

Review of Unitarity Triangle and spectroscopy measurements with LHCb

Corfu Summer Institute

18th Hallenic School and Workshops on Elementary Particle Physics and Gravity

Corfu, Greece 2018

Outline

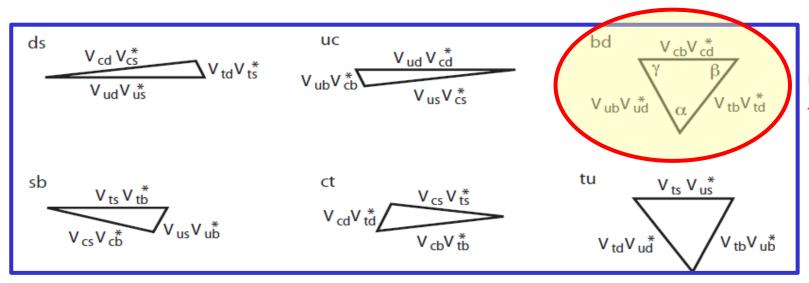
- General introduction
- A review of LHCb's measurements of the Unitarity
 Triangle parameters
 - The angle β
 - The triangle sides
 - The angle γ
- A review on measurements on spectroscopy
- The upgraded LHCb detector and outlook
- Summary

The CKM matrix

- The CKM matrix is unitary, and reduces to three rotation angles and one phase.
- The Wolfenstein parameterisation is commonly used to expand in orders of λ , the sine of the Cabibbo angle: $\lambda \sim 0.22$
- The imaginary term (phase) gives rise to CP violation in the SM

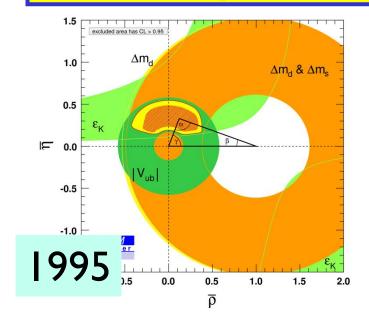
$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (1 - \rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

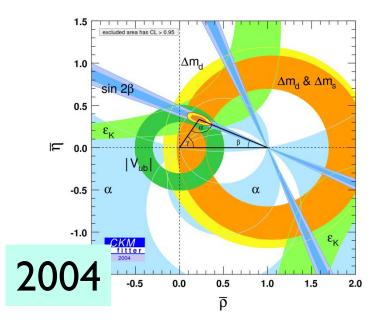
Measured magnitudes:

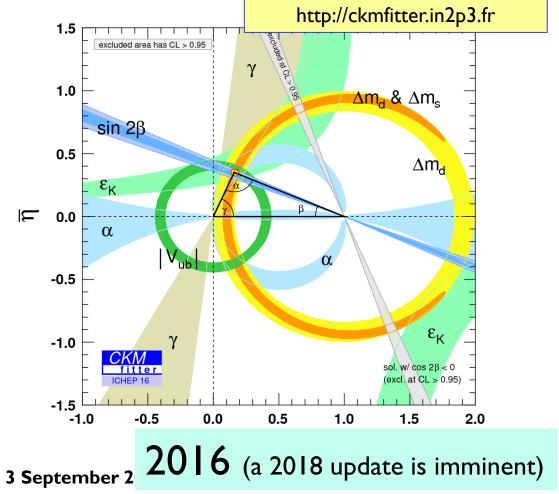

$$V_{\text{CKM}} = \begin{pmatrix} 0.97446 \pm 0.00010 & 0.22452 \pm 0.00044 & 0.00365 \pm 0.00012 \\ 0.22438 \pm 0.00044 & 0.97359^{+0.00010}_{-0.00011} & 0.04214 \pm 0.00076 \\ 0.00896^{+0.00024}_{-0.00023} & 0.04133 \pm 0.00074 & 0.999105 \pm 0.000032 \end{pmatrix}$$

http://pdg.lbl.gov/2018/reviews/rpp2018-rev-ckm-matrix.pdf

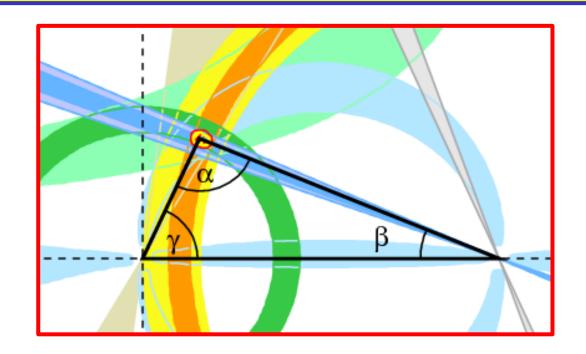
The Unitarity Triangle


- 6 unitarity conditions of the CKM matrix
- Gives 6 triangles in the complex plane
- 2 of these triangles do not have a side which is much shorter than the other two:

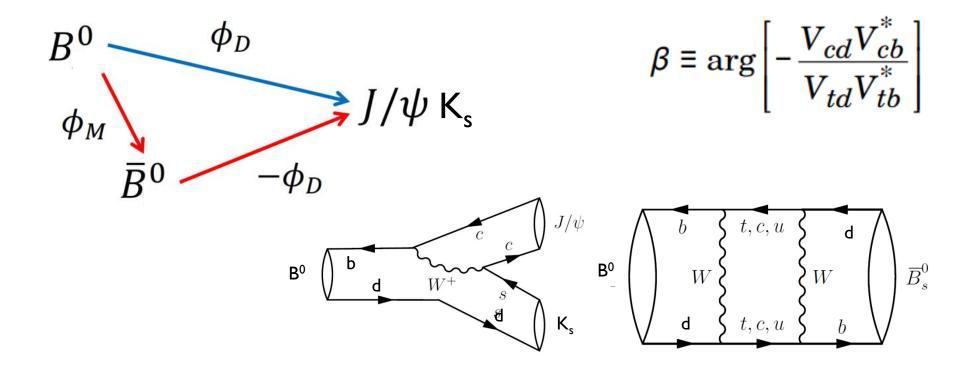

$$(V^*_{ub}V_{ud} + V^*_{cb}V_{cd} + V^*_{tb}V_{td}) = 0 (V^*_{ud}V_{td} + V^*_{us}V_{ts} + V^*_{ub}V_{tb}) = 0$$


THE unitarity triangle

Unitarity triangle measurements



 Amazing progress in the last >20 years; the SM remains intact, but still a whole lot still to learn



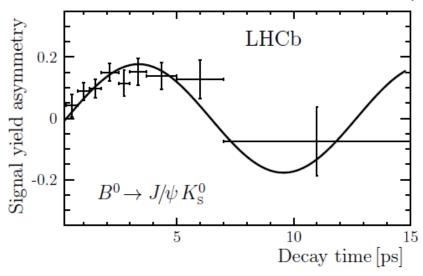
A review of LHCb Unitarity Triangle measurements

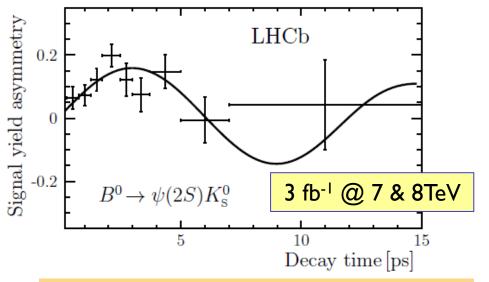
The angle β

Measurement of angle β

■ Interference between B^0 decay to $J/\psi K^0_S$ directly and via B^0 B^0 oscillation gives rise to a CP violating phase

$$\phi = \phi_{Mixing} - 2 \phi_{Decay} = 2\beta$$

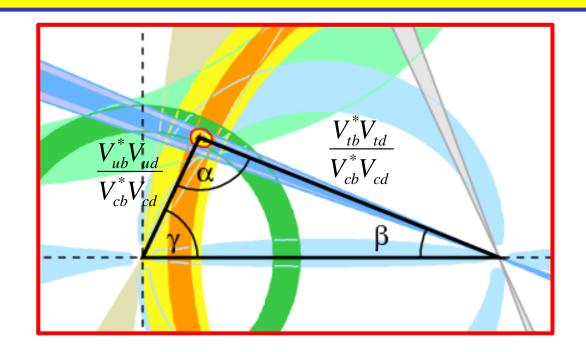

LHCb measurement of $sin(2\beta)$


 $\sin(2\beta)$ from $B^0 \rightarrow J/\psi K_S^0$ and $B^0 \rightarrow \psi(2S) K_S^0$

JHEP 11 (2017) 170

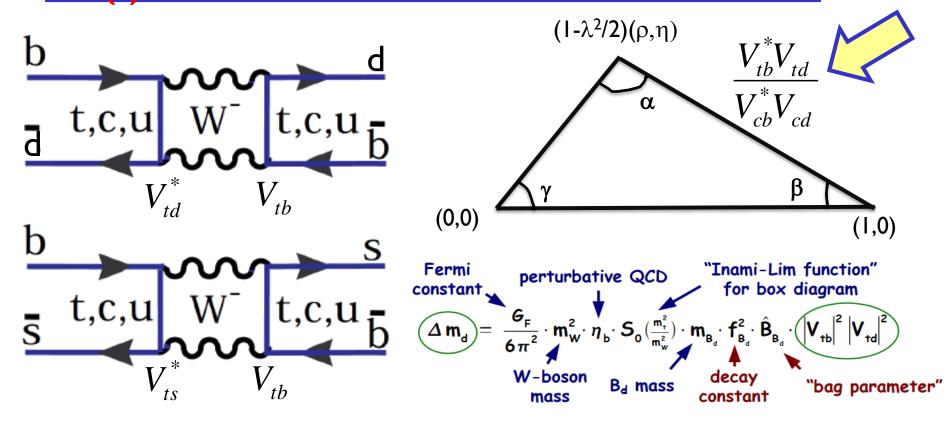
$$\mathcal{A}_{[c\overline{c}]K^0_{\mathrm{S}}}(t) \equiv \frac{\Gamma(\overline{B}^0(t) \to [c\overline{c}]K^0_{\mathrm{S}}) - \Gamma(B^0(t) \to [c\overline{c}]K^0_{\mathrm{S}})}{\Gamma(\overline{B}^0(t) \to [c\overline{c}]K^0_{\mathrm{S}}) + \Gamma(B^0(t) \to [c\overline{c}]K^0_{\mathrm{S}})} \approx S\sin(\Delta m\,t) - C\cos(\Delta m\,t)$$

where $S = \sin(2\beta)$ assuming $C_{I/\psi KS}$ (\equiv penguin contribution) = 0


$$C(B^0 \to [c\overline{c}]K_s^0) = -0.017 \pm 0.029$$

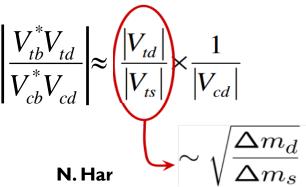
 $S(B^0 \to [c\overline{c}]K_s^0) = 0.760 \pm 0.034$

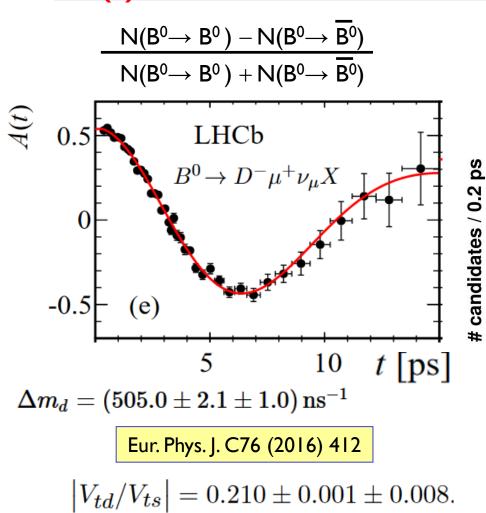
Corfu Summer Institute


3 September

Competitive with Babar & Belle. World average from all modes: $sin(2\beta) = 0.699 \pm 0.017$ (HFLAV Winter 2018)

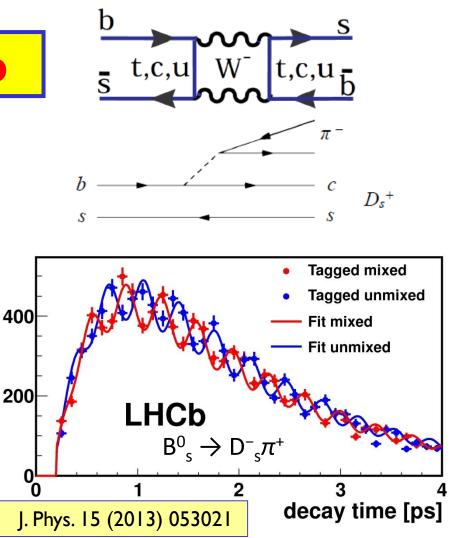
The sides of the triangle


$B_{(s)}$ mixing for side opposite to γ


- Mixing loop dominated by the top
- Length of side from ratio of B_d and B_s: mixing frequencies extracted with input from lattice QCD (systematics cancel)

Corfu Summer Institute

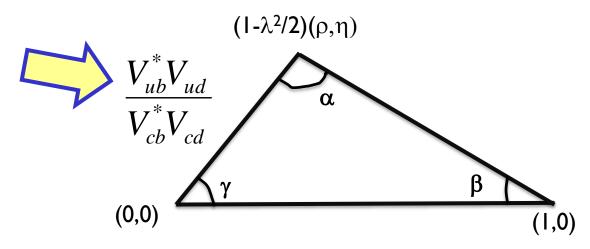
3 September 2018


mixing at LHCb

http://pdg.lbl.gov/2018/reviews/rpp2018-rev-ckm-matrix.pdf

Corfu Summer Institute

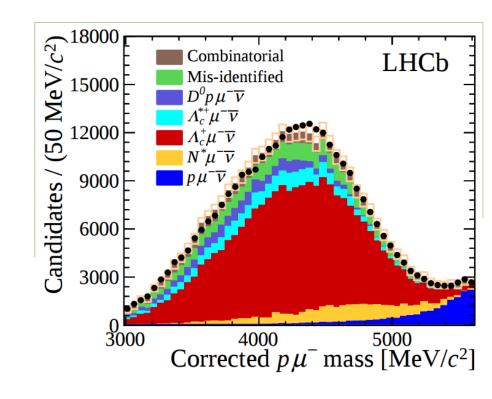
3 September 2018



 $\Delta m_s = 17.768 \pm 0.023 \pm 0.006 \text{ ps}^{-1}$

Mixing measurements now dominated by LHCb (L-QCD systematics to be improved) N. Harnew

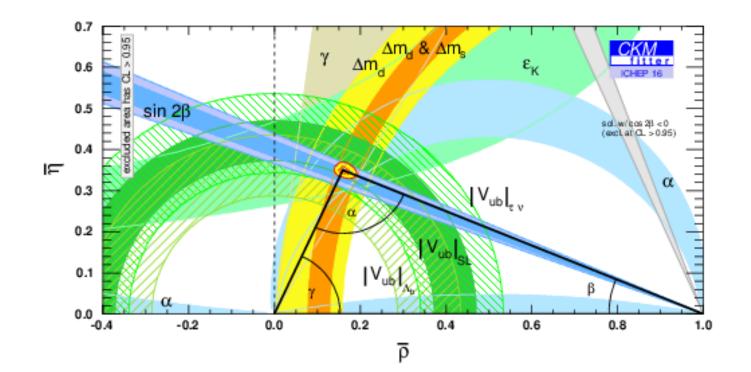
12


$|V_{ub}|$ measurement for side opposite to β

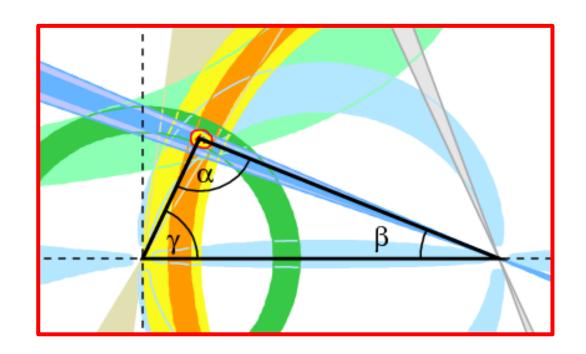
- Closure test of UT mainly limited by |V_{ub}|
- Side opposite to β proportional to $|V_{ub}| / |V_{cb}|$
- V_{ud} and V_{cd} very well known. |V_{cb}| known to better than 3%
- $|V_{ub}|^2$ is directly proportional to the decay rate $B \rightarrow X_u lv$ and is then calculated using HQET

LHCb measurement of |V_{iib}|

- |V_{ub}| / |V_{cb}| difficult at hadron colliders due to presence of neutrino
- LHCb measures $\Lambda_b \to p \mu^- \nu$ (the B⁰ $\to \pi^- \mu^+ \nu$ channel is extremely difficult)
- The measurement relies on $\Lambda_b \rightarrow p$ form factors from the lattice)

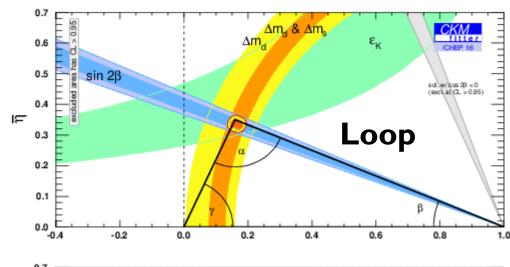

$$|V_{ub}| = (3.27 \pm 0.15(exp) \pm 0.17(theory) \pm 0.06 (|V_{cb}|)) \times 10^{-3}$$

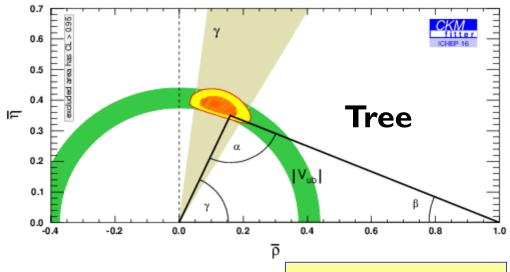
Nature Physics 10 (2015) 1038


Tension between B-factory inclusive and exclusive $|V_{ub}|$ measurements limit the precision on UT side. World averages:

$$|V_{ub}| = (4.49 \pm 0.15 + 0.16 \pm 0.17) \times 10^{-3}$$
 (inclusive)
 $|V_{ub}| = (3.70 \pm 0.10 \pm 0.12) \times 10^{-3}$ (exclusive)
 $|V_{ub}| = (3.94 \pm 0.36) \times 10^{-3}$ (average)

http://pdg.lbl.gov/2018/reviews/rpp2018-rev-ckm-matrix.pdf


The angle γ

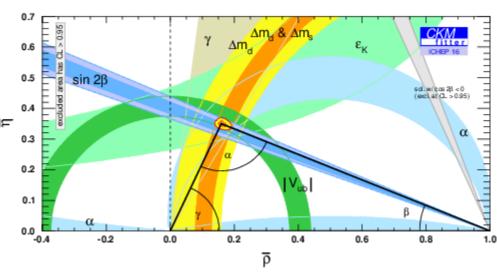


γ – why this is a key measurement

- Loop processes are very sensitive to the presence of New Physics
- Constraints on the triangle apex largely come from loop decay measurements
- Large uncertainty on γ, the only angle accessible at tree level : forms a SM benchmark*
- γ measurement theoretically very clean

JHEP 01 (2014) 051, PRD 92(3):033002 (2015)

* assuming no significant New Physics in tree decays


http://ckmfitter.in2p3.fr

γ: indirect vs direct determinations

$$\gamma \equiv \arg \left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right]$$

Combination of all direct measurements from tree decays (summer 2016)

$$\gamma = (72.1^{+5.4}_{-5.8})^{\circ}$$

Determination from CKM fit excluding all direct measurements of γ

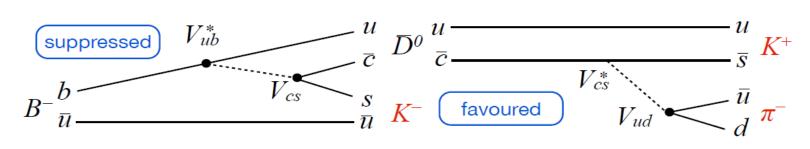
$$\gamma = (65.3^{+1.0}_{-2.5})^{\circ}$$

http://ckmfitter.in2p3.fr

Reaching degree level precision from direct measurements is crucial

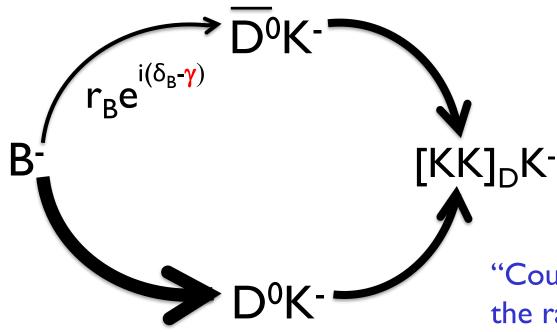
Uncertainties from LQCD, expect to reduce over the next decade

Several methods to measure γ


- From B[±] (and $\stackrel{(-)}{B^0}$) decays : the "time-integrated", direct CP-violation modes $B^{\pm} \rightarrow \stackrel{(-)}{D^0} K^{\pm}$
 - Gronau & London, PLB 253 (1991) 483, Gronau & Wyler PLB 265 (1991) 172
 - Atwood, Dunietz & Soni PRL 78 (1997) 3257, Atwood, Dunietz & Soni PRD 63 (2001) 036005
 - GGSZ Giri, Gronau, Soffer & Zupan, PRD 68 (2003) 054018
- $B_s^0 \rightarrow D_s K$ time-dependent (TD) analysis

Dunietz & Sachs Phys. Rev. D37(1988) 3186, R. Aleksan, I. Dunietz & B. Kayser, Z. Phys. C54 (1992) 653

The time-integrated mode: $B^- \rightarrow D^0 K^-$


$$\gamma \equiv \arg \left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right]$$
 (and charge conjugate mode $B^+ \rightarrow \overline{D}^0 K^+$)

$$\begin{array}{c} I_{us} & I_{us}$$

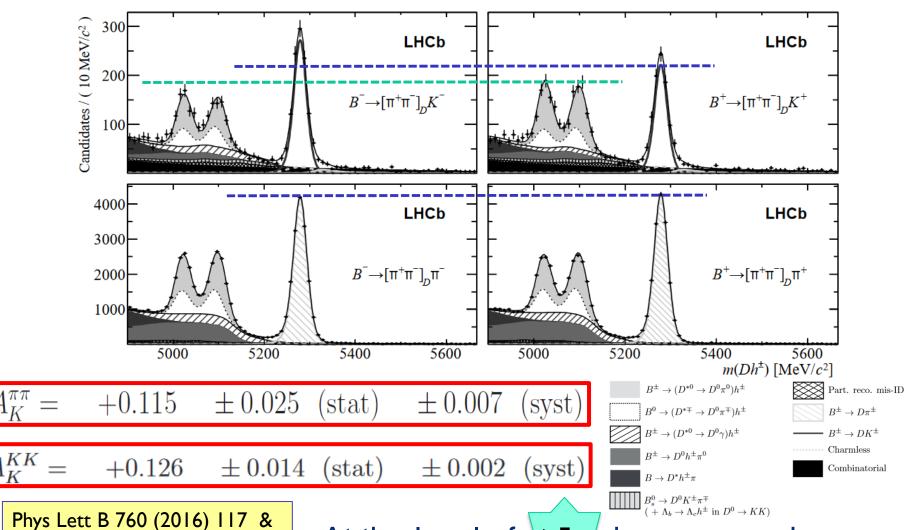
- Interference possible if $\overline{D^0}$ and D^0 decay to same final state
- Branching fraction for favoured B decay only ~10⁻⁴
 - Measurements require high statistics

"GLW" method

- Method where D⁰ and D⁰ decay to CP eigenstates
- Eigenstates are equally accessible to D⁰ and D⁰
- Only 2 hadronic parameters r_B , δ_B to be determined alongside γ ($r_B \sim 0.1$)

"Counting experiment": observe the rate of B⁻ vs. B⁺ decays

Weak phase changes sign for equiv B+ diagram, thickness of arrows indicate relative strengths

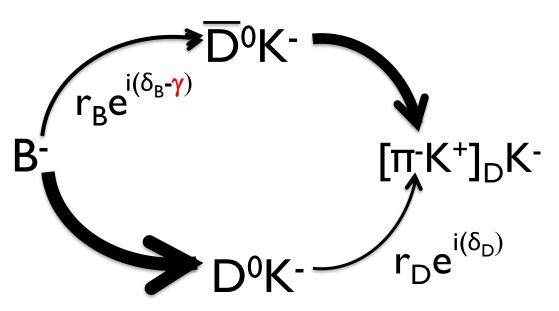

$$\frac{N(B^{-}) - N(B^{+})}{N(B^{-}) + N(B^{+})} = A_{CP^{+}} = \frac{1}{R_{CP^{+}}} 2r_{B} (2F_{+} - 1) \sin(\delta_{B}) \sin(\gamma)$$

$$\frac{N(B \to [KK]_D K) \times \Gamma(D \to K\pi)}{N(B \to [K\pi]_D K) \times \Gamma(D \to KK)} = R_{CP+} = 1 + r_B^2 + 2r_B(2F_+ - 1)\cos(\delta_B)\cos(\gamma)$$

For CP+ eigenstates e.g KK, $\pi \pi$, $F_+ = I$

$\mathbf{B} \rightarrow \mathbf{D}^{(*)}(\pi \pi \text{ or KK})\mathbf{h}$ (where $\mathbf{h} = \mathbf{K}, \pi$)

3.0 fb⁻¹ Run 1 + 2.0 fb⁻¹ Run 2 results


Phys Lett B 760 (2016) 117 & Phys Lett B 777 (2018) 16

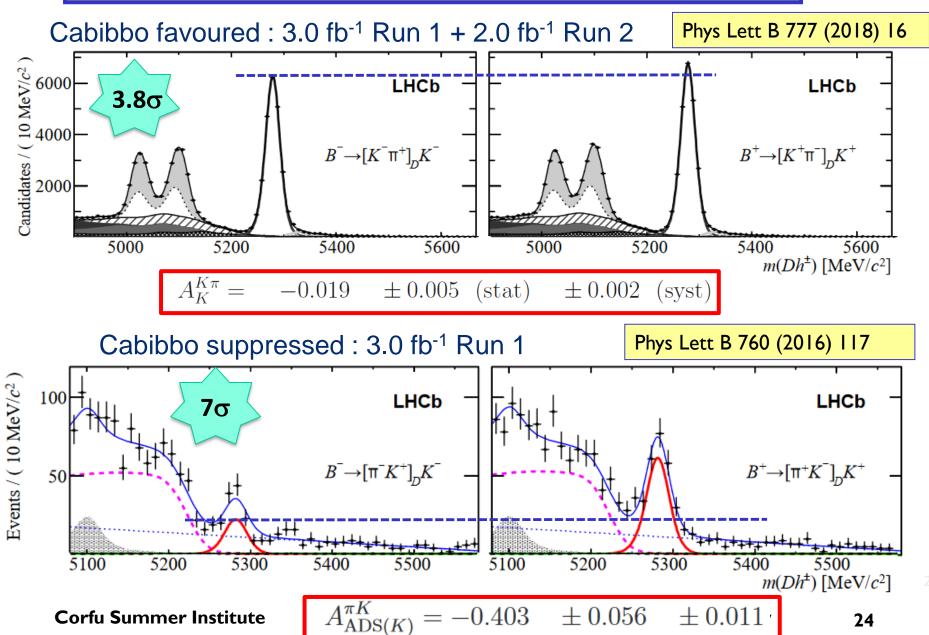
At the level of

>5σ

in some modes

"ADS" method

Weak phase changes sign for equivalent B+ diagram

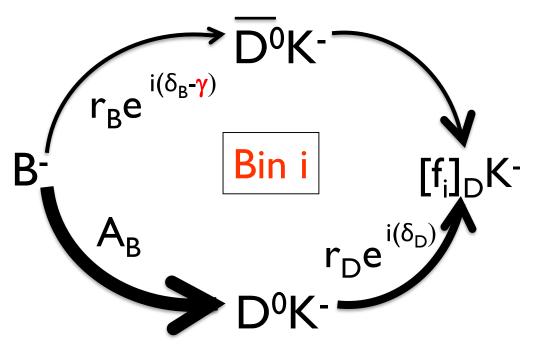

- Decay into flavour-specific final states
- Larger interference effects than for GLW as both amplitudes of similar sizes.
- r_B , δ_B hadronic parameters again to be determined alongside γ ($r_B \sim 0.1$)
- Additional two parameters r_D , δ_D . External inputs from charm mixing measurements ($r_D \sim 0.06$)

$$\frac{N(B^{-}) - N(B^{+})}{N(B^{-}) + N(B^{+})} = A_{ADS} = \frac{1}{R_{ADS}} 2r_{B}r_{D}\sin(\delta_{B} + \delta_{D})\sin(\gamma)$$

$$\frac{N(B^{\pm} \to [\pi^{\pm}K^{\mp}]_{D}K^{\pm})}{N(B^{\pm} \to [K^{\pm}\pi^{\mp}]_{D}K^{\pm})} = R_{ADS} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos(\gamma)$$

Again, a counting experiment: observing the rate of B- vs. B+ decays

$B \rightarrow D^{(*)}(K \pi)h$ (where $h = K, \pi$)



 ± 0.011

24

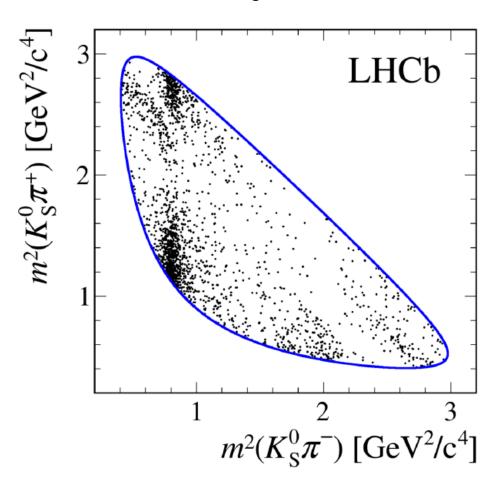
Corfu Summer Institute

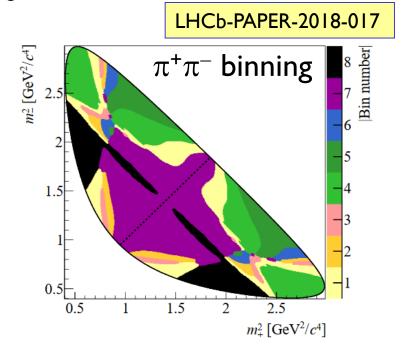
"GGSZ" method

- 3-body final D states e.g. D \rightarrow K⁰_S $\pi\pi$
- Dalitz plot analysis : a counting experiment in bins of phase space, where r_D and δ_D vary

Weak phase changes sign for equiv B⁺ diagram

GGSZ observables (rate as function of Dalitz position)

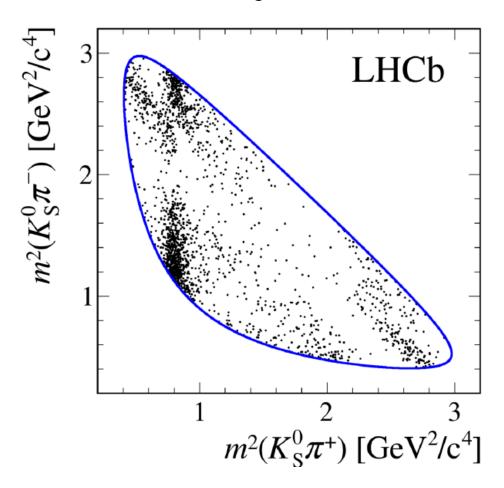

$$d\Gamma_{B\pm}(\mathbf{x}) = A_{(\pm,\mp)}^2 + r_B^2 A_{(\mp,\pm)}^2 + 2A_{(\pm,\mp)} A_{(\mp,\pm)} \left[\underbrace{r_B \cos(\delta_B \pm \gamma)}_{x_{\pm}} \underbrace{\cos(\delta_{D(\pm,\mp)})}_{c_i} + \underbrace{r_B \sin(\delta_B \pm \gamma)}_{y_{\pm}} \underbrace{\sin(\delta_{D(\pm,\mp)})}_{s_i} \right]$$

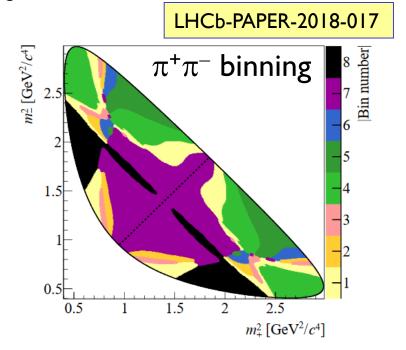

c_i and s_i measured from Q-C D decays at CLEO-c

arXiv:1010.2817

New model-independent GGSZ analysis

■ CP observables measured in $B^{\pm} \rightarrow DK^{\pm}$ decays with $D \rightarrow K_S \pi^+ \pi^-$ and $D \rightarrow K_S K^+ K^-$

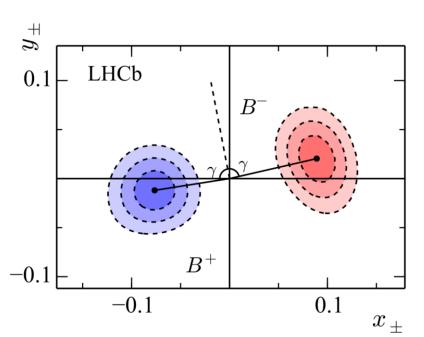


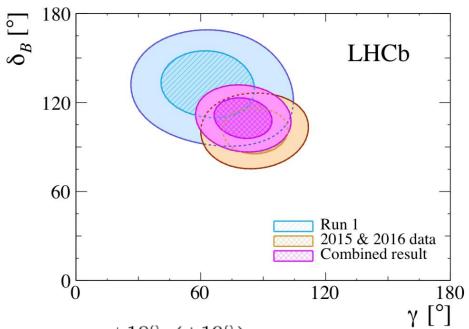


Divide up Dalitz space into 2N symmetric bins, chosen to optimise sensitivity to γ

New model-independent GGSZ analysis

■ CP observables measured in $B^{\pm} \rightarrow DK^{\pm}$ decays with $D \rightarrow K_S \pi^+ \pi^-$ and $D \rightarrow K_S K^+ K^-$





Divide up Dalitz space into 2N symmetric bins, chosen to optimise sensitivity to γ

New model-independent GGSZ analysis

LHCb-PAPER-2018-017

LHCb GGSZ only

$$\gamma = 80^{\circ} {}^{+10^{\circ}}_{-9^{\circ}} \left({}^{+19^{\circ}}_{-18^{\circ}} \right),$$

$$r_B = 0.080 {}^{+0.011}_{-0.011} \left({}^{+0.022}_{-0.023} \right),$$

$$\delta_B = 110^{\circ} {}^{+10^{\circ}}_{-10^{\circ}} \left({}^{+19^{\circ}}_{-20^{\circ}} \right).$$

The most precise determination of γ from a single analysis

Combination from different modes

The most recent combination includes the following modes:

B decay	D decay	Method	Ref.	Dataset [†]	Status since last combination [3]
$B^+ \to DK^+$	$D \rightarrow h^+h^-$	GLW	[14]	Run 1 & 2	Minor update
$B^+ \to DK^+$	$D \to h^+ h^-$	ADS	[15]	Run 1	As before
$B^+ \to DK^+$	$D \to h^+\pi^-\pi^+\pi^-$	GLW/ADS	[15]	Run 1	As before
$B^+ \to DK^+$	$D \to h^+ h^- \pi^0$	$_{ m GLW/ADS}$	[16]	Run 1	As before
$B^+ \to DK^+$	$D \to K_{\rm s}^0 h^+ h^-$	GGSZ	[17]	Run 1	As before
$B^+ \to DK^+$	$D \rightarrow K_{\rm s}^0 h^+ h^-$	GGSZ	[18]	Run 2	New
$B^+ \to DK^+$	$D \to K_{\rm s}^0 K^+ \pi^-$	GLS	[19]	Run 1	As before
$B^+ \to D^*K^+$	$D \to h^+ h^-$	GLW	[14]	Run 1 & 2	Minor update
$B^+ \to DK^{*+}$	$D \to h^+ h^-$	$_{ m GLW/ADS}$	[20]	Run 1 & 2	Updated results
$B^+ \to DK^{*+}$	$D \to h^+\pi^-\pi^+\pi^-$	GLW/ADS	[20]	Run 1 & 2	New
$B^+ \to D K^+ \pi^+ \pi^-$	$D \to h^+ h^-$	GLW/ADS	[21]	Run 1	As before
$B^0 \to DK^{*0}$	$D \to K^+\pi^-$	ADS	[22]	Run 1	As before
$B^0\!\to DK^+\pi^-$	$D \to h^+ h^-$	GLW-Dalitz	[23]	Run 1	As before
$B^0 \to DK^{*0}$	$D \to K_{\rm s}^0 \pi^+ \pi^-$	GGSZ	[24]	Run 1	As before
$B_s^0 \to D_s^\mp K^\pm$	$D_s^+\!\to h^+h^-\pi^+$	TD	[25]	Run 1	Updated results
$B^0 \rightarrow D^\mp \pi^\pm$	$D^+\!\to K^+\pi^-\pi^+$	TD	[26]	Run 1	New

LHCb-CONF-2018-002

$$\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$$

Dominates HFLAV average:

$$\gamma = (73.5^{+4.2}_{-5.1})^{\circ}$$

Indirect constraints are:

$$\gamma = (65.3^{+1.0}_{-2.5})^{\circ} \ (\sim 2\sigma)$$

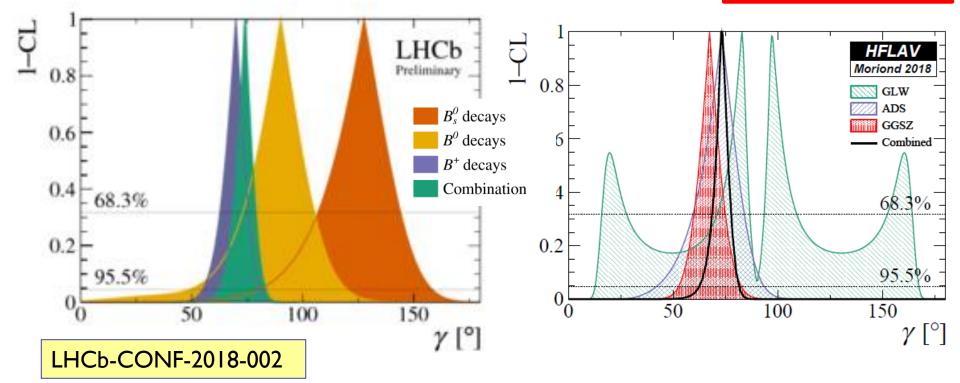
BaBar :
$$\gamma = (69^{+17}_{-16})^{\circ}$$

PRD 87 (2013) 052015

Belle: $\gamma = (73^{+15}_{-14})^{\circ}$

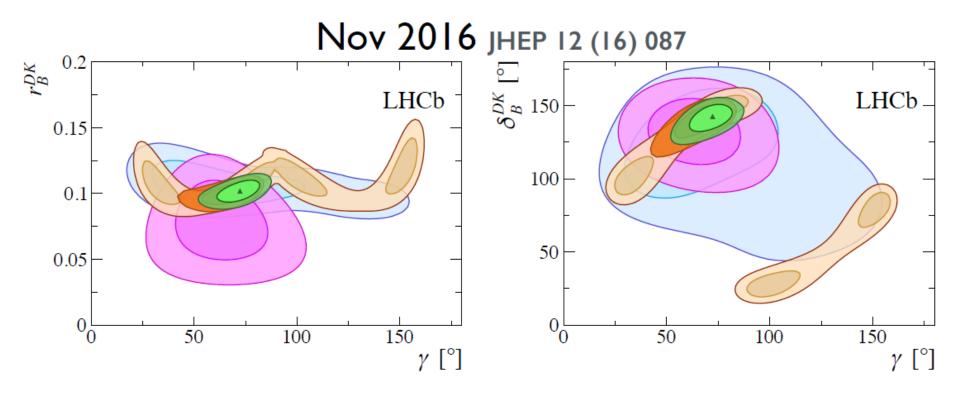
arXiv:1301.2033

 $^{^{\}dagger}$ Run 1 corresponds to an integrated luminosity of $3\,\mathrm{fb}^{-1}$ taken at centre-of-mass energies of 7 and 8 TeV. Run 2 corresponds to an integrated luminosity of $2\,\mathrm{fb}^{-1}$ taken at a centre-of-mass energy of $13\,\mathrm{TeV}$.


LHCb combination from different modes

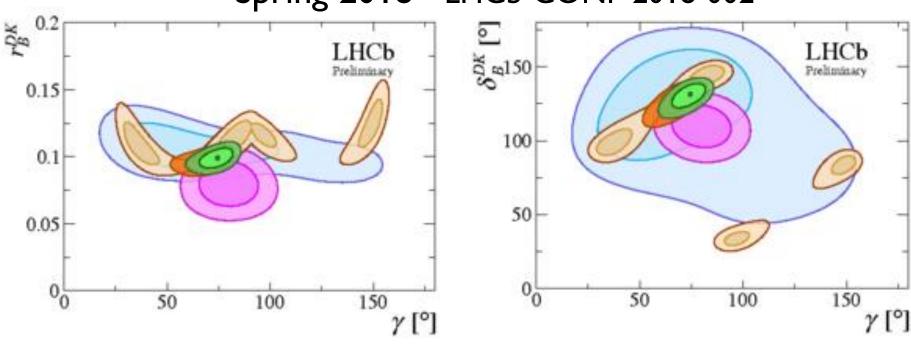
LHCb average

$$\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$$


HFLAV world average

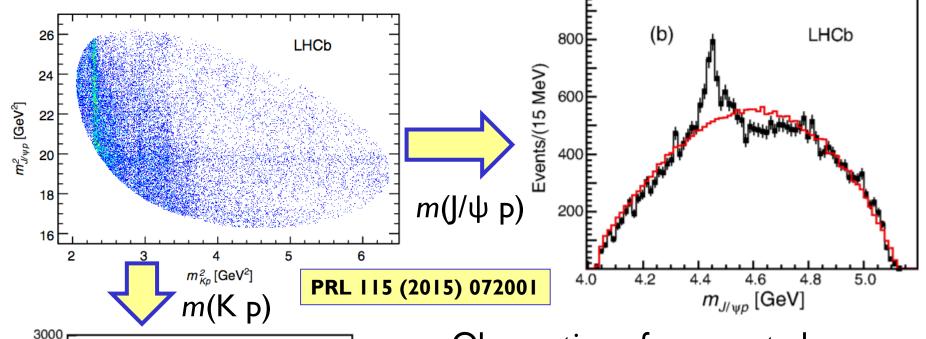
(spring update)
$$\gamma = (73.5^{+4.2}_{-5.1})^{\circ}$$

- Comparison between B^0 , and B^{\pm} initial states ~ 2 sigma
- More B_s channels under study (B_s \rightarrow D_s(*)K(*), B_s \rightarrow D ϕ) **Corfu Summer Institute** N. Harnew 3 September 2018


Evolution of γ **precision**

- It is necessary to pursue different B decays to provide crosschecks
- Current measurements still dominated by statistical uncertainties

Evolution of γ **precision**



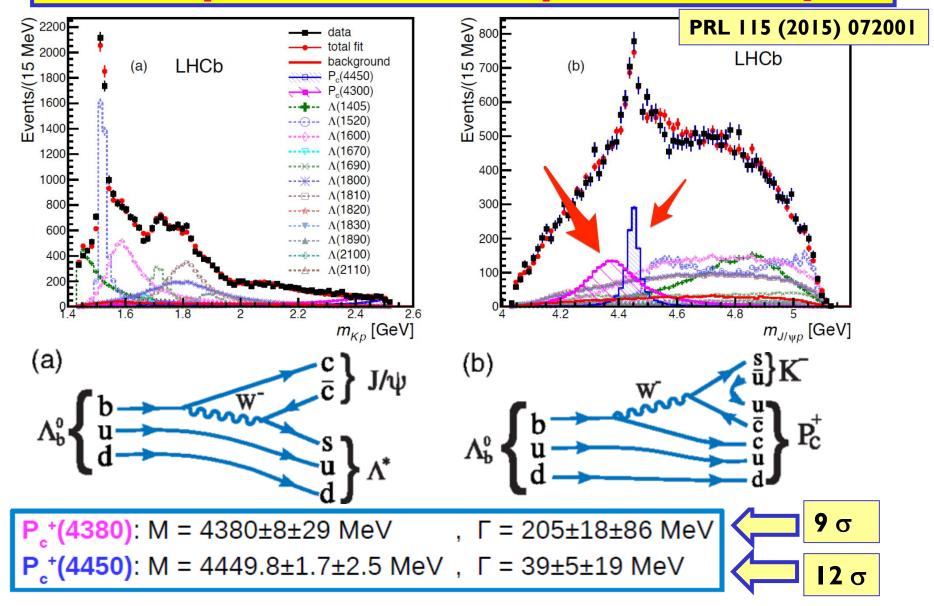
- It is necessary to pursue different B decays to provide crosschecks
- Current measurements still dominated by statistical uncertainties

A review of LHCb spectroscopy measurements

Pentaquarks

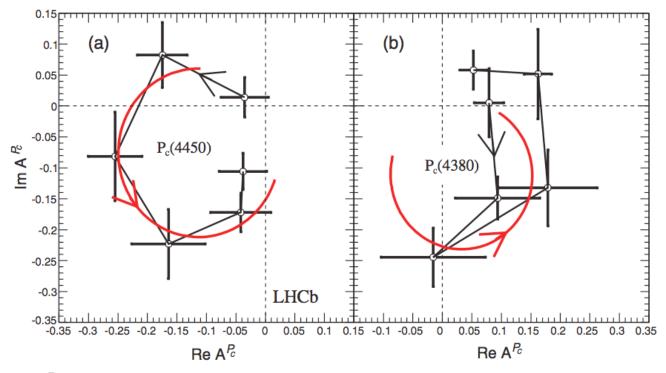
Observed in 2015→ LHC Run I data: 3 fb-1

2500 (a) LHCb


(New OZ)/stuend — data
— phase space

500

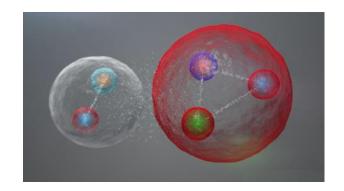
 m_{Kp} [GeV]


- Observation of unexpected narrow resonance in mass spectrum of $(J/\psi p)$ in $\Lambda_b \rightarrow (J/\psi p) K^-$ decays
- Consistent with pentaquarks: allowed by QCD, but not observed in 50 years of searching.

Pentaquarks - full amplitude analysis

Pentaquarks J^P assignments

Argand diagram


- The preferred J^P assignments are of opposite parity, with $P_c^+(4380)$ having $3/2^-$ and the $P_c^+(4450)$ having $5/2^+$
- Good evidence for the resonant character of $P_c^+(4450)$ Too large errors for $P_c^+(4380)$: hard to make a definitive conclusion. More data to follow.


 PRL 115 (2015) 072001

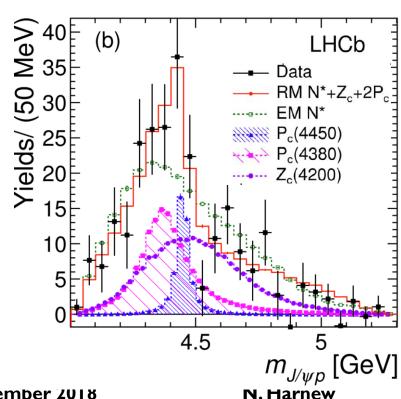
Nature of pentaquarks?

Possible models describing the observed pentaquark states:

- Meson-baryon molecules ("friends in separate bedrooms")
 - ◆ PRL 115 (2015) 122001
 - ◆ PRL 115 (2015) 172001
 - PRD 92 (2015) 094003
- Tightly bounded states ("5 in a bed")
 - ◆ PLB 749 (2015) 289
 - ◆ PLB 749 (2015) 454
 - ◆ JHEP 12 (2015) 128

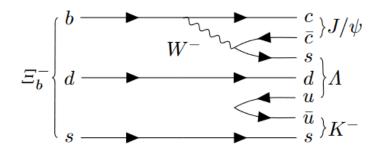
Pentaquarks in $\Lambda_b \rightarrow (J/\psi p)\pi^-$

Search for additional Pentaquark candidates in other production channels


■ $\Lambda_b \rightarrow (J/\psi p) \pi^-$ (Cabbibo suppressed ≈ 15 times smaller statistics)

PRL 115 (2015) 072001

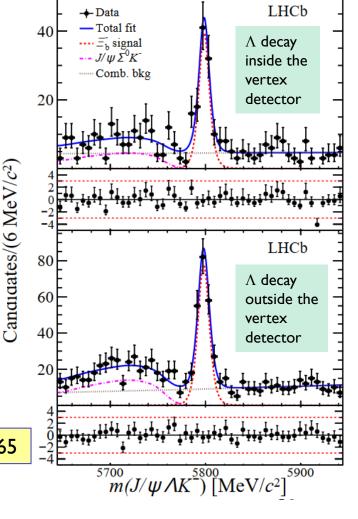
Contributions from:


$$N^*
ightharpoonup p \pi^ P_c(4380)^+
ightharpoonup J/\psi p$$
 $P_c(4450)^+
ightharpoonup J/\psi \pi^ Z_c(4200)^-
ightharpoonup J/\psi \pi^-$

Fit with 2 pentaquarks + $Z_c(4200)$ tetraquark : favoured by 3σ compared to no exotic contributions

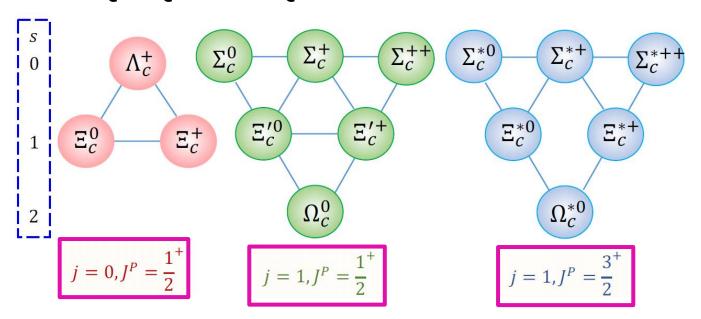
Another possible pentaguark mode

■ Can look for uds \overline{c} c pentaquark in $\Xi_h^-(bds) \rightarrow J/\psi \Lambda K^-$



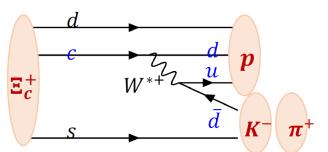
■ Observation of Ξ_b^- in Run I data (~300 candidates)

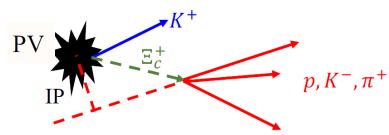
$$M(\Xi_b^-) - M(\Lambda_b^0) = 177.08 \pm 0.47 \text{ (stat)} \pm 0.16 \text{ (syst) MeV}/c^2$$


Amplitude analysis with Run II data to follow

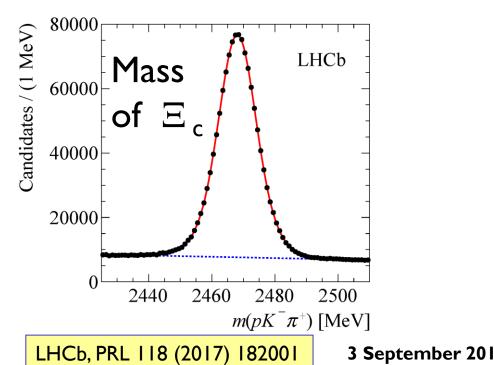
Phys. Lett. B 772 (2017) 265

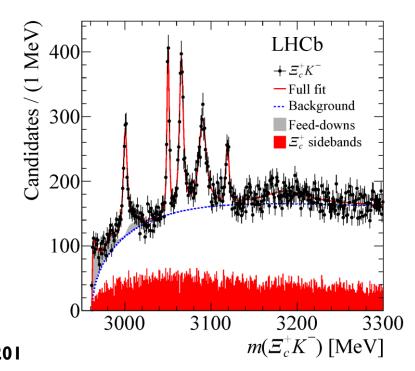
Observation of Ω_c excited states


- Single charmed baryons predicted to form SU(3) $3 \otimes 3 = \overline{3} \oplus 6$ baryon multiplets (Jaffe, Phys. Rep. 409 (2005) 1)
- All ground states have been observed, as have excited states Λ_c , Σ_c and Ξ_c



■ LHCb: 3 fb⁻¹ Run I + 0.3 fb⁻¹ Run II pp collisions data


Observation of five new narrow Ω_c^{0} excited states

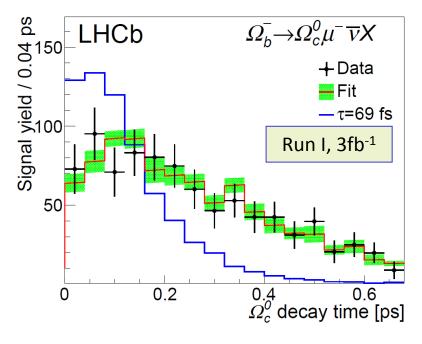

■ Decay : Ω_c^{0*} (css) $\to \Xi_c^+$ (csu) K^- ; Ξ_c^+ (csu) $\to pK^-\pi^+$

■ Decay well separated from primary vertex $\tau(\Xi_c) \approx 45$ ps

Masses and widths

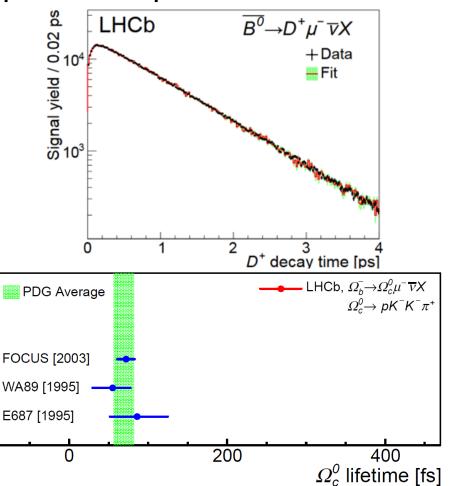
LHCb, PRL 118 (2017) 182001

Resonance	Mass (MeV)	$\Gamma \text{ (MeV)}$
$\Omega_c(3000)^0$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5 \pm 0.6 \pm 0.3$
$\Omega_c(3050)^0$	$3050.2 \pm 0.1 \pm 0.1^{+0.3}_{-0.5}$	$0.8 \pm 0.2 \pm 0.1$
		$<1.2\mathrm{MeV}, 95\%~\mathrm{CL}$
$\Omega_c(3066)^0$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5 \pm 0.4 \pm 0.2$
$\Omega_c(3090)^0$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7 \pm 1.0 \pm 0.8$
$\Omega_c(3119)^0$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1 \pm 0.8 \pm 0.4$
		$<2.6\mathrm{MeV}, 95\%~\mathrm{CL}$
$\Omega_c(3188)^0$	$3188 \pm 5 \pm 13$	$60 \pm 15 \pm 11$

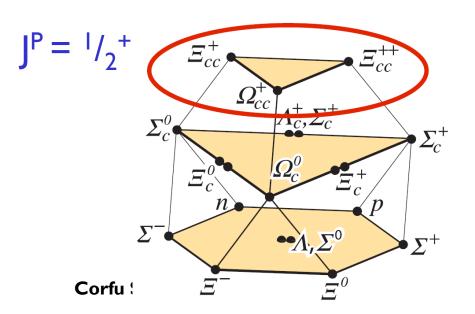

- 5 narrow states & evidence for 6th broader state at high mass
- Assignment of J^P states in the quark model (see backup slides)
 (M. Karliner, J.L. Rosner, PR D95, 114012 (2017))
- Suggestion the 2 narrowest states might be pentaquarks? (Michał Praszałowicz et al. Phys.Rev. D96 (2017) 014009)
- Confirmation of states awaits spin-parity assignments (coming)

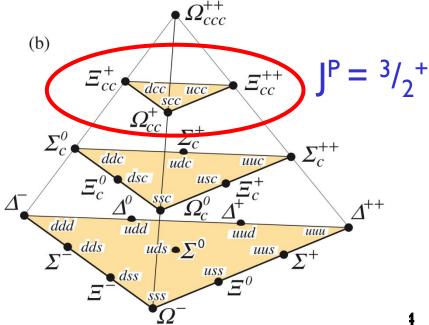
The puzzle of the Ω_c^{\pm} lifetime

- Via the decay $\Omega_b^{\pm} \to \Omega_c^{0} \mu^{\pm} \nu_{\mu} X$ then $\Omega_c^{0} \to p K^- K^- \pi^+ [\Omega_c^{0}]$ is (css)]
- Measured relative to that of D⁺ meson decays (reduce systematics)
- Lifetime ~4 times greater than previous experiments, which have

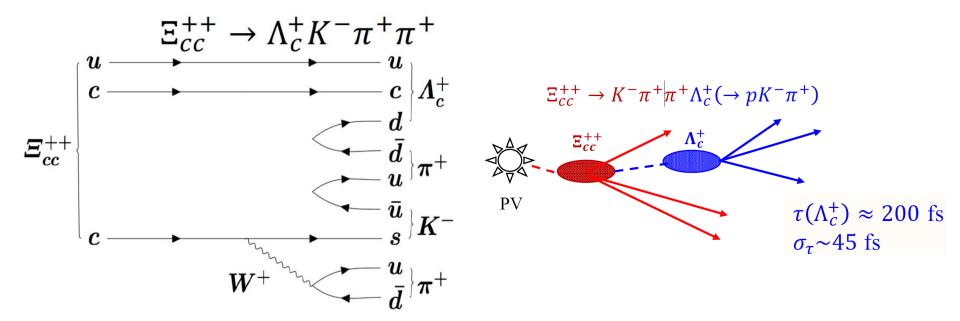

3 Septe

~10 times less statistics


 $T(\Omega_c^0) = 268 \pm 24 \pm 10 \pm 2 \text{ fs}$

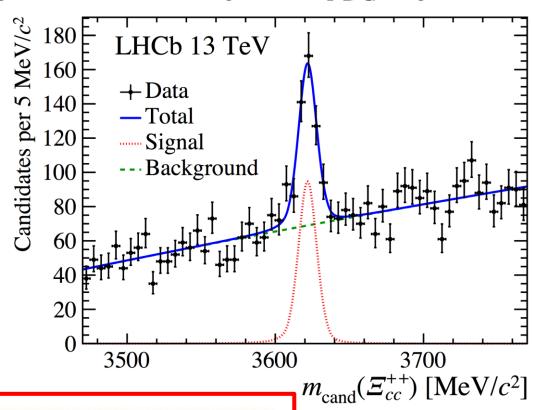

arXiv:1807.02024

Search for the doubly charmed baryon Ξ_{cc}^{++}


- The quark model predicts three weakly decaying C = 2 $\int_{C}^{P} = \frac{1}{2} \operatorname{states}: \ \Xi_{cc}^{+}(ccd), \ \Xi_{cc}^{++}(ccu), \ \operatorname{and} \ \Omega_{cc}^{+}(ccs)$
- $\int_{-\infty}^{P} = \frac{1}{2}^{+}$ states decay weakly with a c quark decaying to lighter quarks
- $\int_{2}^{P} = \frac{3}{2}^{+}$ states expected to decay to $\frac{1}{2}^{+}$ states via strong or EM interaction

Decay mode of Ξ_{cc}^{++}

- Search in decay mode : $\Xi_{cc}^{++} \to \Lambda_c K^- \pi^+ \pi^+$ Branching fraction can be significant (10%) (Yu et al., arXiv:1703.09086)
- Run 2 data sample: $\sqrt{s}=13$ TeV, ~ 1.7 fb⁻¹


Observation of Ξ_{cc}^{++}

PRL 119 (2017) 112001

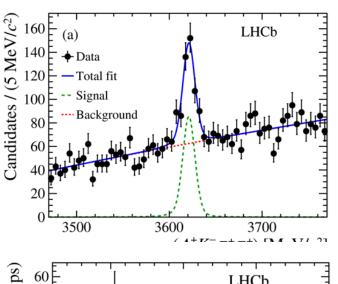
 \blacksquare Ξ^{++} is Λ_c -mass corrected :

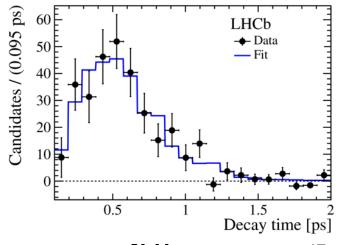
$$m_{\rm cand}(\Xi_{cc}^{++}) = m(\Lambda_c^+ K^- \pi^+) - m(\Lambda_c^+) + m_{\rm PDG}(\Lambda_c^+)$$

- Signal yield: 313 ± 33 events
- Width 6.6±0.8 MeV, consistent with resolution
- Local significance $> 12\sigma$

 $m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \pm 0.14(\Lambda_c^+) \text{ MeV}$ $m(\Xi_{cc}^{++}) - m(\Lambda_c^+) = 1134.94 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \text{ MeV}$

. Harnew

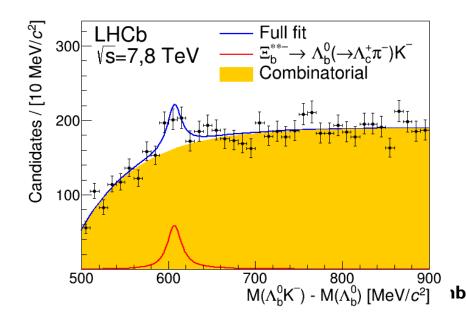

Ξ cc new result: lifetime measurement

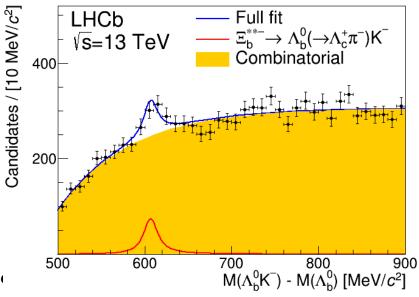

- Analysis of I.7 fb^{-I}sample of Run 2 data, using $\Lambda^0_b \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ control mode to measure the Ξ_{cc}^{++} lifetime with respect to that of Λ^0_b
- Lifetime result:

$$au(\Xi_{cc}^+) = (256^{+24}_{-22} \pm 14)\,\mathrm{fs}$$

Confirms that Ξ_{cc}^{++} is a weakly decaying baryon.

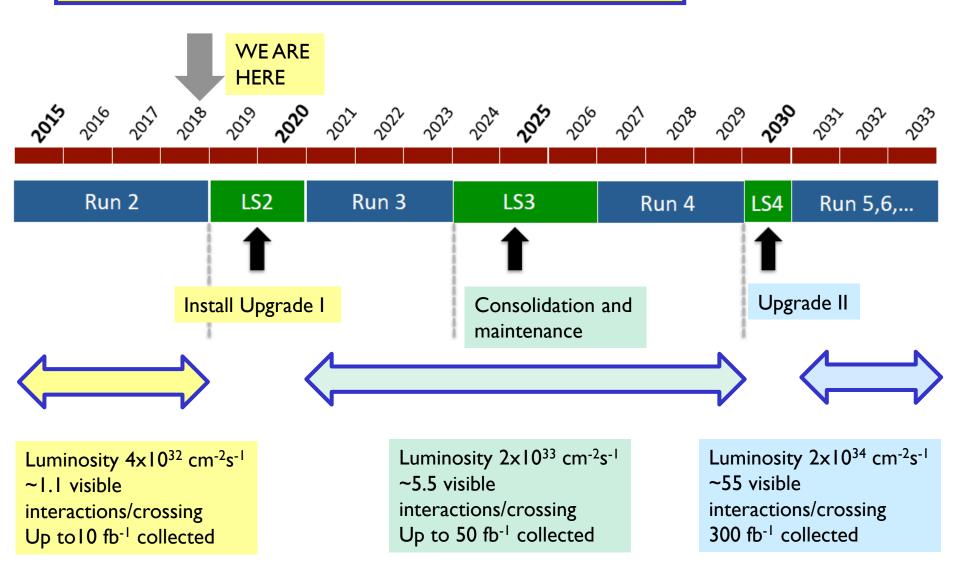
Phys. Rev. Lett. 121, 052002 (2018)





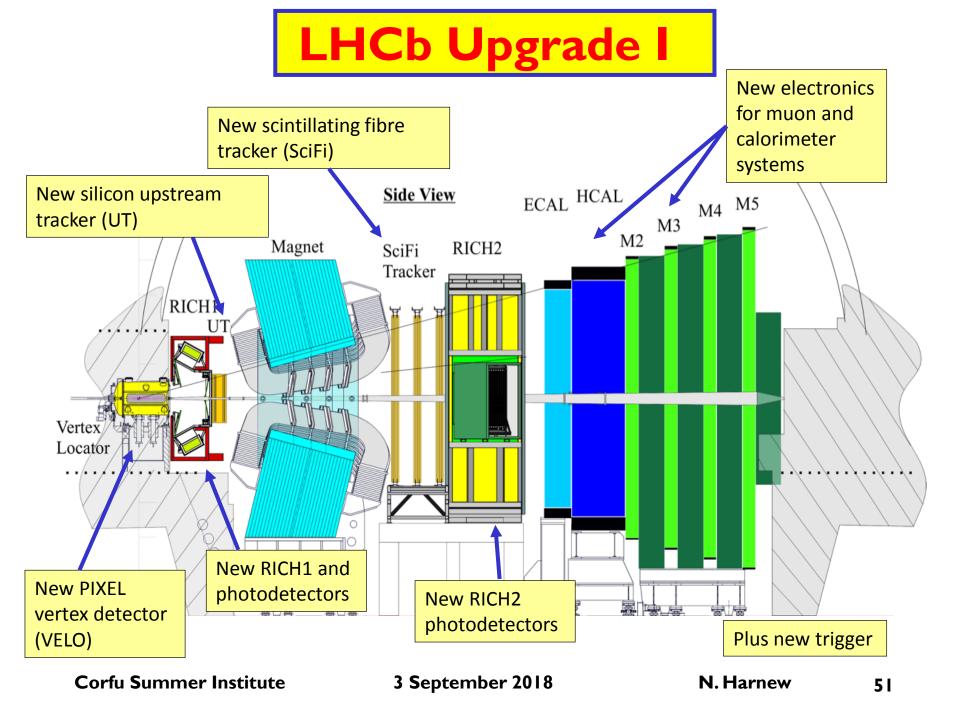
Observation of a new $\Xi_{\mathsf{b}}^{^{**-}}$ resonance

- Seen both in ${\mathcal Z_b}^{**-} \to {\Lambda_b}^0 \, K^- \, \& \, {\mathcal Z_b}^{**-} \to {\mathcal Z_b}^0 \pi^-$ decays
- J^P not yet measured
- Measure with hadronic mode $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$

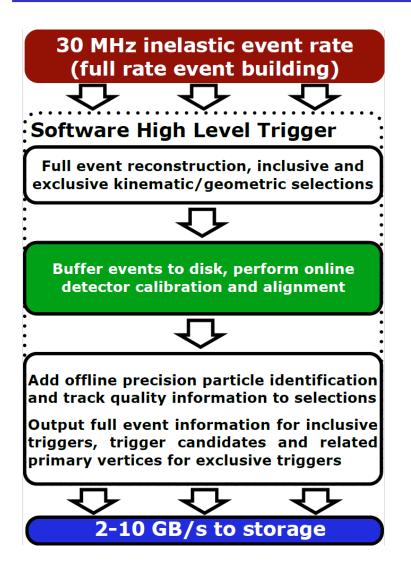

$$\begin{split} M(\Xi_b^{**-}) - M(\varLambda_b^0) &= 607.3 \pm 2.0 \, (\mathrm{stat}) \pm 0.3 \, (\mathrm{syst}) \, \mathrm{MeV}/c^2, \\ \Gamma &= 18.1 \pm 5.4 \, (\mathrm{stat}) \pm 1.8 \, (\mathrm{syst}) \, \mathrm{MeV}/c^2, \\ M(\Xi_b^{**-}) &= 6226.9 \pm 2.0 \, (\mathrm{stat}) \pm 0.3 \, (\mathrm{syst}) \pm 0.2 (\varLambda_b^0) \, \mathrm{MeV}/c^2, \end{split}$$

The upgraded LHCb detector and outlook

LHCb Upgrade planning



Corfu Summer Institute

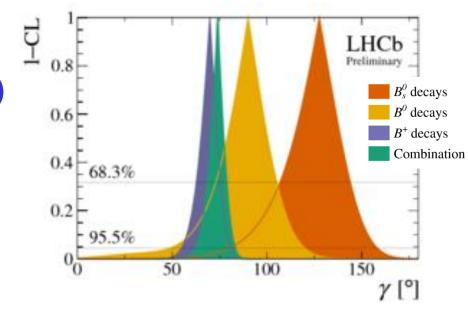

3 September 2018

N. Harnew

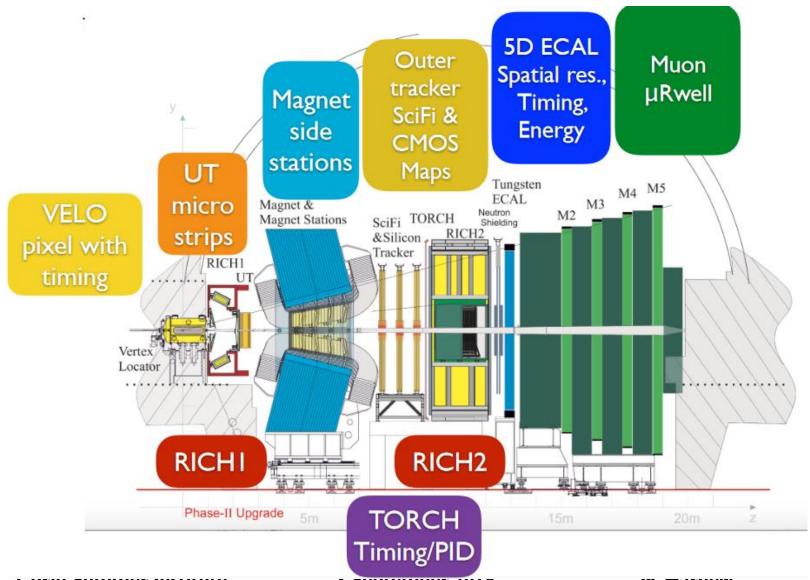
50

LHCb Upgrade I trigger system

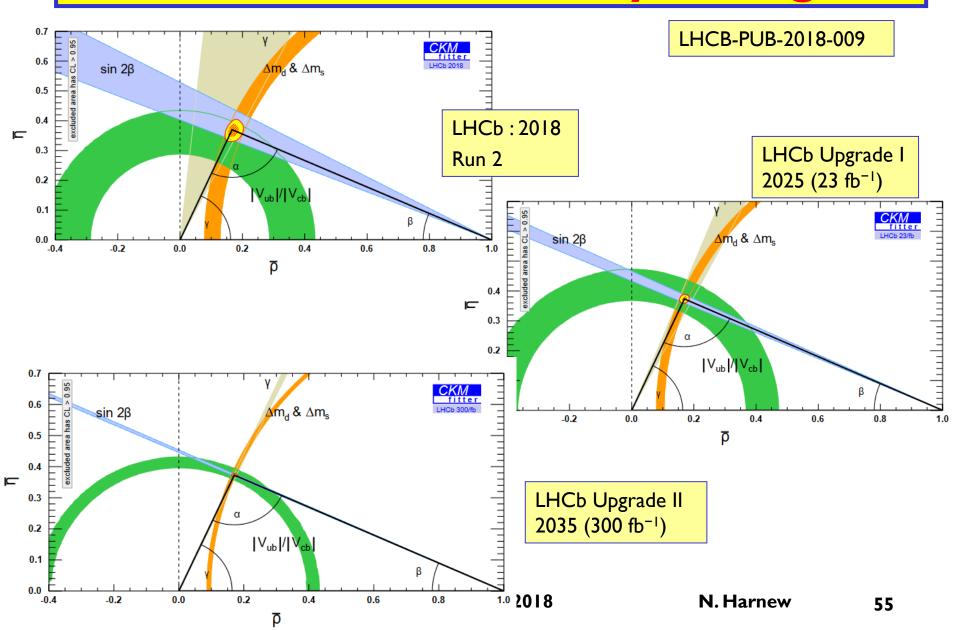
- Trigger-less readout and full software trigger
 - Process data at machine clock (40 MHz crossings and 30 MHz of visible interactions)
 - No L0 (hardware) bottleneck
- No further offline processing
 - Run II is already a critical testbed for this technology (turbo mode)


γ prospects : Run I & 2 → Upgrade

Run I target of 8° surpassed : (analyses now mostly complete)


$$\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$$

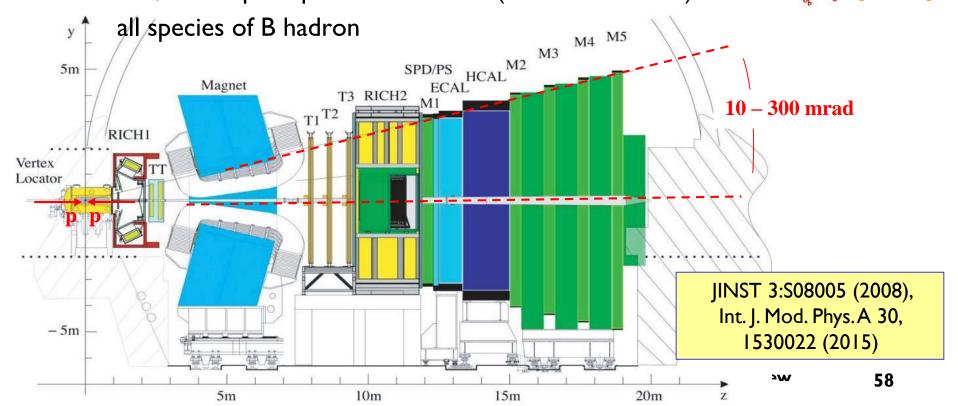
- Run 2 data incoming
- Run 2 : target <4° (~10 fb-1)</p>
- LHCb Upgrade : target
 0.9° (~50 fb⁻¹)


EPJC (2013) 73:2373

... and beyond 2026 : Upgrade II

Evolution of the Unitarity Triangle

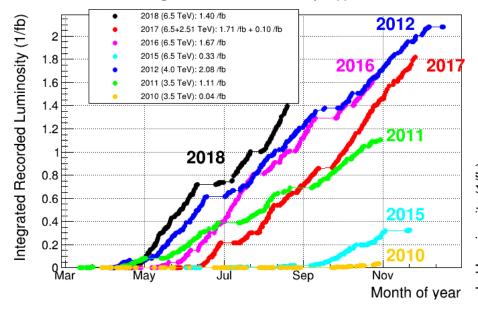
Summary and Outlook

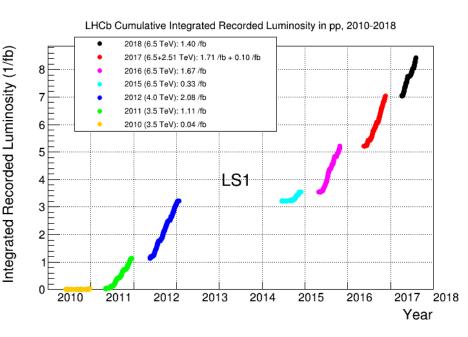

- The LHCb experiment is performing spectacularly well
- So far all Unitarity Triangle measurements are in good agreement with the Standard Model
 - → new physics is becoming constrained in the flavour sector
- LHCb is a fantastic platform for spectroscopy measurements: charm baryonic resonance formation was not even in LHCb's original physics portfolio.
- Up to 2018 we anticipate up to 10 fb⁻¹ of data at \sqrt{s} =13 TeV, where 7-8 fb⁻¹ was expected
- Still much room for new physics, but higher precision required
 - → preparing for LHCb Upgrades beyond 2020 and the decade afterwards!

Spare Slides

LHCb forward spectrometer

- Forward-peaked production → LHCb is a forward spectrometer (operating in LHC collider mode)
- bb cross-section = $72.0 \pm 0.3 \pm 6.8 \, \mu b$ at $\sqrt{s} = 7 \, \text{TeV}$ in the LHCb acceptance 2< η < 5
 At $\sqrt{s} = 13 \, \text{TeV}$: $154.3 \pm 1.5 \pm 14.3 \, \mu b$

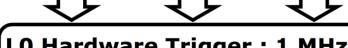

 \rightarrow ~ 100,000 bb pairs produced/second (10⁴ × B factories) and



LHCb data taking

Nominal luminosity = 2×10^{32} cm⁻² s⁻¹ (50 times less than ATLAS/CMS): moreover, LHCb learned to run at >2 times this

LHCb Integrated Recorded Luminosity in pp, 2010-2018



LHCb Run 2 trigger

LHCb 2015 Trigger Diagram

40 MHz bunch crossing rate

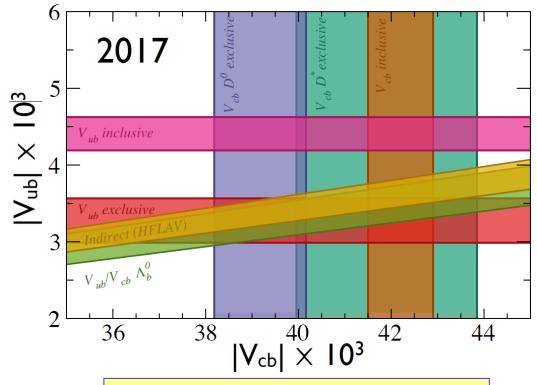
LO Hardware Trigger : 1 MHz readout, high E_T/P_T signatures

450 kHz

400 kHz μ/μμ 150 kHz e/γ

Software High Level Trigger

Partial event reconstruction, select displaced tracks/vertices and dimuons


Buffer events to disk, perform online detector calibration and alignment

Full offline-like event selection, mixture of inclusive and exclusive triggers

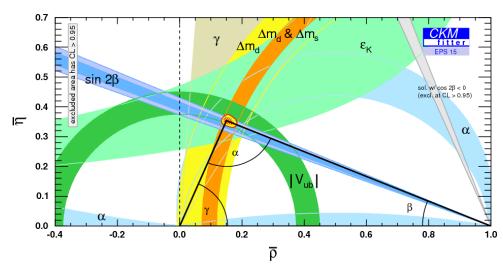
- After LHCb's hardware trigger, events are buffered.
- LHCb's automated real-time alignment and calibration runs :
 - Full detector alignment and calibration in minutes.
- Full event reconstruction in software trigger
 - Exclusive decay modes and calibration modes fully reconstructed,
 - Results stored and used as basis for analysis.
- See LHCb-PROC-2015-011

Inclusive vs exclusive measurements of |Vub|

- Babar & Belle drive the current measurements of |V_{ub}| which have an internal inconsistency between
 - Exclusive measurement: $B^0 \rightarrow \pi^- \mu^+ \nu$
 - Inclusive measurement : $B^0/B^+ \rightarrow X_{\mu} \mu^+ \nu$

Grinstein, Kobach, PLB771 (17) 359 Bigi, Gambino, Schacht, PLB 769 (17) 441

Measurement of α


- Constraints on α from B \rightarrow π π , $\rho\pi$ and $\rho\rho$ (Babar and Belle)
- $\alpha = (87.6^{+3.5}_{-3.3})^{\circ}$ world average measurement
- Compared to the prediction from the global CKM fit (not including the α -related measurements)

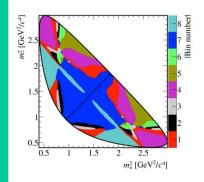
 $\alpha = (90.6^{+3.9})^{\circ}$

http://ckmfitter.in2p3.fr

 $\alpha \equiv \arg \left[-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*} \right]$

- As yet there has been no LHCb 'standalone' measurement of α
- LHCb can provide useful input to B-factories measurements to constrain alpha.

Two methods for accessing D decay information

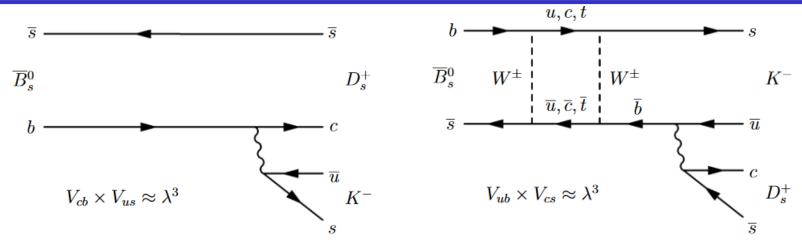

Two ways to deal with the varying r_{D} , δ_{D}

Model dependent

Model independent

• r_D and δ_D determined from flavour tagged decays (eg Babar/Belle) via amplitude model

 Systematic uncertainties due to model hard to quantify



Use CLEO data to measure average values of r_D and δ_D in pre-defined bins

PRD 82 (2010) 112006

 Direct phase information, uncertainties on which can be propagated

Time dependent analysis : $\overline{{f B}}^0$ → ${f D_S}^+{f K}^-$

■ Interference between B^0 decay to $D_S^+K^-$ directly and via B^0 B^0 oscillation gives a CP violating phase

$$\phi = \phi_{Decay} - \phi_{Mixing} = (\gamma - 2\beta_S)$$

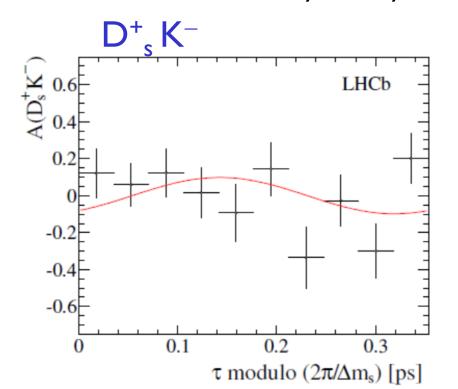
 β_S is (small) mixing phase, $\phi_S = -2\beta_S = 0.01 \pm 0.07 \pm 0.01$ (syst) rad.

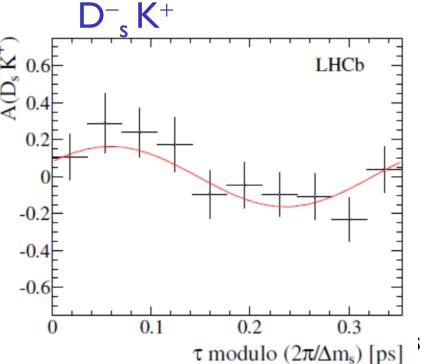
Phys. Rev. (2013) 112010

$$\frac{\mathrm{d}\Gamma_{B_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta \Gamma_s t}{2}\right) + A_f^{\Delta \Gamma} \sinh\left(\frac{\Delta \Gamma_s t}{2}\right) + C_f \cos\left(\Delta m_s t\right) - S_f \sin\left(\Delta m_s t\right) \right],$$

$$\frac{\mathrm{d}\Gamma_{\overline{B}_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 \left| \frac{p}{q} \right|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta \Gamma_s t}{2}\right) + A_f^{\Delta \Gamma} \sinh\left(\frac{\Delta \Gamma_s t}{2}\right) - C_f \cos\left(\Delta m_s t\right) + S_f \sin\left(\Delta m_s t\right) \right],$$

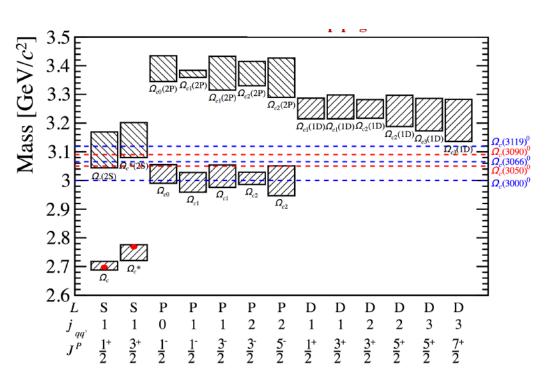
JHEP 11 (2014) 060, Phys. Rev. (2013) 112010

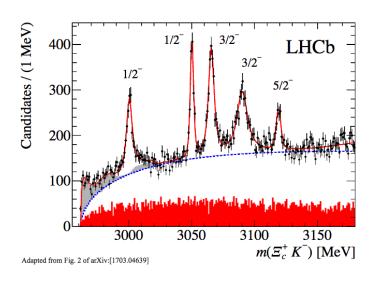

$\mathbf{B}^0 \rightarrow \overline{\mathbf{D}}_{\mathbf{S}}^{+} \mathbf{K}^{-}$ continued


 Only I fb-1 of data published so far. The full Run-I 3 fb-1 measurement is expected towards the end of this year.

$$A_f^{\Delta\Gamma} = \frac{-2r_{D_sK}\cos(\delta - (\gamma - 2\beta_s))}{1 + r_{D_sK}^2}, \quad A_{\overline{f}}^{\Delta\Gamma} = \frac{-2r_{D_sK}\cos(\delta + (\gamma - 2\beta_s))}{1 + r_{D_sK}^2}, \quad C_f = \frac{1 - r_{D_sK}^2}{1 + r_{D_sK}^2}$$
$$S_f = \frac{2r_{D_sK}\sin(\delta - (\gamma - 2\beta_s))}{1 + r_{D_sK}^2}, \quad S_{\overline{f}} = \frac{-2r_{D_sK}\sin(\delta + (\gamma - 2\beta_s))}{1 + r_{D_sK}^2}.$$

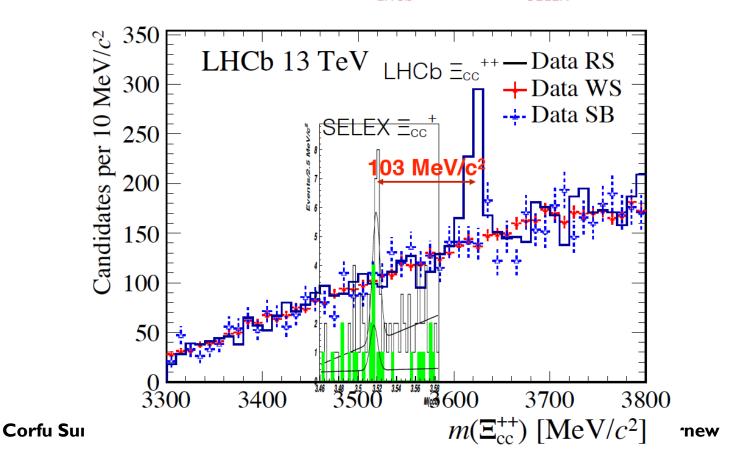
Measure folded asymmetry distributions:


$$\gamma = (115^{+28}_{-43})^{\circ}$$



Possible assignment of excited Ω_c states

 Matching between observed peaks and predictions requires spin-parity information



M. Karliner, J.L. Rosner, PR D95, 114012 (2017)

Comparisons with SELEX

- SELEX (Fermilab E781) collides high energy hyperon beams (Σ^-, p) with nuclear targets, dedicated to study charm baryons
- Observed $\Xi_{cc}^+(ccd)$ in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ and $\Xi_{cc}^+ \to pD^+ K^-$ decays
- Large mass difference: $m(\Xi_{cc}^{++})_{LHCb} m(\Xi_{cc}^{+})_{SELEX} = 103 \pm 2 \text{ MeV}$

67