Looking for R-symmetric SUSY directly and indirectly at the LHC

Philip Diessner Corfu Summer Institute, Sep. 3th, 2018

Outline

R-Symmetric SUSY and the MRSSM

R-symmetric SQCD at the LHC

NLO Calculation of squark production SQCD Phenomenology

Prediction for the W boson mass in the MRSSM

From muon decay to M_W Results

Conclusion

Minimal Supersymmetry

- Still well motivated extension of SM
- Predicts SM Higgs boson mass in right range
- Dark matter candidate
- Solution to Hierarchy problem

Going beyond the MSSM

- > LHC Run 2 on-going
- > So far no obvious sign of MSSM

Going beyond the MSSM

- LHC Run 2 on-going
- > So far no obvious sign of MSSM
- Look into non-minimal models for range of alternative predictions

Possibilities

- Less symmetry (RPV)
- More symmetry (UMSSM,BLMSSM)
- More Higgs states (NMSSM,TMSSM)
- > ..

Going beyond the MSSM

- > LHC Run 2 on-going
- > So far no obvious sign of MSSM
- Look into non-minimal models for range of alternative predictions

R-Symmetry

- Includes solution to flavor problem of the MSSM
- Dirac gauginos (esp. gluino) might explain SUSY non-discovery
- Extended Higgs sector, different predictions than (N)MSSM

R-symmetry

- > Additional symmetry allowed by SUSY algebra: $[Q_lpha,R]=Q_lpha\;,\quad igl[\overline{Q}_{\dotlpha},Rigr]=-\overline{Q}_{\dotlpha}$
- For N = 1 SUSY it is a global U(1)_R symmetry
 → Different charges for Superpartners
- > SM fields have $Q_R = 0$
- > SUSY partners carry charge
- Lagrangian has to be invariant (MRSSM Kribs et.al. (Phys.Rev. D78 (2008) 055010))

Symmetry forbids terms in Lagrangian

- > Superpotential ($Q_{\mathsf{R}}=2$): $\mu \hat{H}_u \hat{H}_d$, $\lambda \hat{E} \hat{L} \hat{L}$, $\kappa \hat{U} \hat{D} \hat{D}$
- > Soft breaking ($Q_R=0$): $M_i\tilde{\lambda}_i\tilde{\lambda}_i$, $Ay_eh_d\tilde{l}\tilde{e}_R$, $Ay_uh_u\tilde{q}\tilde{u}_R$, $Ay_dh_d\tilde{q}\tilde{d}_R$

Relaxes flavor problem, but no masses for gauginos and higgsinos

Particles of the MRSSM

Adding to the MSSM

		$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_{R}$
Singlet	\hat{S}	1	1	0	0
Triplet	\hat{T}	1	3	0	0
Octet	\hat{O}	8	1	0	0
R-Higgses	\hat{R}_u	1	2	-1/2	2
	\hat{R}_d	1	2	1/2	2

$$\begin{split} \mathcal{W} &= - \, Y_d \, \hat{\overline{D}} \, (\hat{Q} \hat{H}_d) \, - Y_e \, \hat{\overline{E}} \, (\hat{L} \hat{H}_d) \, + Y_u \, (\hat{\overline{U}} \, \hat{Q} \hat{H}_u) \\ &+ \Lambda_d \, (\hat{R}_d \hat{T}) \, H_d \, + \Lambda_u \, (\hat{R}_u \hat{T}) \, \hat{H}_u \, + \lambda_d \, \hat{S} \, (\hat{R}_d \hat{H}_d) \, + \lambda_u \, \hat{S} \, (\hat{R}_u \hat{H}_u) \\ &\mu_d \, (\hat{R}_d \hat{H}_d) \, + \mu_u \, (\hat{R}_u \hat{H}_u) \\ &- \mathcal{L}_{\mathsf{soft}} \supset M_i^D \tilde{\lambda}_i^a \psi_j^a + h.c. \quad \{i,j\} \in \{\{G,O\}, \{W,T\}, \{B,S\}\} \end{split}$$

Particles of the MRSSM

Outline

R-Symmetric SUSY and the MRSSN

R-symmetric SQCD at the LHC

NLO Calculation of squark production SQCD Phenomenology

Prediction for the W boson mass in the MRSSM

From muon decay to M_W

Conclusion

Dirac gaugino masses are "super-soft"

```
(Fox, et.al., [hep-ph/0206096])
```

- > → Scenario with heavy gluino and rather light squarks natural
- > Here: Concentrate on squark production in the MRSSM

Dirac gaugino masses are "super-soft"

(Fox, et.al., [hep-ph/0206096])

- > → Scenario with heavy gluino and rather light squarks natural
- > Here: Concentrate on squark production in the MRSSM

Dirac gaugino masses are "super-soft"

(Fox, et.al., [hep-ph/0206096])

- ightarrow Scenario with heavy gluino and rather light squarks natural
- > Here: Concentrate on squark production in the MRSSM

Dirac gaugino masses are "super-soft"

(Fox, et.al., [hep-ph/0206096])

- > → Scenario with heavy gluino and rather light squarks natural
- > Here: Concentrate on squark production in the MRSSM

left: MSSM, right: MRSSM

ESY. | Looking for R-symmetric SUSY directly and indirectly at the LHC | Philip Diessner | Corfu Summer Institute, Sep. 3th, 201

NLO calculation

MSSM results known since many years used in form of (global) K-factors by experiments and pheno studies

$$K = \frac{\sigma_{NLO}}{\sigma_{LO}}$$

"NLO revolution" for SM processes allows reliable and fast calculation of NLO corrections including matching

NLO calculation

MSSM results known since many years used in form of (global) K-factors by experiments and pheno studies

$$K = \frac{\sigma_{NLO}}{\sigma_{LO}}$$

"NLO revolution" for SM processes allows reliable and fast calculation of NLO corrections including matching

MRSSM

- Well-known from MSSM that NLO effects sizable
- Additional scalar octet: sgluon
- Dirac nature of gluino
- Squark production: squark-squark and squark-antisquark pair

Implementation

(PD, W. Kotlarski, S. Liebschner, D. Stöckinger [arxiv:1707:04557])

Combine popular programs and compare with own implementation of orthogonal methods

- GoSam and MadGraph_aMC@NLO (+ own implementation of renormalisation) using OPP reduction and FKS subtraction
- Independent calculation using classical PV functions and phase space slicing

Theoretical aspects

- > Dimensional regularisation or reduction
- Cancellation of IR divergences
- On-shell renormalisability
- Treatment of on-shell resonances

Results

- Corrections behave similar as in MSSM
- > Some prominent deviations exist

MRSSM effects

Dirac nature of the gluino

MSSM:

Example: squark-squark:

- only one Dirac gluino chirality couples to matter
- Diagrams proportional to Majorana mass not present

MRSSM effects

Dirac nature of the gluino

MRSSM:

Example: squark-squark: $u \rightarrow u \rightarrow v$

- only one Dirac gluino chirality couples to matter
- Diagrams proportional to Majorana mass not present

MRSSM effects

Dirac nature of the gluino

MRSSM:

Example: squark-squark:

- only one Dirac gluino chirality couples to matter
- Diagrams proportional to Majorana mass not present

Presence of sgluon

$$\sigma(pp \Rightarrow \tilde{q}_L \tilde{q}_r)|_{\rm sgl}^{\rm 1L} = \frac{\alpha_s}{4\pi} \left(\log \frac{m_O^2}{m_{\tilde{g}}^2}\right) \sigma(pp \to \tilde{q}_L \tilde{q}_r)|_{\rm LO}$$

Comparison to the MSSM

- > Output from standard tools (Prospino, NNLLfast) is $K(pp \to \tilde{u}\tilde{u})$
- > But $K(pp \to \tilde{u}\tilde{u}) \neq K(pp \to \tilde{u}_L\tilde{u}_R)$ in MSSM

Compare
$$\frac{K(MRSSM)}{K(MSSM)}(pp o \tilde{u}_L \tilde{u}_R)$$
 and $\frac{K(MRSSM)}{K(MSSM)}(pp o \tilde{u}\tilde{u})$

Comparison to the MSSM

- > Output from standard tools (Prospino, NNLLfast) is $K(pp \to \tilde{u}\tilde{u})$
- > But $K(pp \to \tilde{u}\tilde{u}) \neq K(pp \to \tilde{u}_L\tilde{u}_R)$ in MSSM
- > Leads to systematic error

Phenomenology - Basics

- > R-charge leads to LSP/LRP
- Neutralinos are Dirac states
- For exclusion/discovery mass hierarchies are more important
- For now, NLO K-factors not included

Phenomenology-- Preliminary results

(PD, J. Kalinowski, W. Kotlarski, D. Stöckinger) in progress

- Limit derived with Herwig 7 and CheckMate 2
- > ATLAS search for 0ℓ , 2-6 jets + E_{miss}^T , 36 fb $^{-1}$ [1712.02332]
- Comparing MRSSM and MSSM
 - Stronger limits on gluino mass
 - Weaker for (first generations) squark masses

blue - MSSM; red - MRSSM

Phenomenology-- Preliminary results

(PD, J. Kalinowski, W. Kotlarski, D. Stöckinger) in progress

- Limit derived with Herwig 7 and CheckMate 2
- > ATLAS search for 0ℓ , 2-6 jets + $E_{\rm miss}^T$, 36 fb⁻¹ [1712.02332]
- Scenarios in the MRSSM for squark production
 - Strongest bound from direct decay to light LSP
 - Intermediate (Dirac)-wino has strong influence

Outline

R-Symmetric SUSY and the MRSSN

R-symmetric SQCD at the LHC

NLO Calculation of squark production

SQCD Phenomenology

Prediction for the W boson mass in the MRSSM

From muon decay to M_W Results

Conclusion

M_W as example EWPO

Loops matter

Requires precise theory prediction and experimental measurements

$$M_W^{\rm SM, \, on\text{-}shell} = 80.358 \pm 0.008 \; \mathrm{GeV}$$

$$\begin{split} M_W^{\text{exp., LEP+Tevatron}} &= 80.385 \pm 0.015 \text{ GeV,} \\ M_W^{\text{ATLAS}} &= 80.370 \pm 0.019 \text{ GeV} \\ \text{LHC may provide new insight} \end{split}$$

Muon decay

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{e^2}{8M_W^2 s_W^2} (1 + \Delta r)$$

Precisely known: α , M_Z , G_μ , can solve for M_W

$$M_W^2 = M_Z^2 \left(\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\alpha \pi}{\sqrt{2} G_\mu M_Z^2} (1 + \Delta r)} \right)$$

(assuming no triplet vev for now)

 Δr collects loop contributions

Muon decay

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{e^2}{8M_W^2 s_W^2} (1 + \Delta r)$$

Precisely known: α , M_Z , G_μ , can solve for M_W

$$M_W^2 = M_Z^2 \left(\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\alpha \pi}{\sqrt{2} G_\mu M_Z^2} (1 + \Delta r)} \right)$$

(assuming no triplet vev for now)

 Δr collects loop contributions

One-loop Δr in the SM

$$\Delta r = \Delta \alpha (\propto \log \frac{M_Z}{m_f}, \approx 6\%) - \frac{c_W^2}{s_W^2} \Delta \rho (\propto M_t^2, \approx -3\%) + \Delta r_{\rm rem} (\propto \log \frac{M_h}{M_Z}, \approx 1\%)$$

BSM contributions to Δr

$\Delta \rho$

- > Quantifies difference between charged and neutral current interactions
- > $\Delta
 ho = {\Sigma_T^{ZZ}(0) \over M_Z^2} {\Sigma_T^{WW}(0) \over M_W^2}$ (same as T parameter)
- > In MSSM mainly stop/sbottom (Driven by top-Yukawa)

BSM contributions to Δr

$\Delta \rho$

- > Quantifies difference between charged and neutral current interactions
- > $\Delta
 ho = {\Sigma_T^{ZZ}(0) \over M_Z^2} {\Sigma_T^{WW}(0) \over M_W^2}$ (same as T parameter)
- In MSSM mainly stop/sbottom (Driven by top-Yukawa)
- > In MRSSM additional effects from λ/Λ via charginos/neutralinos
- > Generally, $\Delta \rho_{\rm MRSSM}>0$ and $\delta M_W^2=M_W^2\frac{c_W^2}{c_W^2-s_W^2}\Delta \rho>0$

Effects of a triplet vev

- > Triplet with zero hyper-charge leads to tree-level contribution: $M_W^2=rac{g_2^2}{4}v^2+g_2^2v_T^2$
- > Disturbs on-shell relation breaking custodial symmetry

$$\tilde{c}_W^2 \equiv \cos^2(\hat{\theta}_W) = \frac{g_2^2}{g_1^2 + g_2^2} \;, \quad \frac{m_W^2}{m_Z^2} = \tilde{c}_W^2 + \frac{e^2 v_T^2}{(1 - \tilde{c}_W^2) m_Z^2}.$$

- > v_T depends on SUSY parameters via EWSB conditions
- > Calculation of M_W from G_μ , α , M_Z , v_T

$$M_W^2 = M_Z^2 \left(\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\alpha \pi}{\sqrt{2} G_\mu M_Z^2}} (1 + \Delta \tilde{r} - 4\sqrt{2} G_\mu v_T^2) \right) \cdot \left(\frac{1}{1 - \frac{4\sqrt{2} G_\mu v_T^2}{1 + \Delta \tilde{r}}} \right) .$$

Needs to be renormalized

Precision with more than one loop

SM prediction for M_W

- full one-loop
- > full two-loop
- > leading three- and four-loop contributions to $\Delta \rho$

MRSSM prediction for M_W

- all known SM contributions
- full MRSSM one-loop contributions
- Available MSSM two-loop results not applicable because Dirac nature of gluino

Precision

- intrinsic theory uncertainty: SM 4-6 MeV, MRSSM 9-12 MeV
- > parametric uncertainty: from δM_t 5 MeV, $\delta\Delta\alpha_{\mathsf{had}}$, δM_Z each 2 MeV
- experimental uncertainty: with LEP and Tevatron 15 MeV, +LHC 10 MeV
- > ILC would reduce experimental and parametric unc.

General result

(PD, G. Weiglein [arxiv:1810:xxxxx])

- SUSY effects decouple
- > M_W prediction generally larger than in MSSM for similar scale
- Caused by enlarged matter sector and new couplings

(SM depending on SUSY Higgs mass

Influence of new parameters

Λ is Yukawa-like coupling

$$\mathcal{W} \supset \Lambda_d \left(\hat{R}_d \hat{T} \right) H_d + \Lambda_u \left(\hat{R}_u \hat{T} \right) H_u$$

contributes similarly to ρ

$$\Delta \rho_{\Lambda} = \frac{\alpha}{16\pi M_W^2 \tilde{s}_W^2} \frac{13 \left(\Lambda_u^2 v_u^2 - \Lambda_d^2 v_d^2\right)^2}{96 M_{\text{wino}}^2}.$$

Influence of new parameters

Λ is Yukawa-like coupling

$$\mathcal{W} \supset \Lambda_d \left(\hat{R}_d \hat{T} \right) H_d + \Lambda_u \left(\hat{R}_u \hat{T} \right) H_u$$

contributes similarly to ρ

$$\Delta \rho_{\Lambda} = \frac{\alpha}{16\pi M_W^2 \tilde{s}_W^2} \frac{13 \left(\Lambda_u^2 v_u^2 - \Lambda_d^2 v_d^2\right)^2}{96 M_{\text{wino}}^2}.$$

Triplet vev related via EWSB conditions

$$v_T = \frac{(\Lambda_u \mu_u + g_2 M_{\text{wino}})v_u^2 - (\Lambda_d \mu_d + g_2 M_{\text{wino}})}{2\left(m_{\text{triplet}}^2 + 4M_{\text{wino}}^2\right)}$$

Comparison to other calculations

- Previous results in MRSSM from SARAH/SPheno
- > Bug found adding 100 MeV to M_W
- Interestingly, OS result in line with old one
- Investigation underway
- fixed FlexibleSUSY OS/DR in development (points kindly provided by M. Bach)

Conclusions

- MRSSM as example of non-minimal SUSY accessible by LHC
- Directly accessible via strong production
 - Discussed NLO K factors
 - Presented how limits compare to MSSM
- > Relevant to also study precision observables
 - \blacksquare Here: M_W calculation in on-shell scheme
 - Study difference to previous schemes
- When applying methods from know models (SM,MSSM) to models with new features subtle pitfalls need to be recognized
 - Correct usage of SQCD K factors when going from MSSM to MRSSM
 - Renormalisation scheme for M_W

Conclusions

- MRSSM as example of non-minimal SUSY accessible by LHC
- Directly accessible via strong production
 - Discussed NLO K factors
 - Presented how limits compare to MSSM
- > Relevant to also study precision observables
 - Here: M_W calculation in on-shell scheme
 - Study difference to previous schemes
- When applying methods from know models (SM,MSSM) to models with new features subtle pitfalls need to be recognized
 - Correct usage of SQCD K factors when going from MSSM to MRSSM
 - Renormalisation scheme for M_W

Thanks for the attention!