

talk @ Corfu Summer Institute: Workshop on the Standard Model and beyond (31th Aug. to 9th Sept. 2018), Mon Repos Estate, Corfu, Greece; 3rd September 2018

Current Status of LHC (cont'd)

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2017

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 37.0) \text{ fb}^{-1} \qquad \sqrt{s} = 8, 13 \text{ TeV}$

	Model	ℓ, γ	Jets†	Entites	∫Հժե[Ռ	-1	Limit			Reference
Extra dimensions	ADD $G_{RK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum \rho_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow VW \rightarrow qql$ 2UED / RPP	0 φ,μ 2 γ 2 1 e,μ 2 γ 1 e,μ 1 e,μ	1 - 4j 2j $\geq 2j$ $\geq 3j$ - 1J $\geq 2b, \geq 3j$	Yes - - Yes Yes	86.1 86.7 87.0 8.9 3.6 88.7 86.1 13.2	Mo Mo Mo Mo Mo GRE mass GRE mass FOE mass		7.75 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 4.1 TeV 1.75 TeV 1.6 TeV	$\begin{split} n &= 2 \\ n &= 3 \text{ HLZ NLO} \\ n &= 6 \\ n &= 6, M_D = 3 \text{ TeV, rot BH} \\ n &= 6, M_D = 3 \text{ TeV, rot BH} \\ k/\overline{M_{\rm FV}} &= 0.1 \\ k/\overline{M_{\rm FV}} &= 1.0 \\ \text{Tier}(1,1), \mathfrak{S}(A^{(1,1)} \to \mathfrak{tr}) = 1 \end{split}$	ATLAS CONF 2017-090 CERN-EP-2017-132 1703-00917 1909:02265 1512:02565 CERN-EP-2017-132 ATLAS-CONF-2017-051 ATLAS-CONF-2016-104
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \mathcal{U} \\ \operatorname{SSM} Z' \to \pi \tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to t t \\ \operatorname{SSM} W' \to t v \\ \operatorname{HVT} V' \to WV \to qqqq \operatorname{mod} \\ \operatorname{HVT} V' \to WH/ZH \operatorname{model} B \\ \operatorname{LRSM} W'_{\mathcal{P}} \to t b \\ \operatorname{LRSM} W'_{\mathcal{P}} \to t b \\ \operatorname{LRSM} W'_{\mathcal{P}} \to t b \end{array}$	2 e,μ 2 τ - 1 e,μ 1 e,μ 6el B 0 e,μ 4 multi-channe 1 e,μ 0 e,μ	- ≥1b,≥1J/ - ≥J 2J el 2b,0-1j ≥1b,1J	- 2j Yes Yes - Yes -	36.1 38.1 3.2 38.1 36.7 98.1 20.3 20.3	Z' mass Z' mass Z' mass Z' mass V' mass V' mass V' mass W' mass W' mass		4.5 TeV 2.4 TeV 1.5 TeV 2.0 TeV 5.1 TeV 3.5 TeV 2.93 TeV 1.92 TeV 1.75 TeV	$f/m = 3\%$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2017-027 ATLAS-CONF-2017-050 1903/03751 ATLAS-CONF-2016-014 1708/04788 CERN-EP-2017-147 ATLAS-CONF-2017-055 1410,4103 1408,0886
C/	Ciargua Ciéčga Ciautt	- 2 e, µ 2(88)∕≥8 e ₄	2] ⊭≥11b,≥1j	- - Yes	87.0 36.1 20.3	л Л Л		4.9 TeV	21.8 TeV 47.0 40.1 TeV 47.1 C _{MD} = 1	1703.09217 ATLAS-CONF-2017-027 1504.04005
МQ	Asial-vector mediator (Dirac I Vector mediator (Dirac DM) VV/gg EFT (Dirac DM)	OM) 0 e,μ 0 e,μ,1 y 0 e,μ	1 – 4 j ≤ 1 j 1 J, ≤ 1 j	Yes Yes Yes	36.1 38.1 3.2	Rimat Minat Mi	1 1.2 T 700 GeV	I.5 TeV 'eV	$\begin{array}{l} g_{\rm g}{=}0.25, g_{\chi}{=}1.0, \ m(\chi) < 400 \ {\rm GeV} \\ g_{\rm g}{=}0.25, \ g_{\chi}{=}1.0, \ m(\chi) < 400 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \end{array}$	ATLAS-CONF-2017-090 1704.03948 1903.02372
10	Scalar LQ 1 ^{er} gen Scalar LQ 2 rd gen Scalar LQ 3 rd gen	2 c 2 μ 1 c, μ	≥ 2 j ≥ 2 j ≥1 b. ≥8 j	- - Yes	3.2 3.2 20.3	LQ mares LQ mass LQ mass	1.1 Te 1.05 TeV 640 GeV	v. r	$\beta = 1$ $\beta = 1$ $\beta = 0$	1805.08035 1905.09025 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ\ TT \rightarrow Ht + X \\ VLQ\ TT \rightarrow Zt + X \\ VLQ\ TT \rightarrow Wb + X \\ VLQ\ BB \rightarrow Hb + X \\ VLQ\ BB \rightarrow Zb + X \\ VLQ\ BB \rightarrow Wt + X \\ VLQ\ BB \rightarrow Wt + X \\ VLQ\ QQ \rightarrow WqWq \end{array} $	$\begin{array}{c} 0 \text{ or } 1 e_{e} \mu \\ 1 e_{e} \mu \\ 1 e_{e} \mu \\ 1 e_{e} \mu \\ 2 \ell \ge 3 e_{e} \mu \\ 1 e_{e} \mu \\ 1 e_{e} \mu \\ 1 e_{e} \mu \end{array}$	$\begin{array}{l} \geq 2 \ b, \geq 3 \\ \geq 1 \ b, \geq 3 \\ \geq 1 \ b, \geq 1 \ J, \\ \geq 2 \ b, \geq 3 \\ \geq 2 \ b, \geq 3 \\ \geq 2 \ / \geq 1 \ b \\ \geq 1 \ b, \geq 1 \ J, \\ \geq 4 \ j \end{array}$	i Yes i Yes 2j Yes i Yes 2j Yes Yes	13.2 36.1 20.3 20.3 28.1 20.3	T mass T mass T mass B mass B mass B mass B mass Q mass	1.2 T 1.16 Tr 1.36 700 GeV 790 GeV 1.25 690 GeV	eV eV 5 TeV TeV	$\begin{split} \mathcal{B}(T \to Ht) &= 1\\ \mathcal{B}(T \to Zt) &= 1\\ \mathcal{B}(T \to Wt) &= 1\\ \mathcal{B}(B \to Wt) &= 1\\ \mathcal{B}(B \to Zt) &= 1\\ \mathcal{B}(B \to Wt) &= 1 \end{split}$	ATLAS-CONF-2016-104 1705.10751 CERN-EP-2017-094 1505.04305 1403.5500 CERN EP 2017-094 1500.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wr$ Excited lepton t^* Excited lepton r^*	- 1γ - 1 or 2 e,μ 3 e,μ 3 e,μ,τ	2j 1j 11b,1j 15,2-0j	- - Yes -	97.0 38.7 13.3 20.3 20.3 20.3	q" mass q" mass b" mass b" mass d" mass y" mass		6.0 TeV 5.3 TeV 2.3 TeV 1.5 TeV 3.0 TeV 1.6 TeV	only of and d*, $\Lambda = m(q^*)$ only of and d*, $\Lambda = m(q^*)$ $f_g = f_h = f_h = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.0 \text{ IeV}$	1703.09127 CEBN-EP-2017-148 ATLAS-CONF-2018-080 1510.02664 1411.2921 1411.2921
Other	LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$2 e, \mu$ 2.3.4 e, μ (59 3 e, μ, τ 1 e, μ	2j s) = 1 b √s = 13	- - Yes - - 3 TeV	20.3 98.1 20.3 20.3 20.3 7.0	N ^e mass H ^{±±} mass H ^{±±} mass spin-1 invisible particle mass multi-charged particle mass monopole mass 10 ⁻¹	870 GeV 400 GeV 667 GeV 785 GeV 1.34	2.0 TeV I TeV I I I I I I I I I I I I I I I I I I I	$m(W_R) = 2.4$ TeV, no mixing DY production DY production, $S(H_k^{\pm\pm} \rightarrow t_T) = 1$ $s_{normal} = 0.2$ DY production, $ g = 1g_D$, $spin 1/2$ Mass scale [TeV]	1508.08020 ATLAS-CONF-2017-058 1411.2921 1410.5404 1504.04188 1509.08059

"Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Intro: 1/10 [ATLAS wiki]

Current Status of LHC (cont'd)

Intro: 1/10

[ATLAS wiki]

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits ATLAS Preliminary Status: July 2017 $\int \mathcal{L} dt = (3.2 - 37.0) \text{ fb}^{-1}$ $\sqrt{s} = 8.13 \text{ TeV}$ Jets† E_r^{miss} (£dt[fb⁻¹] Model Limit l,y Reference ADD $G_{RK} + g/q$ 00.11 1 - 4iYes 36.1 M-ATLAS CONF 2017 090 75 TeV n = 2dimensions ADD non-resonant yy M. 2γ 8.6 TeV n = 3 HLZ NLO 35.7 CERN-EP-2017-132 ADD QBH 2 i M_c 1703.00217 37.0 8.9 TeV $\mathbf{n} = \mathbf{\hat{o}}$ ADD BH high $\sum \rho_T$ M $\geq 1 e, \mu$ ≥ 21 3.2 B.2 TeV n = 6, $M_D = 3$ TeV, rot EH. 1605.02265 ADD BH multijet Ma 231 9.55 TeV n = 6, $M_D = 3$ TeV, ro: BH 3.5 1512.02588 Extra RS1 $G_{KK} \rightarrow \tau \gamma$ 38.7 4.1 TeV CERN EP 2017 132 2γ -GRR MASS $k/\overline{M}_{ev} = 0.1$ Bulk RS $G_{RR} \rightarrow WW \rightarrow qqlv$ 1 e. µ 1 J Yes 36.1 GRE mass 1.75 TeV $h/M_{ev} = 1.0$ ATLAS-CONF-2017-051 2UED / RPP Tier (1,1), S(A(1.1) $1 \sim p$ 22b,23j Yes 13.2 KK mass 1.6 TeV ATLAS-CONF-2016-104 2 e. p Z' mass 4.5 TeV ATLAS-CONF-2017-027 $SSM Z' \rightarrow ii$ 35.1 2.4 TeV ATLAS-CONF-2017-050 SSM $Z' \rightarrow z\tau$ 27 38.1 Z^{*} mass bosons Leptochobic $Z' \rightarrow bb$ Z^{*} meas 2b 3.2 1.5 TeV 1903.03791 Leptophobic $Z' \rightarrow t\bar{t}$ ≥ 1 b, $\geq 1J/2$ Yes ATLAS-CONF-2016-014 $1 \circ \mu$ 3.2 Z' mass SSM $W' \rightarrow t_V$ 1 4.11 Yes 38.1 W* mass 1708.04788 Gauge HVT $V' \rightarrow WV \rightarrow qqqq$ model B CERN-EP-2017-147 0 e, µ. 2.1 36.7 V' mono HVT $V' \rightarrow V'H/ZH \mod B$. V" mass ATLAS-CONF-2017-055 multi-channel 38.1 LRSM $W'_{a} \rightarrow tb$ 1 e, µ 2 b, 0-1 j Yes 20.3 1410,4103 LRSM W' → NO 0 e. µ $\geq 10.1 J$ 20.3 1408,0886 Cl argga _ 1703.09217 0 Cliffag 2 e. µ ATLAS-CONF-2017-027 CI wutt 2(88)/28 1504.04005 Adial-vector mediator (Dirac DM) .0, m(y) < 400 Ge∀ ATLAS-CONF-2017-090 MO Vector mediator $g_q=0.25, g_l=1.0, m(r_l) < 400 \text{ GeV}$ 1704.03949 WXXX EFT (DIS $m(\chi) < 150 \text{ GeV}$ 1503.02372 Scalar LQ 1st get $\beta = 1$ 1805.08035 3 Scalar I Q 2nd ger $\beta = 1$ 1605.06025 Scalar LO 3rd gen $1 e, \mu$ ≥1 b. ≥3 j $\beta = 0$ 1508:04735 YAG VLO $TT \rightarrow Ht + X$ $B(T \rightarrow Ht) = 1$ ATLAS-CONF-2016-104 1.2 TeV quarks $VIQ TT \rightarrow Zt + X$ $\mathcal{B}(T \rightarrow Zt) = 1$ 1,16 TeV 1205 10251 VLO $TT \rightarrow Wb + X$ 1.35 TeV $\mathcal{B}(T \rightarrow Wb) = 1$ CERN-EP-2017-094 $\mathsf{VLQ} \ \mathcal{BB} \to \mathcal{Hb} + X.$ 700 GeV $\mathcal{B}(B \rightarrow Hb) = 1$ 1505:04305 Heavy $\mathsf{VLQ} \ \mathcal{BB} \to \mathcal{Zb} + X$ 20.3 790 GeV $B(B \rightarrow Zb) = 1$ 1403.5500 VLQ $BB \rightarrow Wt + X$ $p_i \ge 1.1/2$ Yes 38.1 B maso 1.25 TeV $\mathcal{B}(B \rightarrow Wt) = 1$ **CERN EP 2017 094** VLQ $QQ \rightarrow WqWq$ ≥ 4 [20.3 1500.04261 1 4.10 Yes Q mass 690 GeV 2) e* masa only of and $d^*, \Lambda = m(q^*)$ Excited quark $q^* \rightarrow qg$ 37.0 6.0 TeV 1703.09127 88 Excited quark $q^* \rightarrow q \gamma$ 38.7 e" mass 5.3 TeV only u^* and d^* , $\Lambda = m(q^*)$. CEBN-EP-2017-148 1 2 Excited quark $b^* \rightarrow bg$ 1b.1j 13.3 b* mass 2.3 TeV ATLAS-CONF-2016-080 _ Excited quark 6* -> Wr 1 or 2 e. u 16,2-01 Yes 20.3 b" mass 1.5 TeV $f_e = f_b = f_6 = 1$ 1510.02664 யிற் Excited lepton C* $\Lambda = 3.0 \text{ TeV}$ 1411.2921 3 c, µ 20.3 * mass 3.0 TeV Excited lepton v* 30.4.7 20.31.6 TeV $\Lambda = 1.6 \text{ loV}$ 1411.2921 mag LDSM Majorana v 2 e, µ 2 20.3 2.0 TeV $m(W_{\rm ff}) = 2.4$ TeV, no mixing 1505.05020 _ V^e mass Higgs triplet $H^{\pm\pm} \rightarrow ll$ 2.3.4 e.u (SS) DY preduction 38.1 H^{±±} mass 870 GeV ATLAS-CONF-2017-053 -Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ DY production, $\mathcal{B}(H_{k}^{\pm\pm} \rightarrow t_{T}) = 1$. $3e, \mu, \tau$ 20.3 400 CeV 1411.2921 Other Monotop (non-res prod) $A_{\rm maxran} = 0.2$ 1410.5404 10,4 16 Yes 20.3 657 GeV Multi-charged particles 20.3 DV production, $|\sigma| = 5e$ 785 GeV 1504.04189 ec carticle mass Magnetic monopoles 7.0 1.34 TeV DY production, $[g] = 1g_0$, sp n 1/2 1500.08059 1 √s = 13 TeV $\sqrt{s} = 8 \text{ TeV}$ 10^{-1} 1 10 Mass scale [TeV]

"Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Anomalies in Flavor Observables have been reported! [LHCb, arXiv:1506.08777] Intro: 2/10

[courtesy of K.Yamamoto]

<u>A discrepancy in the CP-violation</u> of the Kaon.

[HFAG summary for Summer 2018]

Anomalies in Flavor Observables have been reported!

Intro: 3/10

Various (new) experiments are ongoing (planned)!

[picture from the web]

the first collision of the SuperKEKB (Belle II) @ KEK on 26th April 2018

<u>NA62 exp. @ CERN</u>

KOTO exp. @ J-PARC

<u>Three anomalies: [R_K(*) [+associates]</u>, R_{D(*)}, ε'/ε **Intro: 5/10** [LHCb, arXiv:1406.6482] $R_{K} \equiv \frac{\mathcal{B}(B \to K\mu^{+}\mu^{-})}{\mathcal{B}(B \to Ke^{+}e^{-})} = 0.745^{+0.090}_{-0.074} \pm 0.036 \qquad \text{for } 1 \,\text{GeV}^{2} < q^{2} < 6 \,\text{GeV}^{2}$ $\mathbf{\overline{\mathbf{V}}}$ [LHCb (seminar in CERN on 18th April), arXiv:1705.05802] $R_{K^*} \equiv \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* e^+ e^-)} = \begin{pmatrix} 0.660^{+0.110}_{\text{C} \circ \circ \circ \circ} + 0.024 \\ \text{Indegeneration} & \text{Indegeneration} \\ \text{Indegeneration} & \text{$ $\mathbf{\overline{}}$ - Data 0.6 CFFMPSV fit CFFMPSV fit theory DHMV 0.4 theory DHMV theory JC 0.2 =**F**in SMJ suggesting lepton flavor violation (2. 0.2 -0.4 q² [GeV²] [ATLAS, ATLAS-CONF-2017-023] [LHCb, arXiv:1506.08777] ທີ່ 0.8 **ATLAS** 0.8 **ATLAS** $dB(B_s^0 \rightarrow \phi \mu \mu)/dq^2 [10^{-8} GeV^{-2}c^4]$ √s= 8 TeV, 20.3 fb⁻¹ √s= 8 TeV, 20.3 fb⁻¹-LHCb Preliminary Preliminary 0.6 🗕 Data 0.6 - Data SM pred. 7 CFFMPSV fit CFFMPSV fit 0.4 0. Data theory DHMV theory DHMV 5 4 3 2 0.2 02 À -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 5 10 15 8 10 8 10 $q^2 \,[{\rm GeV}^2/c^4]$

q² [GeV²]

q² [GeV²]

0.8-ATLAS √s= 8 TeV, 20.3 fb⁻¹ Preliminary deviations being observe 👝 Data CFFMPSV fit associated variables theory DHMV

[see also e.g., arXiv:1704. 15340,1704.05435,1704.05438,1704.05444, 1704.05446,1704.05447, 1704.05672, 1704.7347, 1704.07397, 1704 Panching fractions

ď

$$\begin{aligned} \mathcal{H}_{\text{eff}}^{\text{NP}} &= -\frac{4\,G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_{i,\ell} (C_i^{\ell} O_i^{\ell} + C_i^{\prime\,\ell} O_i^{\prime\,\ell}) + \text{h.c.} \end{aligned}$$

$$\begin{aligned} O_9^{\ell} &= (\bar{s}\gamma_{\mu} P_L b) (\bar{\ell}\gamma^{\mu} \ell), \quad O_9^{\prime\,\ell} = (\bar{s}\gamma_{\mu} P_R b) (\bar{\ell}\gamma^{\mu} \ell), \\ O_{10}^{\ell} &= (\bar{s}\gamma_{\mu} P_L b) (\bar{\ell}\gamma^{\mu}\gamma_5 \ell), O_{10}^{\prime\,\ell} = (\bar{s}\gamma_{\mu} P_R b) (\bar{\ell}\gamma^{\mu}\gamma_5 \ell), \end{aligned}$$

[global fit result for new physics]

[W.Altmannshofer et al., arXiv:1704.05435]

Coeff.	best fit	1σ	2σ	pull
C_9^{μ}	-1.59	[-2.15, -1.13]	[-2.90, -0.73]	4.2σ
C^{μ}_{10}	+1.23	[+0.90, +1.60]	[+0.60, +2.04]	4.3σ
C_9^e	+1.58	[+1.17, +2.03]	[+0.79, +2.53]	4.4σ
C^e_{10}	-1.30	[-1.68, -0.95]	[-2.12, -0.64]	4.4σ
$C_9^{\mu} = -C_{10}^{\mu}$	-0.64	[-0.81, -0.48]	[-1.00, -0.32]	4.2σ
$C_9^e = -C_{10}^e$	+0.78	[+0.56, +1.02]	[+0.37, +1.31]	4.3σ
$C_9^{\prime \mu}$	-0.00	[-0.26, +0.25]	[-0.52, +0.51]	0.0σ
$C_{10}^{\prime\mu}$	+0.02	[-0.22, +0.26]	[-0.45, +0.49]	0.1σ
$C_9^{\prime e}$	+0.01	[-0.27, +0.31]	[-0.55, +0.62]	0.0σ
$C_{10}^{\prime e}$	-0.03	[-0.28, +0.22]	[-0.55, +0.46]	0.1σ

Of (effective) vector interaction

- S and b should be left-handed (right-handed is irrelevant).
- Lepton part is ambiguous (vector-like, left-handed,...).

$$(C_9^{SM} = -C_{10}^{SM} \sim 4)$$

[see also e.g., arXiv:1704. 15340,1704.05435,1704.05438,1704.05444, 1704.05446,1704.05447, 1704.05672, 1704.7347, 1704.07397, 1704.08168]

Three anomalies: $R_{K(*)}$ [+associates], $R_{D(*)}$, ϵ'/ϵ]

Free Recently, the direct CP violation of the K⁰ \rightarrow 2 π decays have been reevaluated based on the latest lattice calculations of the hadron matrix elements, where the theoretical uncertainty are significantly reduced.

$$\left(\frac{\epsilon'}{\epsilon}\right)_{\rm SM} = \begin{cases} (1.38 \pm 6.90) \times 10^{-4}, & [\rm RBC-UKQCD] & arXiv:1505.07863 \\ (1.9 \pm 4.5) \times 10^{-4}, & [\rm Buras \ et \ al.] & arXiv:1507.06345 \\ (1.06 \pm 5.07) \times 10^{-4}. & [\rm Kitahara \ et \ al.] & arXiv:1607.06727 \\ & & & & \\ \hline 2.8-2.9\sigma \ discrepancy \\ \left(\frac{\epsilon'}{\epsilon}\right)_{\rm exp} = (16.6 \pm 2.3) \times 10^{-4} & [average \ of \ NA48 \ \& \ KTeV] & arXiv:hep-ex/0208009, \\ 0208007, 1011.0127, PDG \end{cases}$$

• $K^0(\bar{s}\gamma_5 d), \ \overline{K^0}(\bar{d}\gamma_5 s)$: J^P=0⁻, \neq (mass, CP eigenstate)

 $\mathbf{\underline{M}} \to \pi\pi$ is prohibited if CP is an exact symmetry:

- Two CVP decay modes: $K_L \rightarrow \pi^+\pi^-$, $K_L \rightarrow \pi^0\pi^0$
 - The ratios of amplitudes works as order parameters:

Indirect CPVs are universal.

$$\eta_{00} = \frac{\mathcal{A}(K_L \to \pi^0 \pi^0)}{\mathcal{A}(K_S \to \pi^0 \pi^0)} = \underbrace{\epsilon_{(K)}}_{\mathcal{E}(K)} \underbrace{2\epsilon'_{(K)}}_{\text{appear differently.}}$$

$$\eta_{+-} = \frac{\mathcal{A}(K_L \to \pi^+ \pi^-)}{\mathcal{A}(K_S \to \pi^+ \pi^-)} \underbrace{\epsilon_{(K)}}_{\mathcal{E}(K)} \underbrace{\epsilon_{(K)}}_{\mathcal{E}(K)} \underbrace{\frac{\text{Direct CPVs}}{\text{appear differently.}}}_{\mathcal{E}(K)}$$

Three anomalies: $R_{K(*)}$ [+associates], $R_{D(*)}$, ϵ'/ϵ Intro: 10/10

What kind of new physics is required (at tree level)?

Straightforward candidates are new gauge bosons.

Three messages

0. Introduction (10 pages)

- **1.** Hidden "QCD" \Rightarrow providing vectors for anomalies (4 pages)
- 2. Various virtues exist in vector-like compositeness (2 pages)
- **3.** Simultaneous addressing for B & K anomalies, which can be surveyed in the very near future (4 pages)
- Summary & Discussions

Three messages

- **0.** Introduction (10 pages)
- **1.** Hidden "QCD" \Rightarrow providing vectors for anomalies (4 pages)
- 2. Various virtues exist in vector-like compositeness (2 pages)
- **3.** Simultaneous addressing for B & K anomalies, which can be surveyed in the very near future (4 pages)
- Summary & Discussions

QCD as Composite scenario

Sec. 1: 1/4

When a coupling becomes strong, composite particles appear.

It provides us a well-established way for describing (vector) mesons.

<u>Global symmetry \rightarrow Meson patterns</u>

3²-1=8 rhos **In case of QCD** 3²-1=8 pions K^{0} K^+ K(ds)K(us) $\overline{s}d$ $\overline{s}u$ ϕ_8 +1-1/2 $rac{0}{\overline{s}s} \overline{\overline{u}u} \overline{d}d$ 1/2 $\overline{d}u$ $\overline{u}d$ ρ^{0} ρ⁻(dū) $\rho^+(ud)$ $\pi^+ \mathbf{I}_3$ π °, $|\eta|$ π $\overline{d}s$ $\overline{u}s$ $\overline{K}(sd)$ $K(\bar{s}\bar{u})$ \overline{K}^{0} [pictures from Web]

Chiral symmetry governs low-energy composite (meson) spectrum.

M pseudo-scalars (pions) as pseudo NG bosons

vector mesons (rhos) as gauge bosons of hidden local symmetry (SU(3)v, gauged)

[Bando,Kugo,Uehara,Yamawaki, Phys.Rev.Lett.,54(1985)1215] [Bando,Kugo,Yamawaki, Nucl.Phys.,B259(1985)493] [reviewed by e.g., Harada,Yamawaki, arXiv:hep-ph/0302103]

Sec. 1: 2/4

Vector-like hidden "QCD" (hypercolor [HC] c. 1: 3/4

We consider an $SU(N_{HC})$ confining gauge theory (fermion: F, gauge boson: g')

Vector-like hidden "QCD" (hypercolor [HC] ec. 1: 3/4

Vector-like hidden "QCD" (hypercolor [HC] c. 1: 3/4

We consider an $SU(N_{HC})$ confining gauge theory (fermion: F, gauge boson: g')

In a situation that ρ_{μ} "mix with" the SM gauge boson, ρ_{μ} may couple with the SM fermions in an effective way!

Vector-like hidden "QCD" (hypercolor [HCS] c. 1: 3/4

Vector-like hidden "QCD" [HC] (cont'd) Sec. 1: 4/4

[vector meson spectrum] NOT ONLY Z' candidates!

comj	posite vector	constituent	color	isospin	19 in total
	$ ho^{lpha}_{(8)a}$	$\frac{1}{\sqrt{2}}\bar{Q}\gamma_{\mu}\lambda^{a}\tau^{\alpha}Q$	octet	triplet 🔨	massive
	$ ho_{(8)a}^0$	$rac{1}{2\sqrt{2}}ar{Q}\gamma_\mu\lambda^a Q$	octet	singlet 🖌	gluons
$ ho^{lpha}_{(z)}$	$_{3)c}\left(\bar{\rho}^{\alpha}_{(3)c}\right)$	$\frac{1}{\sqrt{2}}\bar{Q}_c\gamma_\mu\tau^{\alpha}L$ (h.c.)	triplet	triplet 🔨	vector
$ ho_{(z)}^0$	$_{3)c}\left(\bar{\rho}_{(3)c}^{0}\right)$	$\frac{1}{2\sqrt{2}}\bar{Q}_c\gamma_\mu L$ (h.c.)	triplet	singlet 🖌	<u>leptoquarks</u>
	$ ho^lpha_{(1)'}$	$\left \frac{1}{2\sqrt{3}}(\bar{Q}\gamma_{\mu}\tau^{\alpha}Q - 3\bar{L}\gamma_{\mu}\tau^{\alpha}L)\right $	singlet	triplet 🔨	
	$ ho_{(1)'}^0$	$\frac{1}{4\sqrt{3}}(\bar{Q}\gamma_{\mu}Q - 3\bar{L}\gamma_{\mu}L)$	singlet	singlet	> <u>Z' (and W')</u>
	$ ho^lpha_{(1)}$	$\frac{1}{2}(\bar{Q}\gamma_{\mu}\tau^{\alpha}Q + \bar{L}\gamma_{\mu}\tau^{\alpha}L)$	singlet	triplet K	inciuded

Vector-like hidden "QCD" [HC] (cont'd) Sec. 1: 4/4

[vector meson spectrum] <u>NOT ONLY Z' candidates!</u>

Vector-like hidden "QCD" [HC] (cont'd) Sec. 1: 4/4

[vector meson spectrum] <u>NOT ONLY Z' candidates!</u>

Three messages

0. Introduction (10 pages)

1. Hidden "QCD" \Rightarrow providing vectors for anomalies (4 pages)

2. Various virtues exist in vector-like compositeness (2 pages)

- **3.** Simultaneous addressing for B & K anomalies, which can be surveyed in the very near future (4 pages)
- Summary & Discussions

Important points for current pheno.

Sec. 2: 1/2

[B.Bhattacharya et al., arXiv:1609.09078]

[Our phenomenological scheme on flavor changing]

[Endo et al., arXiv:1612.08839] <u>pure imaginary (1,2) for K anomaly</u> \Rightarrow very small for $\varepsilon_{(K)}$, $K^0_L \rightarrow \mu^+\mu^-$

Important points for current pheno.

Sec. 2: 1/2

Important points for current pheno.

Sec. 2: 1/2

 $g_{\rho} >> g_{SM}$ is required via EW precisions. (an example: $g_{\rho} = 6$ [vector dominance in QCD])

(HC rho meson mass)² ~ $(m_{\rho})^2 * (I + [g_{SM}/g_{\rho}]^2)$

vector-meson spectrum being compressed

Important points for current pheno. (cont'd Sec. 2: 2/2

<u>vector-like HC rho mesons \Rightarrow harmless (tree-level) oblique corrections</u>

Important points for current pheno. (cont'd pec. 2: 2/2

<u>vector-like HC rho mesons \Rightarrow harmless (tree-level) oblique corrections</u>

6 couplings are relevant for (pure) HC vector-ρ phenomena:

m_ρ, (g_L)³³, (g_L)¹², θ_D, θ_L, g_ρ

Important points for current pheno. (cont'd Sec. 2: 2/2

<u>vector-like HC rho mesons \Rightarrow harmless (tree-level) oblique corrections</u>

<u>6 couplings are relevant for (pure) HC vector-ρ phenomena:</u>

m_ρ, (g_L)³³, (g_L)¹², θ_D, θ_L, g_ρ

No dynamical EWSB (vector-like) \Rightarrow the fundamental Higgs doublet should be introduced (like the SM).

M The I25GeV Higgs signal strengths are good.

Important points for current pheno. (cont'd Sec. 2: 2/2

<u>vector-like HC rho mesons \Rightarrow harmless (tree-level) oblique corrections</u>

<u>6 couplings are relevant for (pure) HC vector-p phenomena:</u>

m_ρ, (g_L)³³, (g_L)¹², θ_D, θ_L, g_ρ

No dynamical EWSB (vector-like) \Rightarrow the fundamental Higgs doublet should be introduced (like the SM).

Markov The I25GeV Higgs signal strengths are good.

Fascinating aspects:

 \mathbf{M} The C₉ = -C₁₀ texture (for b \rightarrow sll) is naturally realized.

Marcently gauge-anomaly free.

 \overrightarrow{O} Due to SU(8) symmetry, contribution to $R_{D(*)}$ is minuscule.

(⇒ It may be OK due to the 'vanishing' trend in latest exp. results.)

Ore and a set of the set of the

[N.Assad et al., arXiv:1708.06350]

 $\frac{1}{\Lambda} (\overline{q_L^c} H^{\dagger}) \gamma^{\mu} d_R \rho_{(3)\mu}^0, \quad \frac{1}{\Lambda} (\overline{q_L^c} \tau^{\alpha} H^{\dagger}) \gamma^{\mu} d_R \rho_{(3)\mu}^{\alpha} \longleftarrow \qquad \begin{array}{c} \text{prohibited} \\ \text{diquark operators} \end{array}$
Three messages

0. Introduction (10 pages)

- **1.** Hidden "QCD" \Rightarrow providing vectors for anomalies (4 pages)
- 2. Various virtues exist in vector-like compositeness (2 pages)
- **3.** Simultaneous addressing for B & K anomalies, which can be surveyed in the very near future (4 pages)
- Summary & Discussions

 $\mathbf{M} \to \mathbf{s} \vee \mathbf{v} \mathbf{b} \mathbf{a} \mathbf{r}, \tau \to \varphi \mu$ are **OK** in the whole of the shown region.

More that Markov The mixing angles should be tuned as θ_D ~ 5*10-3, θ_L ~ π/2.

Image: NLO QCD operator running is taken into account.[D.Becirevie et al., hep-ph/0112303]Image: Due to the update of the input, evading M[B_s] became (much) more nontrivial. $(f_{B_s}\sqrt{\hat{B}_{B_s}} = (266 \pm 18) \text{ MeV } [FLAG13] \rightarrow (274 \pm 8) \text{ MeV } [FLAG17])$

Electroweak-Penguin, charged-current types also appear.

(also arXiv:1807.02520,1808.00466)

Model For ε'/ε, not only QCD, but also EW corrections are significant (due to partial cancellation between QCD & EW Penguins).

 \mathbf{M}_{ρ} should be around I TeV; heavier ones lead to insufficient contrib. to ϵ^{2}/ϵ

(Invisible) V connects B and K physics

Sec. 3: 3/4

On the benchmark (m_{ρ} =ITeV, g_{ρ} =8, θ_{L} = $\pi/2$):

(Invisible) v connects B and K physics

On the benchmark ($m_{\rho} = I \text{ TeV}$, $g_{\rho} = 8$, $\theta_{L} = \pi/2$):

Interestingly, the valid parameter space will be explored completely by the experiments of NA62(K⁺) and KOTO (K⁰) in the near future!

Sec. 3: 3/4

(Invisible) v connects B and K physics

Sec. 3: 3/4

(Invisible) v connects B and K physics

Sec. 3: 3/4

<u>Limit on mp via LHC di-muon resonance search</u>

<u>Limit on mp via LHC di-muon resonance search</u>

Summary & Discussions

Virtues of (vector-like) composite model are (e.g.,)

M The C₉ = -C₁₀ texture (for b→sll) is naturally realized (for ' $R_{K(*)}$ ').

Marcently gauge-anomaly free.

✓ Due to SU(8) symmetry, contribution to R_{D(*)} is minuscule.
 (⇒ It may be OK due to the 'vanishing' trend in latest exp. results.)
 ✓ Proton decay via dim-5 operators are banned by hidden local sym.

<u>The $R_{K(*)}$ [~best fit] & ϵ'/ϵ [~1.5 σ] anomalies are addressed consistently.</u> The region for both of $R_{K(*)}$ & ϵ'/ϵ is surveyed in NA62, KOTO; also LHC.

(probably taking account of opening $\rho{\rightarrow}2\pi)$

Discovering lots of new particles is expected at the LHC, distinguishable from other scenarios.

Summary & Discussions

Virtues of (vector-like) composite model are (e.g.,)

M The C₉ = -C₁₀ texture (for b→sll) is naturally realized (for ' $R_{K(*)}$ ').

Marcently gauge-anomaly free.

✓ Due to SU(8) symmetry, contribution to R_{D(*)} is minuscule.
 (⇒ It may be OK due to the 'vanishing' trend in latest exp. results.)
 ✓ Proton decay via dim-5 operators are banned by hidden local sym.

<u>The $R_{K(*)}$ [~best fit] & ϵ'/ϵ [~1.5 σ] anomalies are addressed consistently.</u> The region for both of $R_{K(*)}$ & ϵ'/ϵ is surveyed in NA62, KOTO; also LHC.

(probably taking account of opening $\rho{\rightarrow}2\pi)$

Discovering lots of new particles is expected at the LHC, distinguishable from other scenarios.

BACKUPS

$$M^2_{\pi_{(3),(8)}} \sim C_2 \alpha_s(M_\pi) \Lambda^2_{\rm HC} \ln \frac{\Lambda^2_{\rm UV}}{\Lambda^2_{\rm HC}}$$
, with $C_2 = \frac{4}{3} (3)$ for color-triplet (octet)

 $M_{\pi^0_{(1)'}} \sim \mathcal{O}(f_\pi) = \mathcal{O}(100) \,\mathrm{GeV}\,,$ $M_{\pi^{\pm,3}_{(1)'}} \sim 2 \,\mathrm{TeV}\,,$ $M_{\pi^{\pm,3}_{(1)}} \sim 2 \,\mathrm{TeV}\,,$ $M_{\pi^{\pm,3,0}_{(3)}} \sim 3 \,\mathrm{TeV}\,,$ $M_{\pi^{\pm,3,0}_{(8)}} \sim 4 \,\mathrm{TeV}\,,$ \mathbf{M} (ρ , π)-interactions $a \equiv m_{\rho}^2/(g_{\rho}^2 f_{\pi}^2) \leftarrow \sim 2$ in vector dominance $\mathcal{L}_{\rho-\pi-\pi} = ag_{\rho}i \operatorname{tr}\left[\left[\partial_{\mu}\pi,\pi\right]\rho^{\mu}\right], \quad \leftarrow \text{ decay channel of }\rho$ $\mathcal{L}_{\mathcal{V}-\pi-\pi} = 2i\left(1 - \frac{a}{2}\right) \operatorname{tr}\left[\left[\partial_{\mu}\pi, \pi\right]\mathcal{V}^{\mu}\right], - \mathbf{C}$ $\mathcal{L}_{\mathcal{V}-\mathcal{V}-\pi-\pi} = -\mathrm{tr}\left\{\left[\mathcal{V}_{\mu},\pi\right]\left[\mathcal{V}^{\mu},\pi\right]\right\}, \quad \leftarrow \mathsf{'gg} \rightarrow \pi\pi\mathsf{'} \mathsf{ pair production (evaded)}$ $\mathcal{L}_{\pi-\pi-\pi-\pi} = -\frac{3}{f_{\pi}} \operatorname{tr} \left\{ (\partial_{\mu}\pi) \left[\pi, \left[\pi, \partial^{\mu}\pi \right] \right] \right\},\,$

 $M_{\pi^0_{(1)'}} \sim \mathcal{O}(f_\pi) = \mathcal{O}(100) \,\mathrm{GeV}\,,$ $M_{\pi^{\pm,3}_{(1)'}} \sim 2 \,\mathrm{TeV}\,,$ $M_{\pi^{\pm,3}_{(1)}} \sim 2 \,{
m TeV}\,,$ $M_{\pi^{\pm,3,0}} \sim 3 \,\mathrm{TeV} \,,$ $M_{\pi^{\pm,3,0}_{(8)}} \sim 4 \,{\rm TeV}\,,$ $a \equiv m_o^2 / (g_o^2 f_\pi^2)$ \mathbf{M} (ρ , π)-interactions $\mathcal{L}_{\rho-\pi-\pi} = a g_{\rho} i \operatorname{tr} \left[\left[\partial_{\mu} \pi, \pi \right] \rho^{\mu} \right],$ $\mathcal{L}_{\mathcal{V}-\pi-\pi} = 2i\left(1 - \frac{a}{2}\right) \operatorname{tr}\left[\left[\partial_{\mu}\pi, \pi\right]\mathcal{V}^{\mu}\right],$ $\mathcal{L}_{\mathcal{V}-\mathcal{V}-\pi-\pi} = -\mathrm{tr}\left\{ \left[\mathcal{V}_{\mu}, \pi \right] \left[\mathcal{V}^{\mu}, \pi \right] \right\},\,$ $\mathcal{L}_{\pi-\pi-\pi-\pi} = -\frac{3}{f_{-}} \operatorname{tr} \left\{ (\partial_{\mu}\pi) \left[\pi, \left[\pi, \partial^{\mu}\pi \right] \right] \right\},\,$

🗹 typical pionic decays

- $\rho_{(3)}^0 \to \bar{\pi}_{(3)}^0 \pi_{(1)'}^0 \colon m_{\pi\pi} \sim (3 + \mathcal{O}(0.1)) \text{ TeV},$
- $\rho_{(3)}^{\alpha} \to \bar{\pi}_{(3)}^{\alpha} \pi_{(1)'}^{0} \colon m_{\pi\pi} \sim (3 + \mathcal{O}(0.1)) \text{ TeV},$
- $\rho_{(8)}^0 \to \bar{\pi}_{(3)}^0 \pi_{(3)}^0$: $m_{\pi\pi} \sim (3+3) \,\text{TeV} = 6 \,\text{TeV},$
- $\rho_{(8)}^{\alpha} \to \bar{\pi}_{(3)}^{0} \pi_{(3)}^{\alpha} \colon m_{\pi\pi} \sim (3+3) \,\text{TeV} = 6 \,\text{TeV},$
- $\rho_{(1)'}^0 \to \bar{\pi}_{(3)}^0 \pi_{(3)}^0 \colon m_{\pi\pi} \sim (3+3) \,\text{TeV} = 6 \,\text{TeV},$
- $\rho^{\alpha}_{(1)'} \to \bar{\pi}^{\beta}_{(1)} \pi^{\gamma}_{(1)'} \colon m_{\pi\pi} \sim (1+2) \,\mathrm{TeV} = 3 \,\mathrm{TeV},$
- $\rho_{(1)}^{\alpha} \to \bar{\pi}_{(1)}^{\beta} \pi_{(1)}^{\gamma} \colon m_{\pi\pi} \sim (1+2) \,\mathrm{TeV} = 3 \,\mathrm{TeV}.$

<u>For m_ρ <~3TeV, ρ decay width is</u> <u>narrow.</u>

if typical spectrum (Λ_{HC}~ITeV, Λ_{UV}~I0¹⁶GeV)

$$\begin{split} &M_{\pi_{(1)'}^{0}} \sim \mathcal{O}(f_{\pi}) = \mathcal{O}(100) \,\text{GeV}\,, \\ &M_{\pi_{(1)'}^{\pm,3}} \sim 2 \,\text{TeV}\,, \\ &M_{\pi_{(1)}^{\pm,3,0}} \sim 2 \,\text{TeV}\,, \\ &M_{\pi_{(3)}^{\pm,3,0}} \sim 3 \,\text{TeV}\,, \\ &M_{\pi_{(8)}^{\pm,3,0}} \sim 4 \,\text{TeV}\,, \\ & \mathbf{(\rho, \pi)\text{-interactions}} \quad a \equiv m_{\rho}^{2}/(g_{\rho}^{2}f_{\pi}^{2}) \\ &\mathcal{L}_{\rho\text{-}\pi\text{-}\pi} = ag_{\rho}i \,\text{tr}\left[[\partial_{\mu}\pi,\pi]\rho^{\mu}\right], \\ &\mathcal{L}_{\mathcal{V}\text{-}\pi\text{-}\pi} = 2i\left(1 - \frac{a}{2}\right) \,\text{tr}\left[[\partial_{\mu}\pi,\pi]\mathcal{V}^{\mu}\right], \end{split}$$

$$\mathcal{L}_{\mathcal{V}-\mathcal{V}-\pi-\pi} = -\mathrm{tr}\left\{\left[\mathcal{V}_{\mu},\pi\right]\left[\mathcal{V}^{\mu},\pi\right]\right\},\$$
$$\mathcal{L}_{\pi-\pi-\pi-\pi} = -\frac{3}{f_{\pi}}\mathrm{tr}\left\{\left(\partial_{\mu}\pi\right)\left[\pi,\left[\pi,\partial^{\mu}\pi\right]\right]\right\},\$$

of typical pionic decays

- $\rho_{(3)}^0 \to \bar{\pi}_{(3)}^0 \pi_{(1)'}^0 \colon m_{\pi\pi} \sim (3 + \mathcal{O}(0.1)) \text{ TeV},$
- $\rho_{(3)}^{\alpha} \to \bar{\pi}_{(3)}^{\alpha} \pi_{(1)'}^{0} \colon m_{\pi\pi} \sim (3 + \mathcal{O}(0.1)) \text{ TeV},$
- $\rho_{(8)}^0 \to \bar{\pi}_{(3)}^0 \pi_{(3)}^0 \colon m_{\pi\pi} \sim (3+3) \,\text{TeV} = 6 \,\text{TeV},$
- $\rho^{\alpha}_{(8)} \to \bar{\pi}^{0}_{(3)} \pi^{\alpha}_{(3)} : m_{\pi\pi} \sim (3+3) \,\text{TeV} = 6 \,\text{TeV},$
- $\rho_{(1)'}^0 \to \bar{\pi}_{(3)}^0 \pi_{(3)}^0 \colon m_{\pi\pi} \sim (3+3) \,\mathrm{TeV} = 6 \,\mathrm{TeV},$
- $\rho^{\alpha}_{(1)'} \to \bar{\pi}^{\beta}_{(1)} \pi^{\gamma}_{(1)'} \colon m_{\pi\pi} \sim (1+2) \,\mathrm{TeV} = 3 \,\mathrm{TeV},$

•
$$\rho_{(1)}^{\alpha} \to \bar{\pi}_{(1)}^{\beta} \pi_{(1)}^{\gamma} : m_{\pi\pi} \sim (1+2) \,\mathrm{TeV} = 3 \,\mathrm{TeV}.$$

If this factor is less than a few, no problem.

 \widecheck{M} typical cross section of resonant π production (through WZW anomaly term)

 $\sigma(GG \to \pi^0_{(1)'} \to \gamma\gamma) \qquad \sim 0.1 \,\text{fb} \times \left[\frac{N_{\text{HC}}}{3}\right]^2 \left[\frac{\alpha_s}{0.1}\right]^2 \left[\frac{\mathcal{B}(\pi^0_{(1)'} \to \gamma\gamma)}{10^{-3}}\right] \left(\frac{M_{\pi^0_{(1)'}}}{f_{\pi}}\right)^2$

<u>Composite scenario: QCD as showing example</u>

If a gauge theory is strongly-coupled, composite mesons (and other types) are observed (like QCD below ~IGeV).

<u>Composite scenario: QCD as showing example</u>

If a gauge theory is strongly-coupled, composite mesons (and other types) are observed (like QCD below ~IGeV).

 $\langle \bar{q}^A q^B \rangle \sim \Lambda^3_{\text{QCD}} \delta^{AB} (\text{confinement}) \rightarrow \text{SU}(N_f)_L \times \text{SU}(N_f)_R \rightarrow \text{SU}(N_f)_V \text{ spontaneously}$ [reviewed by e.g., M.Harada & $\rightarrow (N_f)^2 - I \text{ #s of (pseudo) NG bosons emerge.}$ K.Yamawaki, arXiv:hep-ph/0302103]
[Chiral perturbation theory \Rightarrow effective description]

Spin-one vector mesons can be described by <u>hidden local symmetry (HLS)</u>.
SU(N_f)_L×SU(N_f)_R ⇒ [SU(N_f)_L×SU(N_f)_R]_{global}×[SU(N_f)_V]_{gauged}
→ (N_f)²-I #s of vector mesons are introduced.

Form of effective Lagrangian

Basic ingredients of chiral perturbation theory (with HLS):

Form of effective Lagrangian

Basic ingredients of chiral perturbation theory (with HLS):

 $\mathbf{V} \rho_{\mu} = \rho_{\mu}^{a} T^{a} (T^{a} : SU(8) \text{ generators})$ (HC rho meson fields)

Materials for constructing effective Lagrangian:

$$\rho_{\mu\nu} = \partial_{\mu}\rho_{\nu} - \partial_{\nu}\rho_{\mu} - ig_{\rho}[\rho_{\mu}, \rho_{\nu}], [\text{HC rho's field strength}]$$

$$\hat{\alpha}_{\perp\mu} = \frac{D_{\mu}\xi_{R} \cdot \xi_{R}^{\dagger} - D_{\mu}\xi_{L} \cdot \xi_{L}^{\dagger}}{2i}, \qquad \hat{\alpha}_{\parallel\mu} = \frac{D_{\mu}\xi_{R} \cdot \xi_{R}^{\dagger} + D_{\mu}\xi_{L} \cdot \xi_{L}^{\dagger}}{2i},$$

$$D_{\mu}\xi_{R(L)} = \partial_{\mu}\xi_{R(L)} - ig_{\rho}\rho_{\mu}\xi_{R(L)} + i\xi_{R(L)}\mathcal{R}_{\mu}(\mathcal{L}_{\mu}), \qquad \text{[(covariantized)})$$

$$M_{\mu}(\mathcal{L}_{\mu}), \qquad M_{\mu}(\mathcal{L}_{\mu}), \qquad M_{\mu}(\mathcal{L}_{\mu}),$$

[gauge transformations]

$$\begin{split} \xi_L &\to h(x) \cdot \xi_L \cdot g_L^{\dagger}(x) \,, & \xi_R \to h(x) \cdot \xi_R \cdot g_R^{\dagger}(x) \,, \\ \rho_{\mu} &\to h(x) \cdot \rho_{\mu} \cdot h^{\dagger}(x) + \frac{i}{g_{\rho}} h(x) \cdot \partial_{\mu} h^{\dagger}(x) \,, & \rho_{\mu\nu} \to h(x) \cdot \rho_{\mu\nu} \cdot h^{\dagger}(x) \,, \\ \hat{\alpha}_{\perp\mu} &\to h(x) \cdot \hat{\alpha}_{\perp\mu} \cdot h^{\dagger}(x) \,, & \hat{\alpha}_{\parallel\mu} \to h(x) \cdot \hat{\alpha}_{\parallel\mu} \cdot h^{\dagger}(x) \,, \end{split}$$

Effective Lagrangian (lowest terms):

Effective Lagrangian (lowest terms): **HC** pion decay constant <u>(typical) HC rho-meson mass scale</u> $\mathcal{L} = -\frac{1}{2} \operatorname{tr}[\rho_{\mu\nu}^2] + f_{\pi}^2 \operatorname{tr}[\hat{\alpha}_{\perp\mu}^2] + \frac{m_{\rho}^2}{q_{\rho}^2} \operatorname{tr}[\hat{\alpha}_{\parallel\mu}^2] + \cdots$ pions ('kinetic') rhos ('kinetic') rhos ('mass' SM gauge bosons HC rho mesons $$\begin{split} & \overbrace{\alpha}^{\dagger} \hat{\alpha}_{\parallel\mu} = \overbrace{\mathcal{V}_{\mu}}^{\bullet} - g_{\mu} \overbrace{\rho_{\mu}}^{\bullet} - \frac{i}{2f_{\pi}^{2}} \left[\partial_{\mu} \pi, \pi \right] - \frac{i}{f_{\pi}} \left[\overbrace{\mathcal{A}_{\mu}}^{\bullet}, \pi \right] + \cdots \\ & \overbrace{\alpha}_{\perp\mu} = \frac{\partial_{\mu} \pi}{f_{\pi}} + \overbrace{\mathcal{A}_{\mu}}^{\bullet} - \frac{i}{f_{\pi}} \left[\mathcal{V}_{\mu}, \pi \right] - \frac{1}{6f_{\pi}^{3}} \left[\pi, \left[\pi, \partial_{\mu} \pi \right] \right] + \cdots \end{split}$$ $$\begin{split} \widehat{\left[\mathcal{L}_{\mu}^{f} \right]_{8 \times 8}} &= \begin{pmatrix} \mathcal{R}_{\mu} + \mathcal{L}_{\mu} \\ 2 \end{pmatrix} = \mathcal{L}_{\mu}^{f}, \quad \mathcal{A}_{\mu} = \frac{\mathcal{R}_{\mu} - \mathcal{L}_{\mu}}{2} = 0 \\ \text{for SU(2)w-doublet quarks} \end{pmatrix} f_{L} = \begin{pmatrix} q \\ l \end{pmatrix}_{L}, \quad f_{R} = \begin{pmatrix} q \\ l \end{pmatrix}_{R} \\ 0_{6 \times 2} \end{pmatrix} \\ \begin{bmatrix} \mathcal{L}_{\mu}^{f} \end{bmatrix}_{8 \times 8} &= \begin{pmatrix} \underbrace{\left(\mathbf{1}_{2 \times 2} \otimes g_{s} G_{\mu}^{a} \frac{\lambda^{a}}{2} + \left(g_{W} W_{\mu} \tau^{\alpha} + \frac{1}{6} g_{Y} B_{\mu} \right) \otimes \mathbf{1}_{3 \times 3}}_{\mathbf{0}_{2 \times 6}} \\ \mathbf{0}_{2 \times 6} \end{bmatrix} \underbrace{\mathbf{0}_{6 \times 2}}_{g_{W} W_{\mu}^{\alpha} \tau^{\alpha} - \frac{1}{2} g_{Y} B_{\mu} \cdot \mathbf{1}_{2 \times 2}} \end{pmatrix}$$

for SU(2)_w-doublet leptons

Effective Lagrangian (lowest terms):

Effective Lagrangian (lowest terms):

$$\mathcal{L}_{\rho ff} = g_{1L}^{ij} \left(\bar{\Psi}_L^i \gamma^\mu \hat{\alpha}_{||\mu} \Psi_L^j \right) + g_{2L}^{ij} \left(\bar{\Psi}_L^i \gamma^\mu \hat{\alpha}_{||\mu} \psi_L^j + \text{h.c.} \right) + g_{3L}^{ij} \left(\bar{\psi}_L^i \gamma^\mu \hat{\alpha}_{||\mu} \psi_L^j \right)$$

(undetermined) 3×3 matrices

(No additional fermion/scalar is required.)

type	I 25GeV scalar	Good Points	Problems(?)
Technicolor (chiral condensation)	dilaton (in walking case)	 simplest UV theory is known. 	 Another complicated dynamics is required for SM fermion masses. disfavored by S,T parameters and Higgs signal strengths

(+ others)

type	I 25GeV scalar	Good Points	Problems(?)
Technicolor (chiral condensation)	dilaton (in walking case)	 simplest UV theory is known. 	 Another complicated dynamics is required for SM fermion masses. disfavored by S,T parameters, and Higgs signal strengths
"Composite" Higgs	Composite SU(2)∟ doublet(s) [pseudo NG bosons of new dynamics]	 ✓ lots of possibilities ✓ existence of new fermions as triggers of EWSB → LHC! 	☑ <u>UV theory is not so clear.</u> ☑ EW precision is still nontrivial

type	I 25GeV scalar	Good Points	Problems(?)
Technicolor (chiral condensation)	dilaton (in walking case)	☑ simplest☑ UV theory is known.	 Another complicated dynamics is required for SM fermion masses. disfavored by S,T parameters, and Higgs signal strengths
"Composite" Higgs	Composite SU(2)∟ doublet(s) [pseudo NG bosons of new dynamics]	 ✓ lots of possibilities ✓ existence of new fermions as triggers of EWSB → LHC! 	☑ <u>UV theory is not so clear.</u> ☑ EW precision is still nontrivial
Vector-like confinement	Fundamental SU(2)∟ doublet(s) (+ singlet(s))	 ✓ Classically scale invariance → dynamical EVVSB triggered by the confinement. ✓ UV theory is known. ✓ No problem in SM fermion massess 	 Additional scalars are added. SM Yukawa couplings are not related to the dynamics.

(+ others)

(+ others)

Review: Kaon state

• $K^0(\bar{s}\gamma_5 d), \ \overline{K^0}(\bar{d}\gamma_5 s): J^P=0^-, \neq \text{(mass, CP eigenstate)}$

Review: Kaon system

• $|\phi(t)\rangle = a_K(t)|K^0\rangle + a_{\bar{K}}(t)|\overline{K^0}\rangle$

•
$$i \frac{d}{dt} \begin{pmatrix} a_K(t) \\ a_{\bar{K}}(t) \end{pmatrix} = \mathbf{H} \begin{pmatrix} a_K(t) \\ a_{\bar{K}}(t) \end{pmatrix}, \quad \mathbf{H} = \begin{pmatrix} M_{11} - \frac{i}{2}\Gamma_{11} & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{21} - \frac{i}{2}\Gamma_{21} & M_{22} - \frac{i}{2}\Gamma_{22} \end{pmatrix}$$

• **CPT:** $\mathbf{M}_{11} = \mathbf{M}_{22}, \Gamma_{11} = \Gamma_{22}$
• **Hermiticity:** $\mathbf{M}_{21} = (\mathbf{M}_{12})^*, \Gamma_{21} = (\Gamma_{12})^*$

Review: Kaon system

• $|\phi(t)\rangle = a_K(t)|K^0\rangle + a_{\bar{K}}(t)|\overline{K^0}\rangle$

•
$$i \frac{d}{dt} \begin{pmatrix} a_K(t) \\ a_{\bar{K}}(t) \end{pmatrix} = \mathbf{H} \begin{pmatrix} a_K(t) \\ a_{\bar{K}}(t) \end{pmatrix}, \quad \mathbf{H} = \begin{pmatrix} M_{11} - \frac{i}{2}\Gamma_{11} & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{21} - \frac{i}{2}\Gamma_{21} & M_{22} - \frac{i}{2}\Gamma_{22} \end{pmatrix}$$

• **CPT:** $\mathbf{M}_{11} = \mathbf{M}_{22}, \Gamma_{11} = \Gamma_{22}$
• **Hermiticity:** $\mathbf{M}_{21} = (\mathbf{M}_{12})^*, \Gamma_{21} = (\Gamma_{12})^*$

$\mathbf{V} \mathbf{K}_{\mathsf{L}} \to \mathbf{\pi} \mathbf{\pi}$ is prohibited if CP is an exact symmetry:

<u>**Review: CPV in K** $\rightarrow 2\pi$ </u>

- Two CVP decay modes: $K_L \rightarrow \pi^+\pi^-$, $K_L \rightarrow \pi^0\pi^0$
 - The ratios of amplitudes works as order parameters:

Indirect CPVs are universal.

Review: ε(κ) & ε'(κ)

Review: ε(κ) & ε'(κ)

Decomposing the final states by isospin:

$$|\pi^{0}\pi^{0}\rangle = \sqrt{\frac{1}{3}} |(\pi\pi)_{I=0}\rangle - \sqrt{\frac{2}{3}} |(\pi\pi)_{I=2}\rangle$$
$$|\pi^{+}\pi^{-}\rangle = \sqrt{\frac{2}{3}} |(\pi\pi)_{I=0}\rangle + \sqrt{\frac{1}{3}} |(\pi\pi)_{I=2}\rangle$$
Review: ε(κ) & ε'(κ)

Decomposing the final states by isospin:

$$|\pi^{0}\pi^{0}\rangle = \sqrt{\frac{1}{3}} |(\pi\pi)_{I=0}\rangle - \sqrt{\frac{2}{3}} |(\pi\pi)_{I=2}\rangle$$
$$|\pi^{+}\pi^{-}\rangle = \sqrt{\frac{2}{3}} |(\pi\pi)_{I=0}\rangle + \sqrt{\frac{1}{3}} |(\pi\pi)_{I=2}\rangle$$

are found to $\frac{1}{Review: properties of \epsilon'(\kappa)/\epsilon(\kappa)}$

<u>Laphancement</u> GeV = 102.8(2.7.5) SeV = 102.3(3.7) EVVedbertime ϵ' and regien the try apprendicts. $d_{1}m_{4}$, $-F_{H}m_{2}$ e Azəralsisa phasiseshthad mplitis de physical de and sector papers Repler Bold **X** Penguin hlaboration2 [23,u35] hvhereas ac president hereasence hpers 14, 17020espondurgly, the experimentally, and op operator(s . Joffadilitatis fartparisonstrith anddthisd u, d35 onversulles 23, 25, 3/3/2 in the present, pap \bar{u}, d D¢. erexperimensealanember $22(1) \times 1 \mathbb{R}e^{8} \text{GeV} 33.22(1) \times \mathbb{R}e^{42} \oplus 1.479(3) \times 1 \mathbb{R}e^{3}$ EW Penguin(s) are comparable to QCD one(s) due to 3.2

\ //Agcidental) almost/cancetation happens between A₀|sм & A₂|sм. [|εsм| ~ 10⁻³, |ε'sм| ~ 10⁻⁷]

$$\frac{\operatorname{Re}A_0}{\operatorname{Re}A_2} \equiv \frac{1}{\omega} = 22.46 \cdot \frac{\operatorname{Re}A_0}{\operatorname{Re}A_2} \equiv \frac{1}{\omega} = 22.46 \cdot (4)$$

are found to Review: properties of $\epsilon'(\kappa)/\epsilon(\kappa)$

GeV = 102.8(2.7.586W) = 102(3.5376W) = 5.1007(1256W)edbertingereichten the trans dum 46, -1 and 200phasiseshohad been phalsised on https://www.alkised.on/ mplitis de provide an an and a char participation of the hlaboration2 [183,u35] /whereas achieve and/or Penquin hpers 14, 17020espondurgi ynthe oxpespondurgi ynthe oxpespondurgi ynthe oxpespondurgi ynthe oxpespondurgi ynthe operator(s) : Jiffeadilitatis carroarisonstrith [10] and this f BI 35 onversulles 23, 25, 3/2/2 in the present, vap \bar{u}, d **a**D**t** erexperiences eal anember $3.22(1) \times 1 \mathbb{R}e^{8} \text{GeV} 33.22(1) \times \overline{\text{ReA}_{2}} \oplus 1.479(3) \times 1 \mathbb{R}e^{8} \text{GeV} 1.479(3)$

\ / Accidental) almost/cancetation happens between A₀|sм & A₂|sм. [|εsм| ~ 10-³, |ε'sм| ~ 10-7]

(4

• If less-cance Red_{A_2} is $\operatorname{Lest}_{\omega}$ is $\operatorname{Le$

• operators for ϵ'/ϵ :

[A.J.Buras et al., arXiv:1507.06345,1601.00005]

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= \sum_{j=1-10} C_j \cdot Q_j \,, \\ Q_1 &= (\bar{s}^{b'} u^{a'})_{V-A} (\bar{u}^{a'} d^{b'})_{V-A} \,, \qquad Q_2 &= (\bar{s}' u')_{V-A} (\bar{u}' d')_{V-A} \,, \\ Q_3 &= (\bar{s}' d')_{V-A} \sum_{q'} (\bar{q}' q')_{V-A} \,, \qquad Q_4 &= (\bar{s}^{b'} d^{a'})_{V-A} \sum_{q'} (\bar{q}^{a'} q^{b'})_{V-A} \,, \\ Q_5 &= (\bar{s}' d')_{V-A} \sum_{q'} (\bar{q}' q')_{V+A} \,, \qquad Q_6 &= (\bar{s}^{b'} d^{a'})_{V-A} \sum_{q'} (\bar{q}^{a'} q^{b'})_{V+A} \,, \\ Q_7 &= \frac{3}{2} (\bar{s}' d')_{V-A} \sum_{q'} Q_{em}^q (\bar{q}' q')_{V+A} \,, \qquad Q_8 &= \frac{3}{2} (\bar{s}^{b'} d^{a'})_{V-A} \sum_{q'} Q_{em}^q (\bar{q}^{a'} q^{b'})_{V+A} \,, \\ Q_9 &= \frac{3}{2} (\bar{s}' d')_{V-A} \sum_{q'} Q_{em}^q (\bar{q}' q')_{V-A} \,, \qquad Q_{10} &= \frac{3}{2} (\bar{s}^{b'} d^{a'})_{V-A} \sum_{q'} Q_{em}^q (\bar{q}^{a'} q^{b'})_{V-A} \,, \end{aligned}$$

Wilson coefficients in our scenario:

$$\begin{split} C_1(m_\rho) &= 0\,, \\ C_2(m_\rho) &= -i \cdot \frac{1}{8} \frac{g_W^2 g_{\rho L}^{12}}{m_\rho^2 g_\rho} \,, \\ C_3(m_\rho) &= i \cdot \frac{1}{24} \frac{g_s^2 g_{\rho L}^{12}}{m_\rho^2 g_\rho} + i \cdot \frac{1}{8} \frac{g_W^2 g_{\rho L}^{12}(-Y_q)}{m_\rho^2 g_\rho} - i \cdot \frac{1}{144} \frac{g_Y^2 g_{\rho L}^{12}}{m_\rho^2 g_\rho} \,, \\ C_4(m_\rho) &= -i \cdot \frac{1}{8} \frac{g_s^2 g_{\rho L}^{12}}{m_\rho^2 g_\rho} \,, \\ C_5(m_\rho) &= i \cdot \frac{1}{24} \frac{g_s^2 g_{\rho L}^{12}}{m_\rho^2 g_\rho} \,, \\ C_7(m_\rho) &= -i \cdot \frac{1}{36} \frac{g_Y^2 g_{\rho L}^{12}}{m_\rho^2 g_\rho} \,, \\ C_7(m_\rho) &= -i \cdot \frac{1}{12} \frac{g_W^2 g_{\rho L}^{12}}{m_\rho^2 g_\rho} \,, \\ C_9(m_\rho) &= i \cdot \frac{1}{12} \frac{g_W^2 g_{\rho L}^{12}}{m_\rho^2 g_\rho} \,, \\ \end{split}$$

• NLO formula for ϵ'/ϵ :

[T.Kitahara et al., arXiv:1607.06727]

 $\langle \vec{Q}_{\epsilon'}(1.3 \,\text{GeV})^T \rangle = (0.345112, 0.132542, 0.0340124, -0.178558, 0.152483, 0.288073, 2.65313, 17.3046, 0.526475, 0.281154) (\text{GeV})^3,$

$$\hat{U}(1.3\,\text{GeV},\mu_{\text{NP}}) \simeq \hat{U}_{0,1,fit} + \hat{U}_{0,2,fit} \ln \frac{\mu_{\text{NP}}[\text{GeV}]}{1000\,\text{GeV}}.$$