.02048                                                                     |
|                                       |                              | $\sim 1.1$ TeV limit in m $(	ilde{\chi}_1^\pm,	ilde{\chi}_2^0)$               | up to 560 GeV depending on config                                              |




SUSY searches in ATLAS and CMS

# Direct light sleptons: (CMS:1806.05264, ATLAS:1803.02762)

- dileptons: opposite charge, same flavour
- Veto in jets
- upper bound on mass of pair-produced particles each decaying to I+LSP.
- $m_{T2} > 90$  (100) GeV gets rid of WW.
- binned in  $E_T^{miss}$  for CMS,  $m_{ll}$  and  $m_{T2}$  for ATLAS.
- Dominant background: *tī* and WW
- No significant excess found.



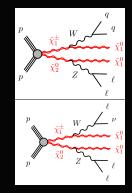


# Summary of Gaugino Searches

| Topology                                                    | Final state          | ATLAS                                     | CMS                                                                                   |
|-------------------------------------------------------------|----------------------|-------------------------------------------|---------------------------------------------------------------------------------------|
| $\widetilde{\chi}_1^{\pm} \widetilde{\chi}_1^{\pm} via WW$  | 2L0J + MET           | ATLAS-CONF-2018-042                       | 1807.07799                                                                            |
|                                                             | 2 soft leptons + MET | Phys. Rev. D 97, 052010 (2018)            | Phys. Lett. B 782 (2018) 440                                                          |
| $\widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^{0}$ via WZ    | 2L/3L + MET          | 1803.02762                                | JHEP 03 (2018) 166<br>JHEP 03 (2018) 076                                              |
|                                                             | 2L/3L + MET RJR      | 1806.02293                                |                                                                                       |
|                                                             | 3L+HT                |                                           | JHEP 03 (2018) 160 (specif c<br>treatment of the "WZ corridor")                       |
| $\widetilde{\chi_1}^{\star}\widetilde{\chi_2}^{0}$ via Wh   | Wh                   | Eur. Phys. J. C (2015) 75:208<br>(Run1)   | JHEP 11 (2017) 029<br>Phys. Lett. B 779 (2018) 166<br>JHEP 03 (2018) 166              |
| $\widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^{0}$ via Zh    | Zh                   | Eur. Phys. J. C (2015) 75:208<br>(Run1)   | JHEP 03 (2018) 076<br>Phys. Lett. B 779 (2018) 166<br>JHEP 03 (2018) 166              |
| $\widetilde{\chi}^{0}_{_2}\widetilde{\chi}^{0}_{_3}$ via ZZ | 4L                   | Phys. Rev. D. 90, 052001 (2014)<br>(Run1) | JHEP 03 (2018) 076<br>JHEP 03 (2018) 166<br>Eur. Phys. J. C 74 (2014) 3036<br>(Run 1) |
| Combination                                                 |                      |                                           | JHEP 03 (2018) 160                                                                    |
|                                                             |                      |                                           |                                                                                       |



## Figure: Taken from Reina Camacho Toro, SUSY2018


Arka Santra

SUSY searches in ATLAS and CMS

# Chargino/neutralino production: $2L/3L + E_T^{miss}$ RJR (ATLAS: 1806.02293)

## Signal models studied:

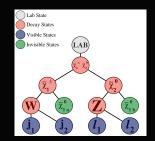
- chargino-neutralino pair production with decays via W/Z bosons, final state of two or three leptons, jets and  $E_T^{miss}$ .
- Scenarios with large and intermediate mass splitting betweeen parent and LSP.
- Challenging case is when the mass splitting is close to the mass of Z boson mass, because then signal is similar to SM.



#### Solution

 $\circ\,$  Use of Recursive Jigsaw Reconstruction (RJR) technique to discriminate against Z+Jets backgrounds.

### Signal regions:


- Eight regions targeting different mass differece.
- $2L \times [ISR, Low, Intermediate, high], 3L \times [ISR, Low, Intermediate, high]$

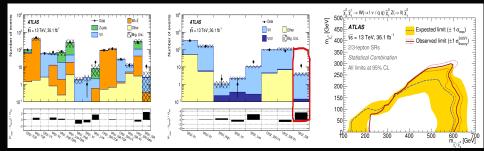


## Details of RJR technique:

### RJR

- A technique to recursively reconstruct the decay chain of pair produced heavy particles.
- Reconstructed view of the event gives rise to a natural basis of kinematic observables, calculated by evaluating the momentum and energy of different objects in these reference frames.




#### Background reduction

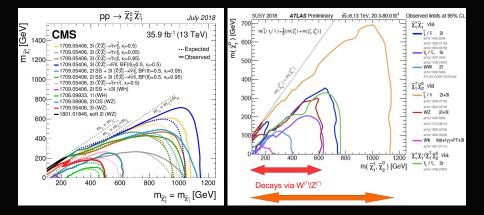
- Background processes are reduced by testing whether each event exhibits the anticipated properties of the imposed decay tree under investigation.
- For the 2L channel, the lepton pair must be associated with the same visible collection, and jets should be associated with the other visible collection.
- The remaining unknowns in the event are associated with the two collections of invisible particles.
- This is done by identifying the smallest Lorentz invariant function of the visible particles' four vectors that ensures the invisible particle mass estimators remain non-negative.
- In each of these newly constructed rest frames, all relevant momenta are defined and can be used to construct a set of variables such as multi-object invariant masses and angles between objects.



# $2L/3L+E_T^{miss}$ RJR Result:

- 3.0  $\sigma$  excess in 3 lepton ISR region (compressed scenario)
  - $\bullet\,$  Not present in the conventional 2L/3L analysis with the same dataset.








Arka Santra

SUSY searches in ATLAS and CMS

## Chargino/neutralino pair production summary





<sup>1</sup>mass limits at 95% CL using simplified model

Arka Santra

*PATLAS* 

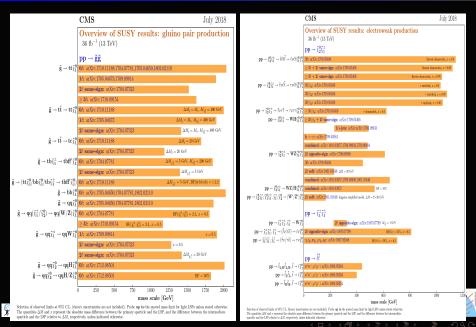
SUSY searches in ATLAS and CMS

# Summary of mass limits from ATLAS

#### ATLAS SUSY Searches\* - 95% CL Lower Limits

| Ji                             | July 2018         √s = 7, 8, 13 TeV           Model         e, μ, τ, γ         Jets         Lett(fb <sup>-1</sup> )         Mass limit         √s = 7, 8 TeV         √s = 13 TeV         Reference                                                                                                                                                                                                                                                                                                                       |                              |                                             |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |                                                                                        |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------|-------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                                | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $e, \mu, \tau, \gamma$       | Jets                                        | ET                | ∫£ dt[fb                     | Mass limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$                                                                                                                                                                                                                                                         | Reference                                                                              |
| ø                              | $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{k}_{1}^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>mono-jet                | 2-6 jets<br>1-3 jets                        | Yes<br>Yes        | 36.1<br>36.1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.55 m(t <sup>in</sup> )<100 GeV<br>m(jj)-m(t <sup>in</sup> )=5 GeV                                                                                                                                                                                                                                               | 1712.02332<br>1711.03301                                                               |
| iclusive Searc                 | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{t}_{1}^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                            | 2-6 jets                                    | Yes               | 35.1                         | 8 Forbidden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0 m(t_1)<200 GeV<br>0.95-1.6 m(t_1)=900 GeV                                                                                                                                                                                                                                                                     | 1712.02332<br>1712.02332                                                               |
|                                | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell\ell)\tilde{\chi}_{1}^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 e, μ<br>ce, μμ             | 4 jets<br>2 jets                            | -<br>Yes          | 36.1<br>36.1                 | 2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.85 m(t <sup>2</sup> )<500 GeV<br>1.2 m(t)-m(t <sup>2</sup> )=50 GeV                                                                                                                                                                                                                                             | 1706.03731<br>1805.11381                                                               |
|                                | $gg, g \rightarrow qqWZ \tilde{t}_1^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>3 e, µ                  | 7-11 jets<br>4 jets                         | Yes               | 36.1<br>35.1                 | 8<br>8 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.8 m( $\tilde{t}_1^0$ ) <400 GeV<br>m(g)-m( $\tilde{t}_1^0$ )=200 GeV                                                                                                                                                                                                                                            | 1708.02794<br>1706.03731                                                               |
|                                | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{t}_{1}^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0-1 e, μ<br>3 e, μ           | 3 b<br>4 jets                               | Yes               | 36.1<br>36.1                 | 2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0 m(t) <200 GeV<br>1.25 m(g)-m(t) = 300 GeV                                                                                                                                                                                                                                                                     | 1711.01901<br>1706.03731                                                               |
|                                | $b_1b_1, b_1 \rightarrow b \tilde{t}_1^0 / \tilde{\alpha}_1^{\pm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | Muttiple<br>Muttiple<br>Muttiple            |                   | 36.1<br>35.1<br>35.1         | b1         Forbidden         0.9           b1         Forbidden         0.58-0.82           b1         Forbidden         0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} m(\tilde{t}_{1}^{2})\!=\!\!300~GaV,~BR(\delta\tilde{t}_{1}^{2})\!=\!1\\ m(\tilde{t}_{1}^{2})\!=\!300~GaV,~BR(\delta\tilde{t}_{1}^{2})\!=\!BR(\delta\tilde{t}_{1}^{2})\!=\!0\\ m(\tilde{t}_{1}^{2})\!=\!200~GeV,~m(\tilde{t}_{1}^{2})\!=\!300~GeV,~BR(\delta\tilde{t}_{1}^{2})\!=\!1\end{array}$ | 1708.09268, 1711.03301<br>1708.09266<br>1706.03731                                     |
| rks<br>Kon                     | $\tilde{b}_1\tilde{b}_1,\tilde{t}_1\tilde{t}_1,M_2=2\times M_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              | Multiple<br>Multiple                        |                   | 36.1<br>36.1                 | li 0.7<br>li Forbidden 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m( $\tilde{\epsilon}_{1}^{0}$ )=60 GeV<br>m( $\tilde{\epsilon}_{1}^{0}$ )=200 GeV                                                                                                                                                                                                                                 | 1709.04183, 1711.11520, 1708.03247<br>1709.04183, 1711.11520, 1708.03247               |
| 3" gen. squa<br>direct product | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wh\tilde{t}_1^0 \text{ or } t\tilde{t}_1^0$<br>$\tilde{t}_1 \tilde{t}_1, \tilde{H} LSP$                                                                                                                                                                                                                                                                                                                                                                                | 0-2 e. µ (                   | 0-2 jets/1-2<br>Multiple<br>Multiple        | b Yes             | 36.1<br>36.1<br>36.1         | i 1.0<br>i 0.4-0.9<br>i Forbidden 0.6-0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $m[\tilde{\xi}_{1}^{2}]=1$ GeV<br>$m[\tilde{\xi}_{1}^{2}]=150$ GeV, $m[\tilde{\xi}_{1}^{2}]=m[\tilde{\xi}_{1}^{2}]=5$ GeV, $\tilde{t}_{1} \approx \tilde{t}_{2}$<br>$m[\tilde{\xi}_{1}^{2}]=300$ GeV, $m[\tilde{\xi}_{1}^{2}]=m[\tilde{\xi}_{1}^{2}]=5$ GeV, $\tilde{t}_{1} \approx \tilde{t}_{2}$ .              | 1506.08616, 1709.04183, 1711.11520<br>1709.04183, 1711.11520<br>1709.04183, 1711.11520 |
|                                | $\tilde{i}_1 \tilde{i}_1$ , Well-Tempered LSP<br>$\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow c \tilde{i}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{i}_1^0$                                                                                                                                                                                                                                                                                                                                         | 0                            | Multiple<br>2c                              | Yes               | 36.1<br>35.1                 | λ 0.48-0.84<br>λ 0.85<br>λ 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $m(\tilde{t}_{1}^{0}) = 150 \text{ GeV}, m(\tilde{t}_{1}^{0}) = 16 \text{ GeV}, \tilde{t}_{1} \simeq \tilde{t}_{4}$<br>$m(\tilde{t}_{1}^{0}) = 0 \text{ GeV}$<br>$m(\tilde{t}_{1}, \tilde{t}) = m(\tilde{t}_{1}^{0}) = 5 \text{ GeV}$<br>$m(\tilde{t}_{1}, \tilde{t}) = 0 \text{ GeV}$                            | 1709.04183, 1711.11520<br>1005.01649<br>1005.01649                                     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                            | mono-jet                                    | Yes               | 36.1                         | i 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                   | 1711.03901                                                                             |
|                                | $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-2 e, µ                     | 4 b                                         | Yes               | 36.1                         | l <sub>1</sub> 0.32-0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $m(\tilde{t}_{1}^{0})=0$ GeV, $m(\tilde{t}_{1})-m(\tilde{t}_{1}^{0})=180$ GeV                                                                                                                                                                                                                                     | 1706.03986                                                                             |
|                                | $\bar{x}_1^{\pm} \bar{x}_2^0$ via WZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-3 e, µ<br>ee, µµ           | ≥ 1                                         | Yes<br>Yes        | 36.1<br>36.1                 | $\hat{x}_{1}^{*}/\hat{x}_{2}^{*} = 0.6$<br>$\hat{x}_{1}^{*}/\hat{x}_{2}^{*} = 0.17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $m(\tilde{k}_{\perp}^{2})$ - $m(\tilde{k}_{\perp}^{0})$ - $10 \text{ GeV}$                                                                                                                                                                                                                                        | 1403.5294, 1806.02293<br>1712.08119                                                    |
| EW                             | $\begin{array}{l} \tilde{\chi}_1^+ \tilde{\chi}_2^0 \mbox{ via } W h \\ \tilde{\chi}_1^+ \tilde{\chi}_1^+ / \tilde{\chi}_2^0 , \tilde{\chi}_1^+ {\rightarrow} \tilde{\tau} \nu (\tau \tilde{\nu}) , \tilde{\chi}_2^0 {\rightarrow} \tilde{\tau} \tau (\nu \tilde{\nu}) \end{array}$                                                                                                                                                                                                                                      | <i>ll/lyy/lbb</i><br>2 τ     |                                             | Yes<br>Yes        | 20.3<br>36.1                 | $\frac{\tilde{k}_{1}^{*}/\tilde{k}_{2}^{0}}{\tilde{k}_{1}^{*}/\tilde{k}_{2}^{0}}$ 0.26<br>$\frac{\tilde{k}_{1}^{*}/\tilde{k}_{2}^{0}}{\tilde{k}_{1}^{*}/\tilde{k}_{2}^{0}}$ 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $m(\tilde{t}_{1}^{2})=0$<br>$m(\tilde{t}_{1}^{2})=0, m(t, \tau)=0.5(m(\tilde{t}_{1}^{2})+m(\tilde{t}_{1}^{2}))$<br>$m(\tilde{t}_{1}^{2})-m(\tilde{t}_{1}^{2})=100 \text{ GeV}, m(t, \tau)=0.5(m(\tilde{t}_{1}^{2})+m(\tilde{t}_{1}^{2}))$                                                                         | 1501.07110<br>1708.07875<br>1708.07875                                                 |
|                                | $\tilde{\ell}_{1,R}\tilde{\ell}_{1,R}, \tilde{\ell} \rightarrow \ell \tilde{X}_1^0$                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 ε,μ<br>2 ε,μ               | 0<br>≥ 1                                    | Yes<br>Yes        | 36.1<br>36.1                 | 7 0.18 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $m(\tilde{t}^0_1)=0$<br>$m(\tilde{t})-m(\tilde{t}^0_1)=5~{\rm GeV}$                                                                                                                                                                                                                                               | 1803.02762<br>1712.08119                                                               |
|                                | $\hat{H}\hat{H}, \hat{H} \rightarrow h\hat{G}/Z\hat{G}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>4 e, µ                  | $\stackrel{\geq 3b}{0}$                     | Yes<br>Yes        | 36.1<br>36.1                 | H 0.13-0.23 0.29-0.88<br>H 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $BP(\tilde{t}_1^0 \rightarrow AG)=1$<br>$BP(\tilde{t}_1^0 \rightarrow ZG)=1$                                                                                                                                                                                                                                      | 1806.04030<br>1804.03602                                                               |
| Long-lived<br>particles        | $\operatorname{Direct} \widehat{\mathcal{X}}_1^+ \widehat{\mathcal{X}}_1^- \operatorname{prod.}, \operatorname{long-lived} \widehat{\mathcal{X}}_1^\pm$                                                                                                                                                                                                                                                                                                                                                                  | Disapp. trk                  | 1 jet                                       | Yes               | 36.1                         | $\hat{x}^{*}_{1} = 0.46$<br>$\hat{x}^{*}_{1} = 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pure Wino<br>Pure Higgsino                                                                                                                                                                                                                                                                                        | 1712.02118<br>ATL-PHYS-PUB-2017-019                                                    |
|                                | Stable $\hat{g}$ R-hadron<br>Metsatable $\hat{g}$ R-hadron, $\hat{g} \rightarrow qq \hat{k}_1^0$<br>GMSB, $\hat{k}_1^0 \rightarrow \gamma \hat{G}$ , long-lived $\hat{k}_1^0$<br>$\hat{g}\hat{g}, \hat{k}_1^0 \rightarrow erv/qvv/\mu v$                                                                                                                                                                                                                                                                                 | SMP<br>2 γ<br>displ. ce/cµ/μ | Multiple                                    | Yes               | 3.2<br>32.8<br>20.3<br>20.3  | 2<br>2 [r(2) =100 ns, 0.2 ns]<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6         m(t_1^*)=160 GeV           1.6(t_1^*)         1<π(t_1^*)<3 m, \$P\$85 model                                                                                                                                                                                                                           | 1606.05129<br>1710.04901, 1604.04520<br>1409.5542<br>1504.05162                        |
| RPV                            | $\begin{array}{l} LFV pp \! \to \! \tilde{\mathbf{r}}_{\tau} + X_{\tau} \tilde{\mathbf{v}}_{\tau} \! \to \! e\mu/e\tau/\mu\tau \\ \tilde{\boldsymbol{\chi}}_{\tau}^{\pm} \tilde{\boldsymbol{\chi}}_{\tau}^{T} / \tilde{\boldsymbol{\chi}}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\tau \\ \tilde{\boldsymbol{\chi}}_{s}^{\pm}, \tilde{\boldsymbol{g}} \! \to \! qqq \\ \tilde{\boldsymbol{\chi}}_{\tau}^{\pm} \tilde{\boldsymbol{\chi}}_{\tau}^{-1} \tilde{\boldsymbol{\chi}}_{\tau}^{0} \rightarrow qqq \end{array}$ | εμ,ετ,μτ<br>4 ε,μ<br>0 4     | 0<br>5 large- <i>R</i> j<br>Multiple        | -<br>Yes<br>ets - | 3.2<br>36.1<br>36.1<br>36.1  | $\begin{array}{l} p_{1} \\ \tilde{h}_{1}^{2} [ h_{1}^{2} - [\lambda_{11} \neq 0, \lambda_{121} \neq 0] \\ \tilde{g}_{1} \left[ m_{1}^{2} \tilde{h}_{1}^{2} - 200 \text{ GeV}, 1100 \text{ GeV} \right] \\ \tilde{g}_{1} \left[ m_{1}^{2} \tilde{h}_{1}^{2} - 200 \text{ GeV}, 1100 \text{ GeV} \right] \\ \tilde{g}_{1} \left[ m_{1}^{2} \tilde{h}_{1}^{2} - 4 \tilde{h}_{2}^{2} - 30 \right] \end{array}$ (1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9         X <sub>j11</sub> =0.11, X <sub>12212323</sub> =0.07           1.33         m(t <sup>2</sup> <sub>1</sub> )=160 GeV           1.3         1.9           2.0         m(t <sup>2</sup> <sub>1</sub> )=200 GeV tencide                                                                                    | 1607.08079<br>1884.03802<br>1884.03560<br>ATLAS-CONF-2018-003                          |
|                                | $gg, g \rightarrow thx / g \rightarrow t\overline{k}_1^0, \overline{k}_1^0 \rightarrow ths$<br>$\overline{k}_1^0, \overline{k}_1^0, \overline{k}_1^0 \rightarrow ths$<br>$\overline{k}_1^0, \overline{k}_1 \rightarrow ths$<br>$\overline{k}_1^0, \overline{k}_1 \rightarrow ths$<br>$\overline{k}_1^0, \overline{k}_1 \rightarrow ths$                                                                                                                                                                                  | 0<br>2 e.p                   | Multiple<br>Multiple<br>2 jets + 2 i<br>2 b | b -               | 36.1<br>36.1<br>36.7<br>36.1 | $k = [A_{uu}^{2}=1, 1a-2]$<br>$k = [A_{uu}^{2}=2a-4, 1a-2]$<br>k | 1.8         2.1         m(t) <sup>2</sup>  .200 GeV, bino-łkw           5         m(t) <sup>2</sup>  .200 GeV, bino-łkw           0.4-1.45         8P(t), -tkr/hyl>20%                                                                                                                                            | ATLAS-CONF-2018-003<br>ATLAS-CONF-2018-003<br>1710.07171<br>1710.05544                 |
| Only<br>pher                   | 2n/ye a selection of the available mass limits or new states or 10 <sup>-1</sup> 1 Mass scale [TeV]                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                                             |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |                                                                                        |

Colly a selection of the available mass limits on new sta simplified models, c.f. refs. for the assumptions made


ATLAS Preliminary

7.0.40 7-11

SUSY searches in ATLAS and CMS

MS

## Summary of mass limits from CMS



#### Arka Santra

#### SUSY searches in ATLAS and CMS

- A brief overview of present SUSY searches from both ATLAS and CMS is shown here.
- Impressive search programs from both the experiments.
- All the results shown here were published in ATLAS and CMS SUSY public websites.
- Higher mass limits put by generic strong SUSY searches:
  - Need to think outside of the box.
  - If any corner of the phase-space still remains unprobed.
  - Improve the search strategies/reconstruction processes.
- With more statistics, the EWK SUSY search is becoming more and more interesting.
  - Large mass ranges of EWK SUSY is still unprobed.
- There are plenty of analyses going on right now with Run 2 dataset (80-150  $fb^{-1}$ ).
  - The search for SUSY at the LHC is not done yet.
  - May be, SUSY is right around the corner.





- Hannsjorg Weber, Fermilab
- Jonathan Long, UIUC
- Daniel Joseph Antrim, UC Irvine
- Reina Camacho Toro, LPNHE/CNRS
- Jordi Duarte-Campderros, Tel-Aviv University





SUSY searches in ATLAS and CMS

• Back Up



Arka Santra

SUSY searches in ATLAS and CMS

### List of triggers used: Strong searches

- Multi-b analysis:
  - $E_T^{miss}$  trigger with thresholds 70 GeV (2015), 100 GeV (early 2016) and 110 GeV (late 2016/2017).
- GMSB
  - $e\gamma$ : diphoton trigger with  $p_T$  greater than 30 GeV (leading) and 18 GeV (sub-leading).
  - $\mu\gamma$ : a combination of two muon-photon triggers, one requiring the presence of an isolated photon with  $p_T > 30$  GeV and a muon with  $p_T > 17$  GeV, and the other using symmetric  $p_T$  thresholds of 38 GeV for both objects, with no isolation criteria.
- Charm quark search
  - $E_T^{miss}$  trigger with threshold 70 GeV (110 GeV) for data of 2015 (2016).
- RPV jet search
  - For high mass region, events collected by the OR of two different triggers: the first requires  $H_T \ge 800$  GeV with AK4 jet  $p_T \ge 40$  GeV; and the second requires at least four jets with  $p_T \ge 70$  GeV and  $H_T \ge 750$  GeV.
  - For low mass, PF scouting trigger was used.





#### Direct slepton search

- ATLAS: a trigger selection requiring either two electrons, two muons or an electron plus a muon. The trigger-level thresholds on the  $p_T$  value of the leptons involved in the trigger decision are in the range  $\hat{a}\hat{A}$ , 22 GeV and are looser than those applied offline to ensure that trigger efficiencies are constant in the relevant phase space.
- CMS: dilepton trigger triggers that include loose isolation criteria on both leptons require  $p_T > 23$  GeV (electron) or 17 GeV (muon) on the highest  $p_T$  lepton. The other lepton is then required to have  $p_T > 12$  GeV (electrons) or 8 GeV (muons).
- RJR analysis
  - dielectron, dimuon or electron+muon trigger
  - For Z+jets, these events was selected with single photon trigger.





In the domain of b-tagging, a new algorithm has been developed, referred to as MV2c20. It is based on a boosted decision tree approach, which utilises jet properties and variables based on the reconstructed charged particle tracks as input.



Arka Santra

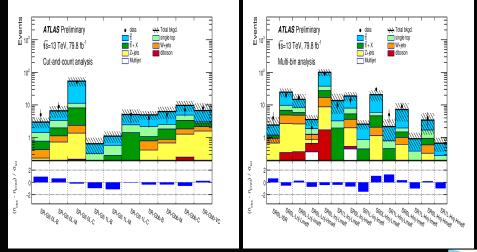


SUSY searches in ATLAS and CMS

#### Dalitz Variables:

- To make the Dalitz variable, invariant mass of three dijet pairs inside a triplet, with mass  $m_{12}$ ,  $m_{23}$  and  $m_{13}$  are taken.
- Normalized dijet invariant mass:  $\hat{m}(3,2)_{i,j}^2 = rac{m_{ij}^2}{m_{ijk}^2 + m_i^2 + m_k^2 + m_k^2}$  where i,j,k belongs to 1,2 and
  - 3. ( $m_i$ 's are the mass of individual jets and  $m_{ijk}$  is the mass of the triplet.)
- For signal triplets, the lack of internal resonance and evenly spread out jets makes the Dalitz variables close to the value 1/3, implying a symmetric decay where the jets have uniform geometric separation in the center-of-mass frame of gluino.
- Triplets made of jets arising from QCD are more asymmetric and lack this feature, resulting in their  $\hat{m}(3,2)_{i,j}^2$  being closer to 0 or 1.
- The three  $\hat{m}(3,2)_{i,j}^2$  are sorted from largest to smallest, and labeled  $\hat{m}(3,2)_{high}^2$ ,  $\hat{m}(3,2)_{mid}^2$  and  $\hat{m}(3,2)_{low}^2$ .
- When plotted against one another in a Dalitz plot as shown, the signal peaks in the center closer to the value 1/3 while the QCD clusters around the edges.
- Mass distance square,  $MDS[3,2] = \sum_{i>j} (\hat{m}_{ij} \sqrt{1/3})^2$ .
- This distance measure will result in a low value for signal-like topologies.



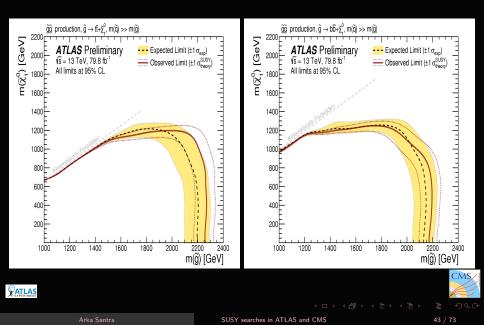



- $H_{n,m}^{F} = \sum_{i=1}^{n} |\vec{p}_{vis,i}^{F}| + \sum_{j=1}^{n} |\vec{p}_{inv,j}^{F}|.$
- F represents the rest frame where the momenta are evaluated, n and m represent the number of visible and invisible momentum vectors considered.
- $H_{n,1}^{PP}$ : behaves similarly to the effective mass.
- $H_{1,1}^{PP}/H_{4,1}^{PP}$ :Behaves similarly to the  $E_T^{miss}/m_{eff}$ . Utilized solely in the 2l low mass signal region to mitigate the effects of Z+jets backgrounds.
- $p_{T,PP}^{lab}/(p_{T,PP}^{lab} + H_{T,n,1}^{PP})$ : compares the magnitude of the vector sum of the transverse momenta of all objects associated with the PP system in the lab frame  $(p_{T,PP}^{lab})$  to the overall transverse scale variable considered.





#### MultiB Search: 1






CMS

Arka Santra

SUSY searches in ATLAS and CMS



|                        |                  |                        |                     |                  | Gtt                   | 1-lep            | ton                               |                                                         |                                     |                                  |                        |                           |    |
|------------------------|------------------|------------------------|---------------------|------------------|-----------------------|------------------|-----------------------------------|---------------------------------------------------------|-------------------------------------|----------------------------------|------------------------|---------------------------|----|
|                        |                  | Criter                 | ia com              | non to a         | ull regio             | ons: $\geq$      | 1 signa                           | ul lepton,                                              | $N_{b\text{-jets}} \ge$             | 3                                |                        |                           |    |
|                        | Targetee         | l kinema               | atics               | Туре             | $N_{\rm jet}$         | $m_{\mathrm{T}}$ | $m_{\mathrm{T,n}}^{b-\mathrm{j}}$ | $E_{\text{nin}}^{\text{ets}} = E_{\text{T}}^{\text{m}}$ | iss m                               | incl<br>eff                      | $M_J^{\Sigma}$         |                           |    |
|                        |                  | gion B                 |                     | SR               | $\geq 5$              | > 150            | > 12                              | 20 > 5                                                  | 00 > 2                              | 200 >                            | 200                    |                           |    |
|                        | (Boostee         | i, Large               | $\Delta m$ )        | CR               | = 5                   | < 150            | -                                 | > 3                                                     | 00 > 1                              | 700 >                            | 150                    |                           |    |
|                        |                  | gion M                 |                     | SR               |                       | > 150            |                                   |                                                         |                                     |                                  | 200                    |                           |    |
|                        |                  | (Moderate $\Delta m$ ) |                     | CR               | = 6                   | < 150            | -                                 | > 4                                                     | 00 > 1                              | 500 >                            | 100                    |                           |    |
|                        | Re<br>(Compr     | gion C<br>essed, si    | mall                | SR               |                       | > 150            |                                   |                                                         |                                     | 000                              | -                      |                           |    |
|                        |                  | $\Delta m$ )           |                     | CR               | = 7                   | < 150            | -                                 | > 3                                                     | 50 > 1                              | 000                              | -                      |                           |    |
|                        |                  |                        |                     |                  | Gtt                   | 0-lep            | ton                               |                                                         |                                     |                                  |                        |                           |    |
|                        |                  |                        |                     |                  |                       |                  |                                   |                                                         |                                     |                                  |                        |                           |    |
| Targeted kin           | nematics         | Туре                   | Nleptor             | N <sub>b-j</sub> | ets N                 | $_{jet} \Delta$  | $\phi_{\min}^{4j}$                | $m_{\rm T}$                                             | $m_{\mathrm{T,min}}^{b	ext{-jets}}$ | $E_{\mathrm{T}}^{\mathrm{miss}}$ | $m_{ m eff}^{ m incl}$ | $M_J^{\Sigma}$            |    |
| Region<br>(Boosted, La |                  | $\mathbf{SR}$          | = 0                 | $\geq$           | -                     |                  | 0.4                               | -                                                       | > 60                                | > 350                            | > 2600                 |                           |    |
| (Boosted, La           | uge $\Delta m$ ) | CR                     | = 1                 | $\geq$           |                       |                  | -                                 | < 150                                                   | -                                   | > 275                            | > 1800                 | > 300                     |    |
| Region<br>(Moderate    |                  | SR                     | = 0                 | $\geq$           |                       |                  | 0.4                               | _                                                       | > 120                               | > 500                            | > 1800                 |                           |    |
| Region                 |                  | CR                     | = 1                 | 2                |                       |                  | -                                 | < 150                                                   | -                                   | > 400                            | > 1700                 |                           |    |
| (Compre                | ssed,            | SR                     | = 0                 | ≥ .              | -                     |                  | 0.4                               | -                                                       | > 120                               | > 250                            | > 1000                 |                           |    |
| moderate               | $\Delta m$ )     | CR                     | = 1                 | ≥.               | 4 ≥                   | 7                | -                                 | < 150                                                   | -                                   | > 250                            | > 1000                 | > 100                     |    |
|                        |                  |                        |                     |                  |                       |                  | bb                                |                                                         |                                     |                                  |                        |                           |    |
|                        |                  |                        |                     |                  |                       |                  | all regi                          | ions: N <sub>jet</sub>                                  |                                     |                                  |                        |                           |    |
| Targeted kin           | ematics          | Туре                   | N <sub>lepton</sub> | $N_{D-j}$        | $_{\rm ets} \Delta q$ | $b_{\min}^{4j}$  | $m_{\mathrm{T}}$                  | $m_{\mathrm{T,min}}^{b-\mathrm{jets}}$                  | $E_{\mathrm{T}}^{\mathrm{miss}}$    | mei                              | r                      | Others                    |    |
| Region                 |                  | SR                     | = 0                 | ≥ 3              |                       | 0.4              | -                                 | -                                                       | > 400                               |                                  |                        | -                         |    |
| (Boosted, La           | rge $\Delta m$ ) | CR                     | = 1                 | ≥ 3              | 3                     | -                | < 150                             | -                                                       | > 400                               | > 25                             | 00                     | -                         |    |
| Region<br>(Moderate    |                  | SR                     | = 0                 | ≥ 4              |                       | 0.4              | -                                 | > 90                                                    | > 450                               |                                  |                        | -                         |    |
|                        |                  | CR                     | = 1                 | ≥ 4              | 4                     | -                | < 150                             | -                                                       | > 300                               | ) > 16                           | 00                     | -                         |    |
| Region<br>(Compressed  |                  | SR                     | = 0                 | $\geq 4$         |                       | 0.4              | -                                 | > 155                                                   |                                     |                                  |                        | -                         |    |
| Δ <i>m</i> )           |                  | CR                     | = 1                 | ≥ 4              | 1                     | -                | < 150                             | -                                                       | > 375                               | 5 –                              |                        | -                         |    |
| Region<br>(Very Comp   |                  | SR                     | = 0                 | ≥ 3              |                       | 0.4              | -                                 | > 100                                                   |                                     |                                  | $p_{T}^{j}$            | l > 400, j <sub>1</sub> ≠ | Ь, |
| very small             | $(\Delta m)$     | CR                     | = 1                 | ≥ 3              | 3                     | -                | < 150                             | -                                                       | > 600                               | ) –                              |                        | $\Delta \phi^{j_1} > 2.5$ |    |





#### SUSY searches in ATLAS and CMS

CMS

| High-N <sub>jet</sub> regions |       |          |                                |                  |           |                                      |                             |                                  |                |                |                                  |                  |
|-------------------------------|-------|----------|--------------------------------|------------------|-----------|--------------------------------------|-----------------------------|----------------------------------|----------------|----------------|----------------------------------|------------------|
|                               |       | Criteria | common                         | to all reg       | ions: 1   | $V_{b-jets} \ge 3$                   |                             |                                  |                |                | _                                |                  |
| Targeted kinematics           | Туре  | Nlepton  | $\Delta \phi_{ m min}^{ m 4j}$ | $m_{\mathrm{T}}$ | Njet      | $m_{\mathrm{T,min}}^{b\text{-jets}}$ | $M_J^{\Sigma}$              | $E_{\mathrm{T}}^{\mathrm{miss}}$ |                | $m_{\rm eff}$  | _                                |                  |
| High-meff                     | SR-0L | = 0      | > 0.4                          | -                | $\geq 7$  | > 100                                | > 200                       | > 400                            |                | > 2500         |                                  |                  |
| (HH)                          | SR-1L | $\geq 1$ | -                              | > 150            | $\geq 6$  | > 120                                | > 200                       | > 500                            |                | > 2300         |                                  |                  |
| (Large $\Delta m$ )           | CR    | $\geq 1$ | -                              | < 150            | $\geq 6$  | > 60                                 | > 150                       | > 300                            |                | > 2100         | _                                |                  |
| Intermediate-meff             | SR-0L | = 0      | > 0.4                          | -                | ≥ 9       | > 140                                | > 150                       | > 300                            | [18            | 300, 2500]     |                                  |                  |
| (HI)                          | SR-1L | $\geq 1$ | -                              | > 150            | $\geq 8$  | > 140                                | > 150                       | > 300                            | [18            | 300, 2300]     |                                  |                  |
| (Intermediate $\Delta m$ )    | CR    | $\geq 1$ | -                              | < 150            | $\geq 8$  | > 60                                 | > 150                       | > 200                            | [17            | 700, 2100]     | _                                |                  |
| Low-m <sub>eff</sub>          | SR-0L | = 0      | > 0.4                          | -                | $\ge 9$   | > 140                                | -                           | > 300                            | [9             | 00, 1800]      |                                  |                  |
| (HL)                          | SR-1L | $\geq 1$ | -                              | > 150            | $\geq 8$  | > 140                                | -                           | > 300                            | [9             | 00, 1800]      |                                  |                  |
| (Small $\Delta m$ )           | CR    | $\geq 1$ | -                              | < 150            | $\geq 8$  | > 130                                | -                           | > 250                            | [9             | 00, 1700]      | _                                |                  |
|                               |       |          |                                | Interm           | ediate-   | N <sub>jet</sub> regi                | ons                         |                                  |                |                |                                  |                  |
|                               |       |          | Criteri                        | a commo          | on to all | regions:                             | $N_{b-jets} \ge$            | 3                                |                |                |                                  |                  |
| Targeted kinematics           | Туре  | Nlepton  | $\Delta \phi_{ m min}^{ m 4j}$ | $m_{\rm T}$      | Njet      | $j_1 = b c$                          | or $\Delta \phi^{j_1} \leq$ | 2.9 $m_1^{t}$                    | -jets<br>C,min | $M_J^{\Sigma}$ | $E_{\mathrm{T}}^{\mathrm{miss}}$ | m <sub>eff</sub> |
| Intermediate-mef              | SR-0L | = 0      | > 0.4                          | -                | [7, 8]    |                                      | 1                           | >                                | 140            | > 150          | > 300                            | [1600, 2         |
| (II)                          | SR-1L | $\geq 1$ | _                              | > 150            | [6, 7]    |                                      | _                           | >                                | 140            | > 150          | > 300                            | [1600, 2         |
| (Intermediate $\Delta m$ )    | CR    | $\geq 1$ | -                              | < 150            | [6,7]     |                                      | 1                           | >                                | 100            | > 150          | > 300                            | [1600, 2         |
| Low-m <sub>eff</sub>          | SR-0L | = 0      | > 0.4                          | -                | [7, 8]    |                                      | 1                           | >                                | 140            | -              | > 300                            | [800, 16         |
| (IL)                          | SR-1L | $\geq 1$ | -                              | > 150            | [6, 7]    |                                      | -                           | >                                | 140            | _              | > 300                            | [800, 16         |
| $(Low \Delta m)$              | CR    | $\geq 1$ | -                              | < 150            | [6,7]     |                                      | 1                           | >                                | 130            | -              | > 300                            | [800, 16         |





#### ロ 》 《 🗗 》 《 토 》 《 토 》 - 토 - 《

| <b>Low-</b> $N_{jet}$ regions<br>Criteria common to all regions: $N_{b-iets} \ge 3$ |                                                                                                                               |                                |                                |                  |        |                                                 |                                   |                                      |                                  |                  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|------------------|--------|-------------------------------------------------|-----------------------------------|--------------------------------------|----------------------------------|------------------|
|                                                                                     |                                                                                                                               |                                |                                |                  |        |                                                 |                                   |                                      |                                  |                  |
| Targeted kinematics                                                                 | Туре                                                                                                                          | N <sub>lepton</sub>            | $\Delta \phi_{ m min}^{ m 4j}$ | $m_{\mathrm{T}}$ | Njet   | $j_1 = b \text{ or } \Delta \phi^{j_1} \le 2.9$ | $p_{\mathrm{T}}^{\mathrm{l}_{4}}$ | $m_{\mathrm{T,min}}^{b\text{-jets}}$ | $E_{\mathrm{T}}^{\mathrm{miss}}$ | m <sub>eff</sub> |
| High-m <sub>eff</sub><br>(LH)                                                       | SR                                                                                                                            | = 0                            | > 0.4                          | -                | [4,6]  | -                                               | > 90                              | -                                    | > 300                            | > 2400           |
| (Large $\Delta m$ )                                                                 | CR                                                                                                                            | $\geq 1$                       | -                              | < 150            | [4, 5] | -                                               | -                                 | -                                    | > 200                            | > 2100           |
| Intermediate-m <sub>eff</sub><br>(LI)                                               | SR                                                                                                                            | = 0                            | > 0.4                          | -                | [4,6]  | 1                                               | > 90                              | > 140                                | > 350                            | [1400, 2400      |
| (Intermediate $\Delta m$ )                                                          | CR                                                                                                                            | $\geq 1$                       | -                              | < 150            | [4, 5] | 1                                               | > 70                              | -                                    | > 300                            | [1400, 2000      |
| Low-m <sub>eff</sub><br>(LL)                                                        | SR                                                                                                                            | = 0                            | > 0.4                          | -                | [4, 6] | 1                                               | > 90                              | > 140                                | > 350                            | [800, 1400       |
| $(Low \Delta m)$                                                                    | CR                                                                                                                            | $\geq 1$                       | -                              | < 150            | [4, 5] | 1                                               | > 70                              | -                                    | > 300                            | [800, 1400       |
|                                                                                     |                                                                                                                               |                                |                                |                  |        |                                                 |                                   |                                      |                                  |                  |
|                                                                                     |                                                                                                                               |                                |                                | ISR regi         | ions   |                                                 |                                   |                                      |                                  |                  |
| Criteria                                                                            | Criteria common to all regions: $N_{b\text{-jets}} \ge 3$ , $\Delta \phi^{j_1} > 2.9$ , $p_T^{j_1} > 400$ GeV and $j_1 \ne b$ |                                |                                |                  |        |                                                 |                                   |                                      |                                  |                  |
| Type N <sub>lep</sub>                                                               | ton                                                                                                                           | $\Delta \phi_{ m min}^{ m 4j}$ | т                              | Т                | Njet   | $m_{\mathrm{T,min}}^{b\text{-jets}}$ E          | miss<br>T                         | $m_{\rm eff}$                        | _                                |                  |
| SR =                                                                                | 0                                                                                                                             | > 0.4                          | -                              | -                | [4, 8] | > 100 >                                         | 600                               | < 2200                               | _                                |                  |

[4,7]

< 150





Arka Santra

 $\geq 1$ 

-

CR

SUSY searches in ATLAS and CMS

\_

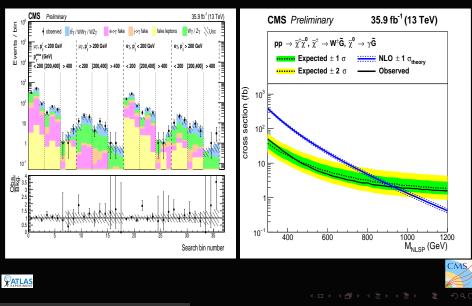
>400

< 2000

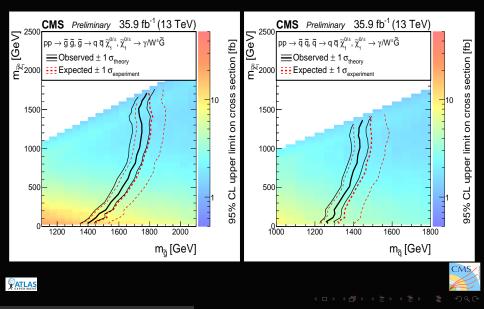
#### MultiB Search: 6

|                     |                 | SR-Gtt-1L         |                     |
|---------------------|-----------------|-------------------|---------------------|
| Targeted kinematics | в               | м                 | С                   |
| Observed events     | 0               | 0                 | 5                   |
| Fitted background   | $0.64 \pm 0.34$ | $1.1 \pm 0.4$     | $5.1 \pm 2.2$       |
| tī                  | $0.32 \pm 0.23$ | $0.52 \pm 0.30$   | $2.6 \pm 1.7$       |
| Single-top          | $0.17 \pm 0.22$ | $0.29 \pm 0.19$   | $1.0 \pm 1.0$       |
| $t\bar{t} + X$      | $0.15 \pm 0.09$ | $0.27 \pm 0.15$   | $1.4 \pm 0.7$       |
| Z+jets              | < 0.01          | < 0.01            | $0.0018 \pm 0.0015$ |
| W+jets              | < 0.01          | $0.009 \pm 0.031$ | $0.007 \pm 0.008$   |
| Diboson             | < 0.01          | < 0.01            | < 0.01              |
| MC-only background  | 0.8             | 1.1               | 5.3                 |

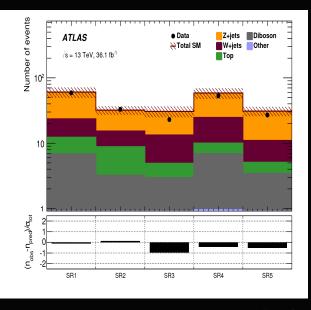
|                     |                 | SR-Gtt-0L         |                   |
|---------------------|-----------------|-------------------|-------------------|
| Targeted kinematics | в               | м                 | С                 |
| Observed events     | 5               | 9                 | 50                |
| Fitted background   | $3.0 \pm 1.1$   | $6.6 \pm 2.6$     | $54 \pm 17$       |
| tī                  | $1.5 \pm 0.7$   | $3.2 \pm 1.8$     | $42 \pm 16$       |
| Single-top          | $0.7 \pm 0.6$   | $1.4 \pm 0.7$     | $3.2 \pm 3.4$     |
| $t\bar{t} + X$      | $0.35 \pm 0.19$ | $0.9 \pm 0.4$     | $5.7 \pm 3.1$     |
| Z+jets              | $0.2 \pm 0.5$   | $0.6 \pm 1.7$     | $1.1 \pm 2.9$     |
| W+jets              | $0.19 \pm 0.17$ | $0.4 \pm 0.4$     | $1.0 \pm 1.0$     |
| Diboson             | < 0.01          | $0.06 \pm 0.04$   | $0.19 \pm 0.13$   |
| Multijet            | $0.04 \pm 0.04$ | $0.029 \pm 0.029$ | $0.030 \pm 0.030$ |
| MC-only background  | 3.3             | 7.2               | 52                |


|                     |                 | SR-             | брр             |                 |
|---------------------|-----------------|-----------------|-----------------|-----------------|
| Targeted kinematics | в               | м               | С               | VC              |
| Observed events     | 4               | 5               | 7               | 8               |
| Fitted background   | $4.9 \pm 1.5$   | $6.3 \pm 2.6$   | $9.7 \pm 3.5$   | $7 \pm 4$       |
| tī                  | $2.8 \pm 0.9$   | $3.7 \pm 2.1$   | $4.8 \pm 1.4$   | $3.6 \pm 2.2$   |
| Single-top          | $1.1 \pm 0.7$   | $0.7 \pm 0.4$   | $1.5 \pm 1.6$   | $0.30 \pm 0.26$ |
| $t\bar{t} + X$      | $0.29 \pm 0.17$ | $0.9 \pm 0.5$   | $1.5 \pm 0.8$   | $0.67 \pm 0.35$ |
| Z+jets              | $0.3 \pm 0.8$   | $0.5 \pm 1.3$   | $1.0 \pm 2.6$   | $1 \pm 4$       |
| W+jets              | $0.4 \pm 0.4$   | $0.20 \pm 0.23$ | $0.6 \pm 0.5$   | $0.6 \pm 0.5$   |
| Diboson             | $0.03 \pm 0.14$ | $0.19 \pm 0.24$ | $0.25 \pm 0.19$ | $0.16 \pm 0.11$ |
| Multijet            | $0.08 \pm 0.08$ | < 0.01          | < 0.01          | < 0.01          |
| MC-only background  | 4.5             | 7.0             | 9.0             | 7               |






#### ロトメロトメミトメミトーミーのの


#### PhotonLeptonMET Search: 1

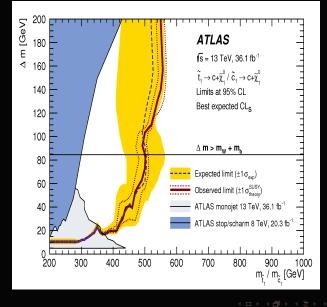


#### PhotonLeptonMET Search: 2



#### Charm Search: 1








Arka Santra

#### SUSY searches in ATLAS and CMS

#### Charm Search: 2







|                                                                                             | SR1               | SR2                    | SR3              | SR4      | SR5        |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|-------------------|------------------------|------------------|----------|------------|--|--|--|--|--|
| Trigger                                                                                     |                   | $E_{\rm T}^{\rm miss}$ | triggers         |          |            |  |  |  |  |  |
| Leptons                                                                                     | $0~e$ and $0~\mu$ |                        |                  |          |            |  |  |  |  |  |
| $E_{\rm T}^{\rm miss}$ [GeV]                                                                | > 500             |                        |                  |          |            |  |  |  |  |  |
| $\Delta \phi_{\min}(\text{jet}, \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}) \text{ [rad]}$ | > 0.4             |                        |                  |          |            |  |  |  |  |  |
| $N_{c-jets}$                                                                                | ≥1                |                        |                  |          |            |  |  |  |  |  |
| N <sub>jets</sub>                                                                           | $\geq 2$          | $\geq 3$               | $\geq 3$         | $\geq 3$ | <u>≥</u> 3 |  |  |  |  |  |
| Leading jet c-tag veto                                                                      | yes               | yes                    | yes              | yes      | no         |  |  |  |  |  |
| $p_{\mathrm{T}}^{j_{1}}$ [GeV]                                                              | > 250             | > 250                  | > 250            | > 250    | > 300      |  |  |  |  |  |
| $p_{\mathrm{T}}^{j_2}$ [GeV]                                                                | -                 | -                      | > 100            | >140     | > 200      |  |  |  |  |  |
| $p_{\rm T}^{j_3}$ [GeV]                                                                     | -                 | -                      | > 80             | > 120    | > 150      |  |  |  |  |  |
| $p_{\mathrm{T}}^{c_1}$ [GeV]                                                                | < 100             | > 60                   | > 80             | > 100    | >150       |  |  |  |  |  |
| $m_{\rm T}^c ~[{\rm GeV}]$                                                                  | $\in (120, 250)$  | $\in (120, 250)$       | $\in (175, 400)$ | > 200    | > 400      |  |  |  |  |  |





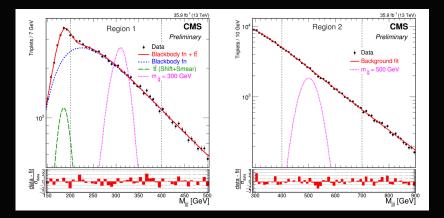
| Source \ Region                  | SR1<br>[%] | SR2<br>[%] | SR3<br>[%] | SR4<br>[%] | SR5<br>[%] |
|----------------------------------|------------|------------|------------|------------|------------|
| μ <sub>Z</sub><br>μ <sub>W</sub> | 6.7<br>4.5 | 9.3<br>5.6 | 12<br>4.8  | 11<br>4.4  | 13<br>3.9  |
| μ <sub>Top</sub>                 | 2.9        | 7.7        | 2.2        | 2.0        | 2.1        |
| JES                              | 7.9        | 5.0        | 6.8        | 5.2        | 5.6        |
| c-tagging                        | 6.7        | 8.9        | 9.3        | 8.1        | 7.0        |
| W/Z+jets scale variations        | 11         | 5.8        | 7.6        | 6.5        | 5.2        |
| W/Z+jets resummation scale       | 7.8        | 3.7        | 2.5        | 5.6        | 4.7        |
| W/Z+jets PDF                     | 7.7        | 7.1        | 14         | 15         | 9.1        |
| Total                            | 18         | 15         | 19         | 18         | 16         |





SUSY searches in ATLAS and CMS

### Charm Search: 5

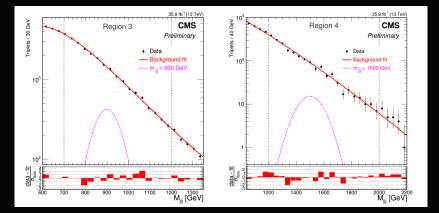

| Yields                                                                  | SR1                   | SR2                  | SR3                  | SR4                  | SR5                  |
|-------------------------------------------------------------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|
| Observed                                                                | 59                    | 33                   | 23                   | 53                   | 27                   |
| Total SM                                                                | $61\pm11$             | $32\pm 5$            | $31\pm 6$            | $59\pm11$            | $31 \pm 5$           |
| Z+jets                                                                  | $37.1\pm7.8$          | $16.7\pm3.2$         | $17\pm5$             | $34\pm8$             | $20 \pm 4$           |
| W+jets                                                                  | $11.2\pm5.1$          | $6.5\pm2.3$          | $8.4\pm2.0$          | $15 \pm 4$           | $5.9 \pm 1.5$        |
| Top                                                                     | $5.4\pm2.0$           | $5.6 \pm 2.6$        | $2.0\pm2.0$          | $3.1\pm1.8$          | $1.7\pm0.7$          |
| Diboson                                                                 | $6.3\pm2.1$           | $2.7\pm1.7$          | $2.4\pm0.7$          | $5.9\pm2.3$          | $3.2\pm1.6$          |
| Other                                                                   | $0.6\pm0.1$           | $0.5\pm0.1$          | $0.5\pm0.1$          | $1.0\pm0.1$          | $0.3\pm0.1$          |
| Signal benchmarks                                                       |                       |                      |                      |                      |                      |
| $(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = (450, 425) \text{ GeV}$      | $22.7\pm4.0$          | $9.1\pm2.6$          | $1.6\pm1.0$          | $1.84\pm0.71$        | $0.45 \pm 0.27$      |
| $(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = (500, 420) \text{ GeV}$      | $18.3\pm3.4$          | $19.7\pm4.9$         | $15.2\pm4.1$         | $8.0\pm2.2$          | $1.26\pm0.64$        |
| $(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = (500, 350) \text{ GeV}$      | $5.4\pm2.0$           | $11.6\pm3.3$         | $26.1\pm6.7$         | $18.7\pm5.4$         | $3.0\pm1.1$          |
| $(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = (600, 350) \text{ GeV}$      | $1.91\pm0.87$         | $3.2\pm1.3$          | $10.5\pm3.0$         | $24.0\pm5.9$         | $7.0\pm2.2$          |
| $(m_{\tilde{t}_1}^-, m_{\tilde{\chi}_1^0}^{-1}) = (900, 1) \text{ GeV}$ | $0.67\pm0.19$         | $0.61\pm0.21$        | $1.61\pm0.50$        | $11.7\pm2.0$         | $10.2\pm1.8$         |
| $\langle \sigma_{\rm vis} \rangle_{\rm obs}^{95}$ [fb]                  | 0.67                  | 0.46                 | 0.33                 | 0.59                 | 0.40                 |
| $S_{obs}^{95}$                                                          | 24.2                  | 16.6                 | 11.9                 | 21.3                 | 14.3                 |
| $S_{obs}^{95}$<br>$S_{exp}^{95}$                                        | $24.4^{+13.2}_{-7.6}$ | $16.0^{+5.6}_{-4.4}$ | $15.0^{+5.2}_{-3.1}$ | $24.9^{+9.6}_{-7.1}$ | $15.3^{+6.8}_{-2.2}$ |
| p(s = 0)                                                                | 0.5                   | 0.41                 | 0.5                  | 0.5                  | 0.5                  |





Arka Santra

#### SUSY searches in ATLAS and CMS

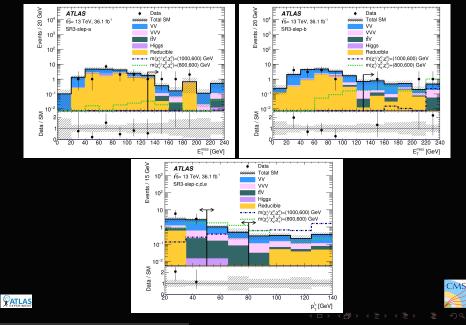






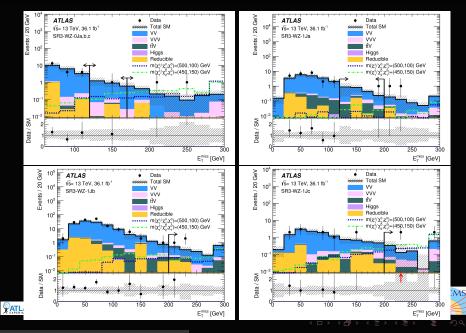

55 / 73

### Three jets search: 2









SUSY searches in ATLAS and CMS

56 / 73





SUSY searches in ATLAS and CMS



Arka Santra

SUSY searches in ATLAS and CMS



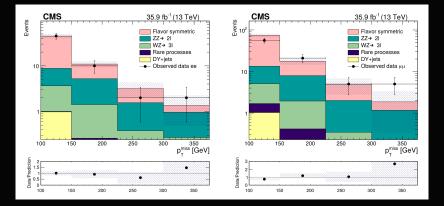
Arka Santra

SUSY searches in ATLAS and CMS

| 24                                                                                                                                  | 2+jets signal region | definitions |            |  |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|------------|--|
|                                                                                                                                     | SR2-int SR2-high     | SR2-low-2J  | SR2-low-3J |  |
| $n_{\text{non-}b\text{-tagged jets}}$                                                                                               | $\geq 2$             | 2           | 3 - 5      |  |
| $m_{\ell\ell} \; [\text{GeV}]$                                                                                                      | 81 - 101             | 81 - 101    | 86–96      |  |
| $m_{jj}$ [GeV]                                                                                                                      | 70 - 100             | 70–90       | 70–90      |  |
| $E_{\rm T}^{\rm miss}$ [GeV]                                                                                                        | > 150 > 250          | > 100       | > 100      |  |
| $p_{\rm T}^Z ~[{ m GeV}]$                                                                                                           | > 80                 | > 60        | > 40       |  |
| $p_{\mathrm{T}}^{W}$ [GeV]                                                                                                          | > 100                |             |            |  |
| $m_{\mathrm{T2}} \; [\mathrm{GeV}]$                                                                                                 | > 100                |             |            |  |
| $\Delta R_{(jj)}$                                                                                                                   | < 1.5                |             | < 2.2      |  |
| $\Delta R_{(\ell\ell)}$                                                                                                             | < 1.8                |             |            |  |
| $\Delta \phi_{(\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}},Z)}$                                                                         |                      | < 0.8       |            |  |
| $\Delta \phi_{(\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}},W)}^{\mathrm{(\mathbf{p}_{T}^{\mathrm{miss}},W)}}$                           | 0.5 - 3.0            | > 1.5       | < 2.2      |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{Z}$                                                                                 |                      | 0.61.6      |            |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{W}$                                                                                 |                      | < 0.8       |            |  |
| $\Delta \phi_{(\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{ISR})}$                                                              |                      |             | > 2.4      |  |
| $\Delta \phi_{(\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet1})}^{\mathrm{(\mathbf{p}_{T}^{\mathrm{miss}}, \mathrm{jet1})}}$ |                      |             | > 2.6      |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{\mathrm{ISR}}$                                                                      |                      |             | 0.4 - 0.8  |  |
| $ \eta(Z) $                                                                                                                         |                      |             | < 1.6      |  |
| $p_{\rm T}^{ m jet3}~[{ m GeV}]$                                                                                                    |                      |             | > 30       |  |



Arka Santra


SUSY searches in ATLAS and CMS

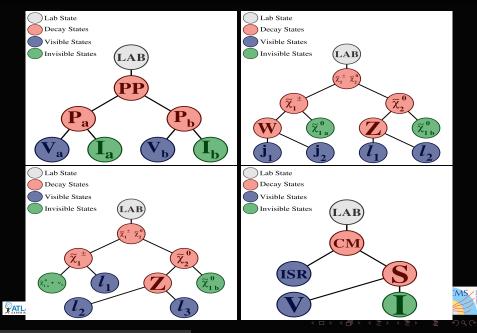
|               |                                  | $3\ell  \mathrm{ex}$      | clusive signal re              | gion defir                    |                                 |                                  |            |
|---------------|----------------------------------|---------------------------|--------------------------------|-------------------------------|---------------------------------|----------------------------------|------------|
| $m_{ m SFOS}$ | $E_{\mathrm{T}}^{\mathrm{miss}}$ | $p_{\mathrm{T}}^{\ell_3}$ | n <sub>non-b-tagged</sub> jets | m <sub>T</sub> <sup>min</sup> | $p_{\mathrm{T}}^{\ell\ell\ell}$ | $p_{\mathrm{T}}^{\mathrm{jet1}}$ | Bins       |
| [GeV]         | [GeV]                            | [GeV]                     | 00 0                           | [GeV]                         | [GeV]                           | [GeV]                            |            |
| <81.2         | > 130                            | 20-30                     |                                | > 110                         |                                 |                                  | SR3-slep-a |
| <b>N01.2</b>  | / 100                            | > 30                      |                                | / 110                         |                                 |                                  | SR3-slep-b |
|               |                                  | 20-50                     |                                |                               |                                 |                                  | SR3-slep-c |
| >101.2        | > 130                            | 50 - 80                   |                                | > 110                         |                                 |                                  | SR3-slep-d |
|               |                                  | > 80                      |                                |                               |                                 |                                  | SR3-slep-e |
|               | 60-120                           |                           |                                |                               |                                 |                                  | SR3-WZ-0Ja |
| 81.2-101.2    | 120-170                          |                           | 0                              | >110                          |                                 |                                  | SR3-WZ-0Jb |
|               | > 170                            |                           |                                |                               |                                 |                                  | SR3-WZ-0Jc |
|               | 120-200                          |                           |                                | > 110                         | < 120                           | > 70                             | SR3-WZ-1Ja |
| 81.2-101.2    | > 200                            |                           | $\geq 1$                       | 110-160                       |                                 |                                  | SR3-WZ-1Jb |
|               | 200                              | > 35                      |                                | > 160                         |                                 |                                  | SR3-WZ-1Jc |





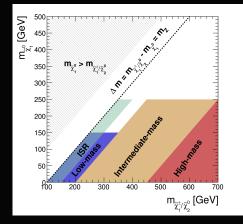
## LightSlepton Search, CMS: 1








SUSY searches in ATLAS and CMS


62 / 73

# **RJR Search**: 1



Arka Santra

SUSY searches in ATLAS and CMS







64 / 73

| Region          | n <sub>leptons</sub> | n <sub>jets</sub> | n <sub>b-tag</sub> | $p_{\mathrm{T}}^{l_1,l_2}\left[\mathrm{GeV} ight]$ | $p_{\mathrm{T}}^{j_1,j_2}$ [GeV] | $m_{\ell\ell}~[{ m GeV}]$ | $m_{jj} \; [{ m GeV}]$     | $m_{\mathrm{T}}^{W}$ [GeV]                |
|-----------------|----------------------|-------------------|--------------------|----------------------------------------------------|----------------------------------|---------------------------|----------------------------|-------------------------------------------|
| CR2ℓ-VV         | $\in [3, 4]$         | $\geq 2$          | =0                 | > 25                                               | >30                              | $\in (80, 100)$           | > 20                       | $\in (70, 100)$                           |
|                 |                      |                   |                    |                                                    |                                  |                           |                            | $ \  \   {\rm if} \ n_{\rm leptons}=3 \\$ |
| CR2ℓ-Top        | = 2                  | $\geq 2$          | =1                 | > 25                                               | > 30                             | $\in (80, 100)$           | $\in (40, 250)$            | -                                         |
| VR2ℓ-VV         | = 2                  | $\geq 2$          | =0                 | > 25                                               | > 30                             | $\in (80, 100)$           | $\in (40, 70)$             | -                                         |
|                 |                      |                   |                    |                                                    |                                  |                           | or $\in (90, 500)$         | -                                         |
| VR2ℓ-Top        | = 2                  | $\geq 2$          | =1                 | > 25                                               | > 30                             | $\in (20, 80)$            | $\in (40, 250)$            | -                                         |
|                 |                      |                   |                    |                                                    |                                  | or > 100                  |                            | -                                         |
| VR2/_High-Zjets | = 2                  | $\geq 2$          | = 0                | > 25                                               | > 30                             | $\in (80, 100)$           | $\in (0, 60)$              | -                                         |
|                 |                      |                   |                    |                                                    |                                  |                           | or ∈ (100, 180)            | -                                         |
| VR2/Low-Zjets   | = 2                  | = 2               | = 0                | > 25                                               | > 30                             | $\in (80, 100)$           | € (0,60)                   | -                                         |
|                 |                      |                   |                    |                                                    |                                  |                           | $\text{or} \in (100, 180)$ | -                                         |
| SR2ℓ.High       | = 2                  | <u>≥</u> 2        | = 0                | > 25                                               | > 30                             | € (80, 100)               | € (60, 100)                | -                                         |
| SR2ℓ_Int        | = 2                  | $\geq 2$          | = 0                | > 25                                               | > 30                             | $\in (80, 100)$           | $\in (60, 100)$            | -                                         |
| SR2ℓ_Low        | = 2                  | = 2               | =0                 | > 25                                               | > 30                             | $\in (80, 100)$           | $\in (70, 90)$             | -                                         |





| Region          | $H_{4,1}^{\mathrm{PP}}$ [GeV] | $H_{1,1}^{\mathrm{PP}}$ [GeV] | $\frac{\frac{p_{\mathrm{T}}^{\mathrm{lab}}}{p_{\mathrm{T}}^{\mathrm{lab}} + H_{\mathrm{T}}^{\mathrm{PP}}}}{p_{\mathrm{T}}^{\mathrm{Pp}} + H_{\mathrm{T}}^{\mathrm{PP}} + H_{\mathrm{T}}^{\mathrm{PP}}}$ | $\frac{\min(H_{1,1}^{P_a}, H_{1,1}^{P_b})}{\min(H_{2,1}^{P_a}, H_{2,1}^{P_b})}$ | $\frac{H_{1,1}^{\mathrm{PP}}}{H_{4,1}^{\mathrm{PP}}}$ | $\Delta \phi_V^{\rm P}$ | ${\rm min}\Delta\phi(j_1/j_2,\vec{p}_{\rm T}^{\rmmiss})$ |
|-----------------|-------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------|----------------------------------------------------------|
| CR2ℓ-VV         | > 200                         | -                             | < 0.05                                                                                                                                                                                                  | > 0.2                                                                           | -                                                     | $\in (0.3, 2.8)$        | -                                                        |
| CR2ℓ-Top        | >400                          | -                             | < 0.05                                                                                                                                                                                                  | > 0.5                                                                           | -                                                     | $\in (0.3, 2.8)$        | -                                                        |
| VR2ℓ-VV         | >400                          | > 250                         | < 0.05                                                                                                                                                                                                  | $\in (0.4, 0.8)$                                                                | -                                                     | $\in (0.3, 2.8)$        | -                                                        |
| VR2ℓ-Top        | >400                          | -                             | < 0.05                                                                                                                                                                                                  | > 0.5                                                                           | -                                                     | $\in (0.3, 2.8)$        | -                                                        |
| VR2ℓ_High-Zjets | > 600                         | -                             | < 0.05                                                                                                                                                                                                  | > 0.4                                                                           | -                                                     | $\in (0.3, 2.8)$        | -                                                        |
| VR2ℓ_Low-Zjets  | >400                          | -                             | < 0.05                                                                                                                                                                                                  | -                                                                               | $\in (0.35, 0.60)$                                    | -                       | -                                                        |
| SR2ℓ_High       | > 800                         | -                             | < 0.05                                                                                                                                                                                                  | > 0.8                                                                           | -                                                     | $\in (0.3, 2.8)$        | -                                                        |
| SR2ℓ_Int        | > 600                         | -                             | < 0.05                                                                                                                                                                                                  | > 0.8                                                                           | -                                                     | $\in (0.6, 2.6)$        | -                                                        |
| SR2ℓ.Low        | >400                          | -                             | < 0.05                                                                                                                                                                                                  | -                                                                               | $\in (0.35, 0.60)$                                    | -                       | > 2.4                                                    |





SUSY searches in ATLAS and CMS

| Region         | n <sub>leptons</sub> | $N_{ m jet}^{ m ISR}$ | N <sup>S</sup> <sub>jet</sub> | $n_{ m jets}$ | n <sub>b-tag</sub> | $p_{\mathrm{T}}^{\ell_1,\ell_2} \left[\mathrm{GeV} ight]$ | $p_{\mathrm{T}}^{j_1,j_2}$ [GeV] |
|----------------|----------------------|-----------------------|-------------------------------|---------------|--------------------|-----------------------------------------------------------|----------------------------------|
| CR2ℓ_ISR-VV    | € [3,4]              | >1                    | $\geq 2$                      | >2            | = 0                | > 25                                                      | > 30                             |
| CR2ℓ_ISR-Top   | = 2                  | <u>&gt;</u> 1         | = 2                           | $\in [3,4]$   | =1                 | > 25                                                      | > 30                             |
| VR2ℓ_ISR-VV    | $\in [3, 4]$         | <u>&gt;</u> 1         | $\geq 2$                      | <u>&gt;</u> 3 | = 0                | > 25                                                      | > 20                             |
| VR2ℓ_ISR-Top   | = 2                  | <u>&gt;</u> 1         | = 2                           | $\in [3, 4]$  | =1                 | > 25                                                      | > 30                             |
| VR2ℓ_ISR-Zjets | = 2                  | <u>&gt;</u> 1         | <u>&gt;</u> 1                 | $\in [3,5]$   | = 0                | > 25                                                      | > 30                             |
| SR2ℓ_ISR       | = 2                  | <u>&gt;</u> 1         | = 2                           | $\in [3, 4]$  | = 0                | > 25                                                      | > 30                             |





SUSY searches in ATLAS and CMS

| Region         | m <sub>Z</sub> [GeV] | $m_J \; [{ m GeV}]$ | $\Delta \phi_{\mathrm{ISR,I}}^{\mathrm{CM}}$ | R <sub>ISR</sub>  | $p_{\mathrm{T~ISR}}^{\mathrm{CM}} \left[\mathrm{GeV} ight]$ | $p_{\mathrm{T}~\mathrm{I}}^{\mathrm{CM}}$ [GeV] | $p_{\mathrm{T}}^{\mathrm{CM}}$ [GeV] |
|----------------|----------------------|---------------------|----------------------------------------------|-------------------|-------------------------------------------------------------|-------------------------------------------------|--------------------------------------|
| CR2ℓ_ISR-VV    | € (80, 100)          | > 20                | > 2.0                                        | € (0.0, 0.5)      | > 50                                                        | > 50                                            | < 30                                 |
| CR2ℓ_ISR-Top   | $\in (50, 200)$      | $\in (50, 200)$     | > 2.8                                        | $\in (0.4, 0.75)$ | >180                                                        | > 100                                           | < 20                                 |
| VR2ℓ_ISR-VV    | $\in$ (20, 80)       | > 20                | > 2.0                                        | $\in (0.0, 1.0)$  | > 70                                                        | >70                                             | < 30                                 |
|                | or > 100             |                     |                                              |                   |                                                             |                                                 |                                      |
| VR2ℓ_ISR-Top   | $\in (50, 200)$      | $\in (50, 200)$     | > 2.8                                        | $\in (0.4, 0.75)$ | > 180                                                       | > 100                                           | > 20                                 |
| VR2ℓ_ISR-Zjets | $\in (80, 100)$      | < 50 or > 110       | -                                            | -                 | >180                                                        | >100                                            | < 20                                 |
| SR2ℓ_ISR       | $\in (80, 100)$      | $\in (50, 110)$     | > 2.8                                        | $\in (0.4, 0.75)$ | >180                                                        | >100                                            | < 20                                 |





| Region    | $n_{ m leptons}$ | $n_{ m jets}$ | $n_{b-\mathrm{tag}}$ | $p_{\mathrm{T}}^{\ell_1}$ [GeV] | $p_{\mathrm{T}}^{\ell_2}$ [GeV] | $p_{\mathrm{T}}^{\ell_3}$ [GeV] |
|-----------|------------------|---------------|----------------------|---------------------------------|---------------------------------|---------------------------------|
| CR3ℓ-VV   | = 3              | <3            | = 0                  | > 60                            | > 40                            | > 30                            |
| VR3ℓ-VV   | = 3              | <3            | = 0                  | > 60                            | > 40                            | > 30                            |
| SR3ℓ_High | = 3              | < 3           | = 0                  | > 60                            | > 60                            | > 40                            |
| SR3ℓ_Int  | = 3              | < 3           | = 0 = 0              | > 60                            | > 50                            | > 30                            |
| SR3ℓ_Low  | = 3              | = 0           |                      | > 60                            | > 40                            | > 30                            |





SUSY searches in ATLAS and CMS

| $m_{\ell\ell} \; [{ m GeV}]$       | $m_{\mathrm{T}}^{W}$ [GeV]                                                       | $H_{3,1}^{\mathrm{PP}}$ [GeV]                                                                                                                 | $\frac{p_{\mathrm{T}\ \mathrm{PP}}^{\mathrm{lab}}}{p_{\mathrm{T}\ \mathrm{PP}}^{\mathrm{lab}} + H_{\mathrm{T}\ 3,1}^{\mathrm{PP}}}$                                   | $\frac{H_{T~3,1}^{PP}}{H_{3,1}^{PP}}$                  | $\frac{H_{1,1}^{\rm P_b}}{H_{2,1}^{\rm P_b}}$         |
|------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| $\in (75, 105)$                    | $\in (0, 70)$                                                                    | > 250<br>> 250                                                                                                                                | < 0.2                                                                                                                                                                 | > 0.75                                                 | -                                                     |
| $\in (75, 105)$<br>$\in (75, 105)$ | > 150                                                                            | > 550                                                                                                                                         | < 0.2                                                                                                                                                                 | > 0.75                                                 | > 0.8                                                 |
| $\in (75, 105)$<br>$\in (75, 105)$ | > 130<br>> 100                                                                   | > 450<br>> 250                                                                                                                                | < 0.15<br>< 0.05                                                                                                                                                      | > 0.8<br>> 0.9                                         | > 0.75                                                |
|                                    | $ \begin{array}{c} \in (75, 105) \\ \in (75, 105) \\ \in (75, 105) \end{array} $ | $\begin{array}{c} \in (75, 105) & \in (0, 70) \\ \in (75, 105) & \in (70, 100) \\ \in (75, 105) & > 150 \\ \in (75, 105) & > 130 \end{array}$ | $\in$ (75, 105) $\in$ (0, 70)       > 250 $\in$ (75, 105) $\in$ (70, 100)       > 250 $\in$ (75, 105)       > 150       > 550 $\in$ (75, 105)       > 130       > 450 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |





SUSY searches in ATLAS and CMS

| Region                     | $n_{\rm leptons}$ | $n_{ m jets}$ | $n_{b-tag}$ | $p_{\mathrm{T}}^{\ell_1}$ [GeV] | $p_{\mathrm{T}}^{\ell_2}$ [GeV] | $p_{\mathrm{T}}^{\ell_3}$ [GeV] |
|----------------------------|-------------------|---------------|-------------|---------------------------------|---------------------------------|---------------------------------|
| CR3ℓ_ISR-VV<br>VR3ℓ_ISR-VV | = 3<br>= 3        | ≥1<br>≥1      | = 0<br>= 0  | > 25<br>> 25                    | > 25<br>> 25                    | > 20<br>> 20                    |
| SR3ℓ_ISR                   | = 3               | $\in [1, 3]$  | = 0         | > 25                            | > 25                            | > 20                            |





71 / 73

| Sgoil Bigin                                                                                    | 8327.Bgb | NULM | NS/Low | 8026,203 |
|------------------------------------------------------------------------------------------------|----------|------|--------|----------|
| Total uncertainty [5]                                                                          | 0        | 38   | 7      | 305      |
| Z+jeta data daterea entimote                                                                   | 0        | 11   | 4      | 90       |
| V theoretical uncertainties                                                                    |          |      |        |          |
|                                                                                                |          |      |        |          |
|                                                                                                |          |      |        |          |
|                                                                                                |          |      |        |          |
| MC databilar wave takan<br>1V fitud cormalization<br>187 hytem<br>189 hytem<br>186 metry model |          |      |        |          |
|                                                                                                |          |      |        |          |
| E <sup>rein</sup> modeling.<br>O Etitel correction                                             |          |      |        |          |
|                                                                                                |          |      |        |          |
| Lepton reconstruction / identification                                                         |          |      |        |          |





72 / 73

| Ngui Brgin                                                                                                                                   | RD2, Eigh | NEX Jui | SEL/Low | 3657,30 |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|---------|---------|
| Total uncertainty [5]                                                                                                                        | 44        | 22      | в       | 2       |
| V theoretical morrisolities                                                                                                                  | 18        | 2       | 12      | 1       |
| MC starbild monthalities<br>VF Vietnic removalution<br>TSV System<br>for energy availation<br>for energy availation<br>for energy availation |           |         |         |         |
|                                                                                                                                              |           |         |         |         |
|                                                                                                                                              |           |         |         |         |
|                                                                                                                                              |           |         |         |         |
|                                                                                                                                              |           |         |         |         |
|                                                                                                                                              |           |         |         |         |
| Lepton reconstruction / identification                                                                                                       |           |         |         |         |



