
 talk @ Corfu Summer Institute: Workshop on the Standard Model and beyond (31th Aug. to 9th Sept. 2018), 
Mon Repos Estate, Corfu, Greece; 3rd September 2018

based on collaborations with

Shinya Matsuzaki (Jilin Univ., China),
Kei Yamamoto (Univ. of Zurich)

[arXiv:1806.02312, submitted to JHEP]

Kenji(Kenđi) Nishiwaki (KIAS)
니시와키 켄지, 西脇 健二

Simultaneous explanation of K & B 
anomalies in vectorlike compositeness

On 12-13 Sept. 2018

Seoul, Korea Zagreb, Croatia



Current Status of LHC (cont’d)
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No direct signal of BSM 

even in 13TeV LHC run…

[ATLAS wiki]
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Table 1: The signal yields for B0
s ! �µ+µ� decays, as well as the di↵erential branching fraction

relative to the normalisation mode and the absolute di↵erential branching fraction, in bins of q2.
The given uncertainties are (from left to right) statistical, systematic, and the uncertainty on the
branching fraction of the normalisation mode.

q2 bin [GeV2/c4] N�µµ
dB(B0

s!�µµ)
B(B0

s!J/ �)dq2 [10�5GeV�2c4] dB(B0
s!�µ+µ�)
dq2 [10�8GeV�2c4]

0.1 < q2 < 2.0 85+11
�10 5.44+0.68
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Figure 4: Di↵erential branching fraction of the decay B0
s ! �µ+µ�, overlaid with SM predic-

tions [4,5] indicated by blue shaded boxes. The vetoes excluding the charmonium resonances are
indicated by grey areas.

measurement is evaluated by varying the Wilson coe�cient C9 used in the generation
of simulated signal events. By allowing a New Physics contribution of �1.5, which is
motivated by the global fit results in Ref. [38], the resulting systematic uncertainty is
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[HFAG summary for Summer 2018]

Anomalies in Flavor Observables have been reported!

CP even

CP	odd
!

: pseudo scalar
� CP odd

KL → ππ	decay	is	forbidden	if	CP	is	conserved

CP violation in Kaon

1964	KL→2π	was	observed	� CP	symmetry	is	violated

[courtesy of K.Yamamoto]

A discrepancy in the CP-violation
of the Kaon.
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0.2 0.3 0.4 0.5 0.6
R(D)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
(D

*) BaBar, PRL109,101802(2012)
Belle, PRD92,072014(2015)
LHCb, PRL115,111803(2015)
Belle, PRD94,072007(2016)
Belle, PRL118,211801(2017)
LHCb, PRL120,171802(2018)
Average

Average of SM predictions

 = 1.0 contours2χΔ

 0.003±R(D) = 0.299 
 0.005±R(D*) = 0.258 

HFLAV

Summer 2018

) = 74%2χP(

σ4

σ2

HFLAV
Summer 2018

Table 1: The signal yields for B0
s ! �µ+µ� decays, as well as the di↵erential branching fraction

relative to the normalisation mode and the absolute di↵erential branching fraction, in bins of q2.
The given uncertainties are (from left to right) statistical, systematic, and the uncertainty on the
branching fraction of the normalisation mode.

q2 bin [GeV2/c4] N�µµ
dB(B0

s!�µµ)
B(B0

s!J/ �)dq2 [10�5GeV�2c4] dB(B0
s!�µ+µ�)
dq2 [10�8GeV�2c4]

0.1 < q2 < 2.0 85+11
�10 5.44+0.68

�0.64 ± 0.13 5.85+0.73
�0.69 ± 0.14± 0.44

2.0 < q2 < 5.0 60+10
�9 2.38+0.39

�0.37 ± 0.06 2.56+0.42
�0.39 ± 0.06± 0.19

5.0 < q2 < 8.0 83+12
�11 2.98+0.41

�0.39 ± 0.07 3.21+0.44
�0.42 ± 0.08± 0.24

11.0 < q2 < 12.5 70+10
�10 4.37+0.64

�0.61 ± 0.14 4.71+0.69
�0.65 ± 0.15± 0.36

15.0 < q2 < 17.0 83+10
�10 4.20+0.53

�0.50 ± 0.11 4.52+0.57
�0.54 ± 0.12± 0.34

17.0 < q2 < 19.0 54+8
�7 3.68+0.53

�0.50 ± 0.13 3.96+0.57
�0.54 ± 0.14± 0.30

1.0 < q2 < 6.0 101+13
�12 2.40+0.30

�0.29 ± 0.07 2.58+0.33
�0.31 ± 0.08± 0.19

15.0 < q2 < 19.0 136+13
�13 3.75+0.37

�0.35 ± 0.12 4.04+0.39
�0.38 ± 0.13± 0.30

]4c/2 [GeV2q
5 10 15

]
4 c

-2
G

eV
-8

 [
1

0
2

q
)/

d
µ

µ
φ

→
s0

B
d

B
( 0

1

2

3

4

5

6

7

8

9
LHCb

SM pred.

Data

Figure 4: Di↵erential branching fraction of the decay B0
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[HFAG summary for Summer 2018]

Anomalies in Flavor Observables have been reported!

CP even

CP	odd
!

: pseudo scalar
� CP odd

KL → ππ	decay	is	forbidden	if	CP	is	conserved

CP violation in Kaon

1964	KL→2π	was	observed	� CP	symmetry	is	violated

[courtesy of K.Yamamoto]

A discrepancy in the CP-violation
of the Kaon.Indirect signals of BSM 

are detected in 

flavor experiments!! 

Very exciting!
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the first collision of the SuperKEKB (Belle II) @ KEK on 26th April 2018

NA62 exp. @ CERN KOTO exp. @ J-PARC

Various (new) experiments are ongoing (planned)!
Intro: 3/10
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Three anomalies: RK(*)[+associates], RD(*), ε’/ε

in B meson
(including bottom quark)

in K meson
(including strange quark)

e.g., π+ is

[picture from web]
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Three anomalies: RK(*)[+associates], RD(*), ε’/ε

A brief summary for RK (⇤) anomaly

Kenji Nishiwaki
*

School of Physics, Korea Institute for Advanced Study

Ver. 26 May 2017, (11h 50min in Korean ST)

In this writeup, we provide a brief summary for RK (⇤) anomaly.

1 Introduction

Very recently (18th April 2017) at a seminar in CERN [1], the LHCb experimental group announced the
flavor measurement as

RK⇤ ⌘
B(B ! K⇤µ+µ�)
B(B ! K⇤e+e�)

=
8>
<
>
:

0.660+0.110�0.070 ± 0.024 for (2mµ)2 < q2 < 1.1GeV2

0.685+0.113�0.069 ± 0.047 for 1.1GeV2 < q2 < 6GeV2 , (1.1)

where q2 means the di-muon invariant mass, where it shows a similar trends in the LHCb RK measure-
ment [2]

RK ⌘
B(B ! K µ+µ�)
B(B ! Ke+e�)

= 0.745+0.090�0.074 ± 0.036 for 1GeV2 < q2 < 6GeV2. (1.2)

In the kinetic region q2 � m2
µ, the ratios, if the Standard model (SM) is completely correct, should be

very close to unity due to lepton flavor universality in the SM. Thereby, the 2.4� and 2.6�-deviated
results may indicate physics beyond the SM, which violates the lepton flavor universality.

2 A basic setup

When we consider that the RK (⇤) anomaly1 originates from interactions of a new Z0 gauge boson, it should
couple (at least) with µ̄µ and b̄s like in [4] (see also [5–7])

LZ 0 3
f

�L
µµµ�

µPLµ +
⇣
�L

sbs�µPLb + h.c.
⌘ g

Z0µ + [L ! R] , (2.1)

where PR/L ⌘ (1± �5)/2 shows the chiral projectors and we take into account of not only the left-handed,
but also right-handed ones. The spinor fields represent mass eigenstates of the SM fermions.

In general, the e�ective interaction of an electromagnetic-neutral vector particle should be defined as

Le↵ = �He↵ =

8>>>>>
<
>>>>>
:

� 1

2M2
Z 0

J µJ0µ if Jµ = J0µ,

� 1

M2
Z 0

J µJ0µ if Jµ , J0µ,
(2.2)

where MZ 0 means the mass of the vector boson. Here, the overall minus sign originate from the vector-
boson propagator, and the factor two is introduced to compensate the combinatoric factor of two from
expanding the quadratic form of J0µJ µ or deriving corresponding Feynman rules.

* e-mail: nishiken@kias.re.kr
1 A recent comprehensive review article on rare B decays is available [3].
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[LHCb (seminar in CERN on 18th April), arXiv:1705.05802]

Table 1: The signal yields for B0
s ! �µ+µ� decays, as well as the di↵erential branching fraction

relative to the normalisation mode and the absolute di↵erential branching fraction, in bins of q2.
The given uncertainties are (from left to right) statistical, systematic, and the uncertainty on the
branching fraction of the normalisation mode.
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Figure 4: Di↵erential branching fraction of the decay B0
s ! �µ+µ�, overlaid with SM predic-

tions [4,5] indicated by blue shaded boxes. The vetoes excluding the charmonium resonances are
indicated by grey areas.

measurement is evaluated by varying the Wilson coe�cient C9 used in the generation
of simulated signal events. By allowing a New Physics contribution of �1.5, which is
motivated by the global fit results in Ref. [38], the resulting systematic uncertainty is
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5

(Mbc < 5.27 GeV/c2). For each measurement in q2, the
signal fraction is derived as a function of Mbc. The back-
ground angular distribution is described using the direct
product of kernel density template histograms [22] for
�, ✓` and ✓K while the shape is predetermined from the
Mbc sideband. Acceptance and e�ciency e↵ects are ac-
counted for in the fit by weighting each event by the
inverse of its combined e�ciency, which is derived from
the direct product of the e�ciencies in �, ✓`, ✓K and
q2. The individual reconstruction e�ciency for each ob-
servable is obtained by extracting the ratio between the
reconstructed and generated MC distributions.

All methods are tested and evaluated in pseudo-
experiments using MC samples for each measurement
and the results are compared to the input values. Sys-
tematic uncertainties are considered if they introduce an
angular- or q2-dependent bias to the distributions of sig-
nal or background candidates. Small correlations be-
tween ✓` and q2 are not considered in the treatment of
the reconstruction e�ciency. The deviation between a
fit based on generator truth and an MC sample after
detector simulation and reconstruction reweighted with
e�ciency corrections is evaluated for a bias. The di↵er-
ence between the two fits (0.045 on average) is taken as
the systematic uncertainty for the e�ciency correction;
this is the largest systematic uncertainty. Peaking back-
grounds are estimated for each q2 bin using MC. In total,
fewer than six (one) such background events are expected
in the muon (electron) channels. The impact of the
peaking component is simulated by performing pseudo-
experiments with MC samples for signal and background
according to the measured signal yields, replacing six ran-
domly selected events from the signal class with events
from simulated peaking background in each measure-
ment. The observed deviation from simulated values
(0.02 on average) is taken as the systematic uncertainty.
An error on the background parametrization is estimated
by repeating all fits with an alternative background de-
scription using third-order polynomials and taking the
observed deviation (0.028 on average) as the systematic
error. Finally, an error on the signal parametrization
is considered by repeating the fit with the signal shape
parameters adjusted by ±1�, leading to systematic un-
certainties of order 10�4. Signal cross-feed is evaluated
for all signal decay channels and found to be insignificant.
The parametrization in Eq. 1 does not include a possi-
ble S-wave contribution under the K⇤(892) mass region.
With the expected fraction of 5% [1, 20], we estimate
the S-wave contribution for each measurement to be less
than one event and the resulting e↵ects to be negligible.
Statistically equal numbers of B and B̄ candidates in the
signal window are found; consequently, CP-asymmetric
contributions to the measured CP-even parameters are
neglected. The total systematic uncertainty is calculated
as the sum in quadrature of the individual values.

The result of all fits is presented in Table I and dis-

FIG. 2. P 0
4 and P 0

5 observables for combined, electron and

muon modes. The SM predictions are provided by DHMV

[9] and lattice QCD [24] and displayed as boxes for the muon

modes only. The central values of the data points for the

electron and muon modes are shifted horizontally for better

readability.

played in Fig. 2 where it is compared to SM predictions
by DHMV, which refers to the soft form-factor method
of Ref. [23]. Predictions for the 14.18 GeV2/c2 < q2 <
19.00 GeV2/c2 bin are calculated using lattice QCD with
QCD form factors from Ref. [24]. The predictions include
the lepton mass, leading to minor corrections between
the SM values for the electron and muon modes. For the
electron mode, fits in the region 10.09 GeV2/c2 < q2 <
12.90 GeV2/c2 are excluded because it overlaps with the
 (2S) veto range, leading to insu�cient statistics for sta-
ble fit results. In total, all measurements are compatible
with SM predictions. The strongest tension of 2.6� (in-
cluding systematic uncertainty) is observed in P 0

5 of the
muon modes for the region 4 GeV2/c2 < q2 < 8 GeV2/c2;
this is in the same region where LHCb reported the so-
called P 0

5 anomaly [1, 20]. In the same region, the elec-
tron modes deviate by 1.3� and all channels combined

[Belle, arXiv:1612.05014] ]2 [GeV2q
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Figure 10: The measured values of FL , S3, S4, S5, S7, S8 compared with predictions from the theoretical calculations
discussed in the text (Section 8). Statistical and total uncertainties are shown for the data, i.e. the inner mark
indicates the statistical uncertainty and the total error bar the total uncertainty.
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[ATLAS, ATLAS-CONF-2017-023]

deviations being observed in
associated variables

suggesting lepton flavor violation (2.2-2.6σ) [=1 in SM]
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Three anomalies: RK(*)[+associates], RD(*), ε’/ε

Interpreting Hints for Lepton Flavor Universality Violation

Wolfgang Altmannshofer,1, ⇤ Peter Stangl,2, † and David M. Straub2, ‡

1
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA

2
Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching, Germany

We interpret the recent hints for lepton flavor universality violation in rare B meson decays. Based on
a model-independent e↵ective Hamiltonian approach, we determine regions of new physics parameter
space that give a good description of the experimental data on RK and RK⇤ , which is in tension
with Standard Model predictions. We suggest further measurements that can help narrowing down
viable new physics explanations. We stress that the measured values of RK and RK⇤ are fully
compatible with new physics explanations of other anomalies in rare B meson decays based on the
b ! sµµ transition. If the hints for lepton flavor universality violation are first signs of new physics,
perturbative unitarity implies new phenomena below a scale of ⇠ 100 TeV.

Introduction. The wealth of data on rare leptonic
and semi-leptonic b hadron decays that has been accu-
mulated at the LHC so far allows the Standard Model
(SM) CKM picture of flavor and CP violation to be
tested with unprecedented sensitivity. Interestingly, cur-
rent data on rare b ! s`` decays show an intriguing
pattern of deviations from the SM predictions both for
branching ratios [1–3] and angular distributions [4, 5].
The latest global fits find that the data consistently
points with high significance to a non-standard e↵ect
that can be described by a four fermion contact inter-
action C9 (s̄�⌫

PLb)(µ̄�⌫µ) [6] (see also earlier studies [7–
9]). Right now the main obstacle towards conclusively
establishing a beyond-SM e↵ect is our inability to ex-
clude large hadronic e↵ects as the origin of the apparent
discrepancies (see e.g. [10–15]).

In this respect, observables in b ! s`` transitions that
are practically free of hadronic uncertainties are of partic-
ular interest. Among them are lepton flavor universality
(LFU) ratios, i.e. ratios of branching ratios involving
di↵erent lepton flavors such as [16–18]

RK =
B(B ! Kµ

+
µ

�)

B(B ! Ke+e�)
, RK⇤ =

B(B ! K
⇤
µ

+
µ

�)

B(B ! K⇤e+e�)
.

(1)
In the SM, the only sources of lepton flavor universality
violation are the negligibly small neutrino masses, the
masses of the charged leptons and their interactions with
the Higgs. Higgs interactions do not lead to any ob-
servable e↵ects in rare b decays and lepton mass e↵ects
become relevant only for a very small di-lepton invari-
ant mass squared close to the kinematic limit q

2 ⇠ 4m
2
` .

Over a very broad range of q
2 the SM accurately pre-

dicts RK = RK⇤ = 1, with theoretical uncertainties of
O(1%) [19]. Deviations from the SM predictions can be
expected in various models of new physics (NP), e.g. Z

0

models based on gauged Lµ �L⌧ [20–22] or other gauged
flavor symmetries [23–25], models with partial compos-
iteness [26–28], and models with leptoquarks [29–34].

A first measurement of RK by the LHCb collabora-
tion [35] in the di-lepton invariant mass region 1 GeV2

<

q
2

< 6 GeV2,

R
[1,6]
K = 0.745+0.090

�0.074 ± 0.036 , (2)

shows a 2.6� deviation from the SM prediction. Very
recently, LHCb presented first results for RK⇤ [36],

R
[0.045,1.1]
K⇤ = 0.660+0.110

�0.070 ± 0.024 , (3)

R
[1.1,6]
K⇤ = 0.685+0.113

�0.069 ± 0.047 , (4)

where the superscript indicates the di-lepton invariant
mass bin in GeV2. These measurements are in tension
with the SM at the level of 2.4 and 2.5�, respectively.
Intriguingly, they are in good agreement with the recent
RK⇤ predictions in [6] that are based on global fits of
b ! sµµ decay data, assuming b ! see decays to be
SM-like.

In this letter we interpret the RK(⇤) measurements us-
ing a model-independent e↵ective Hamiltonian approach
(see [37–43] for earlier model independent studies of RK).
We also include Belle measurements of LFU observables
in the B ! K

⇤
`
+
`
� angular distibutions [5]. We do

not consider early results on RK(⇤) from BaBar [44] and
Belle [45] which, due to their large uncertainties, have
little impact. We identify the regions of NP parameter
space that give a good description of the experimental
data. We show how future measurements can lift flat di-
rections in the NP parameter space and discuss the com-
patibility of the RK(⇤) measurements with other anoma-
lies in rare B meson decays.
Model independent implications for new physics. We

assume that NP in the b ! s`` transitions is su�ciently
heavy such that it can be model-independently described
by an e↵ective Hamiltonian, He↵ = HSM

e↵ + HNP
e↵ ,

HNP
e↵ = �4 GFp

2
VtbV

⇤
ts

e
2

16⇡2

X

i,`

(C`
i O

`
i + C

0 `
i O

0 `
i ) + h.c. ,

(5)
with the following four-fermion contact interactions,

O
`
9 = (s̄�µPLb)(¯̀�µ

`) , O
0 `
9 = (s̄�µPRb)(¯̀�µ

`) , (6)

O
`
10 = (s̄�µPLb)(¯̀�µ

�5`) , O
0 `
10 = (s̄�µPRb)(¯̀�µ

�5`) , (7)
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Introduction. The wealth of data on rare leptonic
and semi-leptonic b hadron decays that has been accu-
mulated at the LHC so far allows the Standard Model
(SM) CKM picture of flavor and CP violation to be
tested with unprecedented sensitivity. Interestingly, cur-
rent data on rare b ! s`` decays show an intriguing
pattern of deviations from the SM predictions both for
branching ratios [1–3] and angular distributions [4, 5].
The latest global fits find that the data consistently
points with high significance to a non-standard e↵ect
that can be described by a four fermion contact inter-
action C9 (s̄�⌫

PLb)(µ̄�⌫µ) [6] (see also earlier studies [7–
9]). Right now the main obstacle towards conclusively
establishing a beyond-SM e↵ect is our inability to ex-
clude large hadronic e↵ects as the origin of the apparent
discrepancies (see e.g. [10–15]).

In this respect, observables in b ! s`` transitions that
are practically free of hadronic uncertainties are of partic-
ular interest. Among them are lepton flavor universality
(LFU) ratios, i.e. ratios of branching ratios involving
di↵erent lepton flavors such as [16–18]

RK =
B(B ! Kµ

+
µ

�)

B(B ! Ke+e�)
, RK⇤ =

B(B ! K
⇤
µ

+
µ

�)

B(B ! K⇤e+e�)
.

(1)
In the SM, the only sources of lepton flavor universality
violation are the negligibly small neutrino masses, the
masses of the charged leptons and their interactions with
the Higgs. Higgs interactions do not lead to any ob-
servable e↵ects in rare b decays and lepton mass e↵ects
become relevant only for a very small di-lepton invari-
ant mass squared close to the kinematic limit q

2 ⇠ 4m
2
` .

Over a very broad range of q
2 the SM accurately pre-

dicts RK = RK⇤ = 1, with theoretical uncertainties of
O(1%) [19]. Deviations from the SM predictions can be
expected in various models of new physics (NP), e.g. Z

0

models based on gauged Lµ �L⌧ [20–22] or other gauged
flavor symmetries [23–25], models with partial compos-
iteness [26–28], and models with leptoquarks [29–34].

A first measurement of RK by the LHCb collabora-
tion [35] in the di-lepton invariant mass region 1 GeV2

<

q
2

< 6 GeV2,

R
[1,6]
K = 0.745+0.090

�0.074 ± 0.036 , (2)

shows a 2.6� deviation from the SM prediction. Very
recently, LHCb presented first results for RK⇤ [36],

R
[0.045,1.1]
K⇤ = 0.660+0.110

�0.070 ± 0.024 , (3)

R
[1.1,6]
K⇤ = 0.685+0.113

�0.069 ± 0.047 , (4)

where the superscript indicates the di-lepton invariant
mass bin in GeV2. These measurements are in tension
with the SM at the level of 2.4 and 2.5�, respectively.
Intriguingly, they are in good agreement with the recent
RK⇤ predictions in [6] that are based on global fits of
b ! sµµ decay data, assuming b ! see decays to be
SM-like.

In this letter we interpret the RK(⇤) measurements us-
ing a model-independent e↵ective Hamiltonian approach
(see [37–43] for earlier model independent studies of RK).
We also include Belle measurements of LFU observables
in the B ! K

⇤
`
+
`
� angular distibutions [5]. We do

not consider early results on RK(⇤) from BaBar [44] and
Belle [45] which, due to their large uncertainties, have
little impact. We identify the regions of NP parameter
space that give a good description of the experimental
data. We show how future measurements can lift flat di-
rections in the NP parameter space and discuss the com-
patibility of the RK(⇤) measurements with other anoma-
lies in rare B meson decays.
Model independent implications for new physics. We

assume that NP in the b ! s`` transitions is su�ciently
heavy such that it can be model-independently described
by an e↵ective Hamiltonian, He↵ = HSM

e↵ + HNP
e↵ ,

HNP
e↵ = �4 GFp

2
VtbV
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(5)
with the following four-fermion contact interactions,

O
`
9 = (s̄�µPLb)(¯̀�µ

`) , O
0 `
9 = (s̄�µPRb)(¯̀�µ

`) , (6)

O
`
10 = (s̄�µPLb)(¯̀�µ

�5`) , O
0 `
10 = (s̄�µPRb)(¯̀�µ

�5`) , (7)
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Figure 7: Cartoon illustrating the dimuon mass squared, q2, dependence of the di↵erential decay rate of B ! K
⇤
`
+
`
� decays.

The di↵erent contributions to the decay rate are also illustrated. For B ! K`
+
`
� decays there is no photon pole enhancement

due to angular momentum conservation.

short lifetime – in contrast to the pseudoscalar mesons ⇡ and K, K⇤ and � are not stable under the strong
interactions. The finite lifetime is neglected in the lattice simulation and represents a source of systematic
uncertainty. Overcoming this limitation is in the focus of current e↵orts [196]. As for the B to pseudoscalar
transitions, combined fits of lattice and LCSR results valid in di↵erent kinematical regimes lead to increased
precision and less dependence on extrapolation models [131].

Beyond the form-factors, the next most significant uncertainties are hadronic uncertainties associated
to non-factorisable corrections. These are illustrated in Fig. 6. Diagrams (a) and (b) represent the leading
order short-distance contributions from the operators Q7...10 that factorise “naively” into a hadronic and
leptonic current. The size of the non-factorisable e↵ects and the theoretical methods required to compute
them vary strongly with q2 (see Fig. 7 for a cartoon of the q2 dependence of the di↵erential branching ratio
and the relevant hadronic e↵ects).

At intermediate q2, around the masses of the J/ and  (2S), the charm loop in diagram (c) goes on
shell, the decays turn into non-leptonic decays, e.g. B ! KJ/ (! `+`�), and quark-hadron duality breaks
down [197]. These regions are typically vetoed in the experimental analyses.

At low q2, the relevant non-factorisable e↵ects include weak annihilation as in diagram (f) and hard
spectator scattering as in diagram (g). They have been calculated for b ! s and b ! d transitions involving
vector mesons in QCD factorisation to NLO in QCD [135, 136] as well as in soft-collinear e↵ective theory [198]
and shown to be negligible in B ! K`+`� decays [199, 200]. Weak annihilation and spectator scattering
involving Q8 have been computed also in LCSR [139, 140]. Diagram (c) corresponds to the contribution
of four-quark operators that is usually written as a contribution to the “e↵ective” Wilson coe�cient Ce↵

9
.

Perturbative QCD corrections to the matrix elements of Q1,2 as in diagram (d) are numerically sizeable and
are known from the inclusive decay as discussed above. The main challenge in exclusive b ! s decays at
low q2 is represented by soft gluon corrections to the charm loop shown in diagram (e). These have been
estimated in LCSR [138, 201] but remain a significant source of uncertainty.

27

[T.Blake et al., arXiv:1606.00916]

2

Coe↵. best fit 1� 2� pull

Cµ
9 �1.59 [�2.15, �1.13] [�2.90, �0.73] 4.2�

Cµ
10 +1.23 [+0.90, +1.60] [+0.60, +2.04] 4.3�

Ce
9 +1.58 [+1.17, +2.03] [+0.79, +2.53] 4.4�

Ce
10 �1.30 [�1.68, �0.95] [�2.12, �0.64] 4.4�

Cµ
9 = �Cµ

10 �0.64 [�0.81, �0.48] [�1.00, �0.32] 4.2�

Ce
9 = �Ce

10 +0.78 [+0.56, +1.02] [+0.37, +1.31] 4.3�

C0µ
9 �0.00 [�0.26, +0.25] [�0.52, +0.51] 0.0�

C0µ
10 +0.02 [�0.22, +0.26] [�0.45, +0.49] 0.1�

C0 e
9 +0.01 [�0.27, +0.31] [�0.55, +0.62] 0.0�

C0 e
10 �0.03 [�0.28, +0.22] [�0.55, +0.46] 0.1�

TABLE I. Best-fit values and pulls for scenarios with NP in
one individual Wilson coe�cient.

and the corresponding Wilson coe�cients C
`
i , with ` =

e, µ. We do not consider other dimension-six operators
that can contribute to b ! s`` transitions. Dipole oper-
ators and four-quark operators [46] cannot lead to vio-
lation of LFU and are therefore irrelevant for this work.
Four-fermion contact interactions containing scalar cur-
rents would be a natural source of LFU violation. How-
ever, they are strongly constrained by existing measure-
ments of the Bs ! µµ and Bs ! ee branching ra-
tios [47, 48]. Imposing SU(2)L invariance, these bounds
cannot be avoided [49]. We have checked explicitly that
SU(2)L invariant scalar operators cannot lead to any ap-
preciable e↵ects in RK(⇤) (cf. [50]).

For the numerical analysis we use the open source code
flavio [51]. Based on the experimental measurements
and theory predictions for the LFU ratios RK(⇤) and
the LFU di↵erences of B ! K

⇤
`
+
`
� angular observ-

ables DP 0
4,5

(see below), we construct a �
2 function that

depends on the Wilson coe�cients and that takes into
account the correlations between theory uncertainties of
di↵erent observables. The experimental uncertainties are
presently dominated by statistics, so their correlations
can be neglected. For the SM we find �

2
SM = 24.4 for 5

degrees of freedom.
Tab. I lists the best fit values and pulls, defined as thep
��2 between the best-fit point and the SM point for

scenarios with NP in one individual Wilson coe�cient.
The plots in Fig. 1 show contours of constant ��

2 ⇡
2.3, 6.2, 11.8 in the planes of two Wilson coe�cients for
the scenarios with NP in C

µ
9 and C

µ
10 (top), in C

µ
9 and

C
e
9 (center), or in C

µ
9 and C

0 µ
9 (bottom), assuming the

remaining coe�cients to be SM-like.
The fit prefers NP in the Wilson coe�cients corre-

sponding to left-handed quark currents with high sig-
nificance ⇠ 4�. Negative C

µ
9 and positive C

µ
10 decrease

both B(B ! Kµ
+
µ

�) and B(B ! K
⇤
µ

+
µ

�) while pos-

FIG. 1. Allowed regions in planes of two Wilson coe�cients,
assuming the remaining coe�cients to be SM-like.

[global fit result for new physics]
[W.Altmannshofer et al., arXiv:1704.05435]

[see also e.g., arXiv:1704. 15340,1704.05435,1704.05438,1704.05444, 
 1704.05446,1704.05447, 1704.05672, 1704.7347, 1704.07397, 1704.08168]

(C9SM = -C10SM ~ 4)

[in the SM]

  

b sl

l
−

° electromagnetic penguin: C7

° vector electroweak: C9

° axial - vector electroweak: C10

Amplitudes from may interfere
w / contributions from NP

Many observables:
° Branching fractions
° Isospin asymmetry AI
° Lepton forward-backward asymmetry AFB

⇒ Exclusive BK * l l− , Inclusive BXs l
 l−

⇒ 2 orders of magnitude smaller than bs but rich NP search potential[pictures from Web]
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We interpret the recent hints for lepton flavor universality violation in rare B meson decays. Based on
a model-independent e↵ective Hamiltonian approach, we determine regions of new physics parameter
space that give a good description of the experimental data on RK and RK⇤ , which is in tension
with Standard Model predictions. We suggest further measurements that can help narrowing down
viable new physics explanations. We stress that the measured values of RK and RK⇤ are fully
compatible with new physics explanations of other anomalies in rare B meson decays based on the
b ! sµµ transition. If the hints for lepton flavor universality violation are first signs of new physics,
perturbative unitarity implies new phenomena below a scale of ⇠ 100 TeV.

Introduction. The wealth of data on rare leptonic
and semi-leptonic b hadron decays that has been accu-
mulated at the LHC so far allows the Standard Model
(SM) CKM picture of flavor and CP violation to be
tested with unprecedented sensitivity. Interestingly, cur-
rent data on rare b ! s`` decays show an intriguing
pattern of deviations from the SM predictions both for
branching ratios [1–3] and angular distributions [4, 5].
The latest global fits find that the data consistently
points with high significance to a non-standard e↵ect
that can be described by a four fermion contact inter-
action C9 (s̄�⌫

PLb)(µ̄�⌫µ) [6] (see also earlier studies [7–
9]). Right now the main obstacle towards conclusively
establishing a beyond-SM e↵ect is our inability to ex-
clude large hadronic e↵ects as the origin of the apparent
discrepancies (see e.g. [10–15]).

In this respect, observables in b ! s`` transitions that
are practically free of hadronic uncertainties are of partic-
ular interest. Among them are lepton flavor universality
(LFU) ratios, i.e. ratios of branching ratios involving
di↵erent lepton flavors such as [16–18]

RK =
B(B ! Kµ

+
µ

�)

B(B ! Ke+e�)
, RK⇤ =

B(B ! K
⇤
µ

+
µ

�)

B(B ! K⇤e+e�)
.

(1)
In the SM, the only sources of lepton flavor universality
violation are the negligibly small neutrino masses, the
masses of the charged leptons and their interactions with
the Higgs. Higgs interactions do not lead to any ob-
servable e↵ects in rare b decays and lepton mass e↵ects
become relevant only for a very small di-lepton invari-
ant mass squared close to the kinematic limit q

2 ⇠ 4m
2
` .

Over a very broad range of q
2 the SM accurately pre-

dicts RK = RK⇤ = 1, with theoretical uncertainties of
O(1%) [19]. Deviations from the SM predictions can be
expected in various models of new physics (NP), e.g. Z

0

models based on gauged Lµ �L⌧ [20–22] or other gauged
flavor symmetries [23–25], models with partial compos-
iteness [26–28], and models with leptoquarks [29–34].

A first measurement of RK by the LHCb collabora-
tion [35] in the di-lepton invariant mass region 1 GeV2

<

q
2

< 6 GeV2,

R
[1,6]
K = 0.745+0.090

�0.074 ± 0.036 , (2)

shows a 2.6� deviation from the SM prediction. Very
recently, LHCb presented first results for RK⇤ [36],

R
[0.045,1.1]
K⇤ = 0.660+0.110

�0.070 ± 0.024 , (3)

R
[1.1,6]
K⇤ = 0.685+0.113

�0.069 ± 0.047 , (4)

where the superscript indicates the di-lepton invariant
mass bin in GeV2. These measurements are in tension
with the SM at the level of 2.4 and 2.5�, respectively.
Intriguingly, they are in good agreement with the recent
RK⇤ predictions in [6] that are based on global fits of
b ! sµµ decay data, assuming b ! see decays to be
SM-like.

In this letter we interpret the RK(⇤) measurements us-
ing a model-independent e↵ective Hamiltonian approach
(see [37–43] for earlier model independent studies of RK).
We also include Belle measurements of LFU observables
in the B ! K

⇤
`
+
`
� angular distibutions [5]. We do

not consider early results on RK(⇤) from BaBar [44] and
Belle [45] which, due to their large uncertainties, have
little impact. We identify the regions of NP parameter
space that give a good description of the experimental
data. We show how future measurements can lift flat di-
rections in the NP parameter space and discuss the com-
patibility of the RK(⇤) measurements with other anoma-
lies in rare B meson decays.
Model independent implications for new physics. We

assume that NP in the b ! s`` transitions is su�ciently
heavy such that it can be model-independently described
by an e↵ective Hamiltonian, He↵ = HSM

e↵ + HNP
e↵ ,

HNP
e↵ = �4 GFp

2
VtbV

⇤
ts

e
2

16⇡2

X

i,`

(C`
i O

`
i + C

0 `
i O

0 `
i ) + h.c. ,

(5)
with the following four-fermion contact interactions,

O
`
9 = (s̄�µPLb)(¯̀�µ

`) , O
0 `
9 = (s̄�µPRb)(¯̀�µ

`) , (6)

O
`
10 = (s̄�µPLb)(¯̀�µ

�5`) , O
0 `
10 = (s̄�µPRb)(¯̀�µ

�5`) , (7)
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Introduction. The wealth of data on rare leptonic
and semi-leptonic b hadron decays that has been accu-
mulated at the LHC so far allows the Standard Model
(SM) CKM picture of flavor and CP violation to be
tested with unprecedented sensitivity. Interestingly, cur-
rent data on rare b ! s`` decays show an intriguing
pattern of deviations from the SM predictions both for
branching ratios [1–3] and angular distributions [4, 5].
The latest global fits find that the data consistently
points with high significance to a non-standard e↵ect
that can be described by a four fermion contact inter-
action C9 (s̄�⌫

PLb)(µ̄�⌫µ) [6] (see also earlier studies [7–
9]). Right now the main obstacle towards conclusively
establishing a beyond-SM e↵ect is our inability to ex-
clude large hadronic e↵ects as the origin of the apparent
discrepancies (see e.g. [10–15]).

In this respect, observables in b ! s`` transitions that
are practically free of hadronic uncertainties are of partic-
ular interest. Among them are lepton flavor universality
(LFU) ratios, i.e. ratios of branching ratios involving
di↵erent lepton flavors such as [16–18]

RK =
B(B ! Kµ

+
µ

�)

B(B ! Ke+e�)
, RK⇤ =

B(B ! K
⇤
µ

+
µ

�)

B(B ! K⇤e+e�)
.

(1)
In the SM, the only sources of lepton flavor universality
violation are the negligibly small neutrino masses, the
masses of the charged leptons and their interactions with
the Higgs. Higgs interactions do not lead to any ob-
servable e↵ects in rare b decays and lepton mass e↵ects
become relevant only for a very small di-lepton invari-
ant mass squared close to the kinematic limit q

2 ⇠ 4m
2
` .

Over a very broad range of q
2 the SM accurately pre-

dicts RK = RK⇤ = 1, with theoretical uncertainties of
O(1%) [19]. Deviations from the SM predictions can be
expected in various models of new physics (NP), e.g. Z

0

models based on gauged Lµ �L⌧ [20–22] or other gauged
flavor symmetries [23–25], models with partial compos-
iteness [26–28], and models with leptoquarks [29–34].

A first measurement of RK by the LHCb collabora-
tion [35] in the di-lepton invariant mass region 1 GeV2

<

q
2

< 6 GeV2,

R
[1,6]
K = 0.745+0.090

�0.074 ± 0.036 , (2)

shows a 2.6� deviation from the SM prediction. Very
recently, LHCb presented first results for RK⇤ [36],

R
[0.045,1.1]
K⇤ = 0.660+0.110

�0.070 ± 0.024 , (3)

R
[1.1,6]
K⇤ = 0.685+0.113

�0.069 ± 0.047 , (4)

where the superscript indicates the di-lepton invariant
mass bin in GeV2. These measurements are in tension
with the SM at the level of 2.4 and 2.5�, respectively.
Intriguingly, they are in good agreement with the recent
RK⇤ predictions in [6] that are based on global fits of
b ! sµµ decay data, assuming b ! see decays to be
SM-like.

In this letter we interpret the RK(⇤) measurements us-
ing a model-independent e↵ective Hamiltonian approach
(see [37–43] for earlier model independent studies of RK).
We also include Belle measurements of LFU observables
in the B ! K

⇤
`
+
`
� angular distibutions [5]. We do

not consider early results on RK(⇤) from BaBar [44] and
Belle [45] which, due to their large uncertainties, have
little impact. We identify the regions of NP parameter
space that give a good description of the experimental
data. We show how future measurements can lift flat di-
rections in the NP parameter space and discuss the com-
patibility of the RK(⇤) measurements with other anoma-
lies in rare B meson decays.
Model independent implications for new physics. We

assume that NP in the b ! s`` transitions is su�ciently
heavy such that it can be model-independently described
by an e↵ective Hamiltonian, He↵ = HSM

e↵ + HNP
e↵ ,

HNP
e↵ = �4 GFp

2
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with the following four-fermion contact interactions,
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9 = (s̄�µPLb)(¯̀�µ

`) , O
0 `
9 = (s̄�µPRb)(¯̀�µ

`) , (6)

O
`
10 = (s̄�µPLb)(¯̀�µ

�5`) , O
0 `
10 = (s̄�µPRb)(¯̀�µ

�5`) , (7)
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Figure 7: Cartoon illustrating the dimuon mass squared, q2, dependence of the di↵erential decay rate of B ! K
⇤
`
+
`
� decays.

The di↵erent contributions to the decay rate are also illustrated. For B ! K`
+
`
� decays there is no photon pole enhancement

due to angular momentum conservation.

short lifetime – in contrast to the pseudoscalar mesons ⇡ and K, K⇤ and � are not stable under the strong
interactions. The finite lifetime is neglected in the lattice simulation and represents a source of systematic
uncertainty. Overcoming this limitation is in the focus of current e↵orts [196]. As for the B to pseudoscalar
transitions, combined fits of lattice and LCSR results valid in di↵erent kinematical regimes lead to increased
precision and less dependence on extrapolation models [131].

Beyond the form-factors, the next most significant uncertainties are hadronic uncertainties associated
to non-factorisable corrections. These are illustrated in Fig. 6. Diagrams (a) and (b) represent the leading
order short-distance contributions from the operators Q7...10 that factorise “naively” into a hadronic and
leptonic current. The size of the non-factorisable e↵ects and the theoretical methods required to compute
them vary strongly with q2 (see Fig. 7 for a cartoon of the q2 dependence of the di↵erential branching ratio
and the relevant hadronic e↵ects).

At intermediate q2, around the masses of the J/ and  (2S), the charm loop in diagram (c) goes on
shell, the decays turn into non-leptonic decays, e.g. B ! KJ/ (! `+`�), and quark-hadron duality breaks
down [197]. These regions are typically vetoed in the experimental analyses.

At low q2, the relevant non-factorisable e↵ects include weak annihilation as in diagram (f) and hard
spectator scattering as in diagram (g). They have been calculated for b ! s and b ! d transitions involving
vector mesons in QCD factorisation to NLO in QCD [135, 136] as well as in soft-collinear e↵ective theory [198]
and shown to be negligible in B ! K`+`� decays [199, 200]. Weak annihilation and spectator scattering
involving Q8 have been computed also in LCSR [139, 140]. Diagram (c) corresponds to the contribution
of four-quark operators that is usually written as a contribution to the “e↵ective” Wilson coe�cient Ce↵

9
.

Perturbative QCD corrections to the matrix elements of Q1,2 as in diagram (d) are numerically sizeable and
are known from the inclusive decay as discussed above. The main challenge in exclusive b ! s decays at
low q2 is represented by soft gluon corrections to the charm loop shown in diagram (e). These have been
estimated in LCSR [138, 201] but remain a significant source of uncertainty.

27

[T.Blake et al., arXiv:1606.00916]

2

Coe↵. best fit 1� 2� pull

Cµ
9 �1.59 [�2.15, �1.13] [�2.90, �0.73] 4.2�

Cµ
10 +1.23 [+0.90, +1.60] [+0.60, +2.04] 4.3�

Ce
9 +1.58 [+1.17, +2.03] [+0.79, +2.53] 4.4�

Ce
10 �1.30 [�1.68, �0.95] [�2.12, �0.64] 4.4�

Cµ
9 = �Cµ

10 �0.64 [�0.81, �0.48] [�1.00, �0.32] 4.2�

Ce
9 = �Ce

10 +0.78 [+0.56, +1.02] [+0.37, +1.31] 4.3�

C0µ
9 �0.00 [�0.26, +0.25] [�0.52, +0.51] 0.0�

C0µ
10 +0.02 [�0.22, +0.26] [�0.45, +0.49] 0.1�

C0 e
9 +0.01 [�0.27, +0.31] [�0.55, +0.62] 0.0�

C0 e
10 �0.03 [�0.28, +0.22] [�0.55, +0.46] 0.1�

TABLE I. Best-fit values and pulls for scenarios with NP in
one individual Wilson coe�cient.

and the corresponding Wilson coe�cients C
`
i , with ` =

e, µ. We do not consider other dimension-six operators
that can contribute to b ! s`` transitions. Dipole oper-
ators and four-quark operators [46] cannot lead to vio-
lation of LFU and are therefore irrelevant for this work.
Four-fermion contact interactions containing scalar cur-
rents would be a natural source of LFU violation. How-
ever, they are strongly constrained by existing measure-
ments of the Bs ! µµ and Bs ! ee branching ra-
tios [47, 48]. Imposing SU(2)L invariance, these bounds
cannot be avoided [49]. We have checked explicitly that
SU(2)L invariant scalar operators cannot lead to any ap-
preciable e↵ects in RK(⇤) (cf. [50]).

For the numerical analysis we use the open source code
flavio [51]. Based on the experimental measurements
and theory predictions for the LFU ratios RK(⇤) and
the LFU di↵erences of B ! K

⇤
`
+
`
� angular observ-

ables DP 0
4,5

(see below), we construct a �
2 function that

depends on the Wilson coe�cients and that takes into
account the correlations between theory uncertainties of
di↵erent observables. The experimental uncertainties are
presently dominated by statistics, so their correlations
can be neglected. For the SM we find �

2
SM = 24.4 for 5

degrees of freedom.
Tab. I lists the best fit values and pulls, defined as thep
��2 between the best-fit point and the SM point for

scenarios with NP in one individual Wilson coe�cient.
The plots in Fig. 1 show contours of constant ��

2 ⇡
2.3, 6.2, 11.8 in the planes of two Wilson coe�cients for
the scenarios with NP in C

µ
9 and C

µ
10 (top), in C

µ
9 and

C
e
9 (center), or in C

µ
9 and C

0 µ
9 (bottom), assuming the

remaining coe�cients to be SM-like.
The fit prefers NP in the Wilson coe�cients corre-

sponding to left-handed quark currents with high sig-
nificance ⇠ 4�. Negative C

µ
9 and positive C

µ
10 decrease

both B(B ! Kµ
+
µ

�) and B(B ! K
⇤
µ

+
µ

�) while pos-

FIG. 1. Allowed regions in planes of two Wilson coe�cients,
assuming the remaining coe�cients to be SM-like.

[global fit result for new physics]
[W.Altmannshofer et al., arXiv:1704.05435]

[see also e.g., arXiv:1704. 15340,1704.05435,1704.05438,1704.05444, 
 1704.05446,1704.05447, 1704.05672, 1704.7347, 1704.07397, 1704.08168]

(C9SM = -C10SM ~ 4)

 (effective) vector interaction (effective) vector interaction

 s and b should be left-handed
(right-handed is irrelevant).

 Lepton part is ambiguous
(vector-like, left-handed,...).
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Three anomalies: RK(*)[+associates], RD(*), ε’/ε

R(D) =
B(B̄ ! D⌧�⌫̄(⌧))
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, R(D⇤) =
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 ` = e or µ

 
(taking averages)

B(D) = B0(D+) or B-(D0) (taking averages)

[HFAG summary for Summer2018]

 R(D)SM = 0.299 ± 0.003

 R(D*)SM = 0.258 ± 0.005

 ~4σ deviation from the SM
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B(D) = B0(D+) or B-(D0) (taking averages)

[HFAG summary for Summer2018]

 R(D)SM = 0.299 ± 0.003

 R(D*)SM = 0.258 ± 0.005

 ~4σ deviation from the SM

Latest Belle/LHCb results for RD* look close to SM.
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Three anomalies: RK(*)[+associates], RD(*), ε’/ε
 Recently, the direct CP violation of the K0 → 2π decays have been reevaluated 
 based on the latest lattice calculations of the hadron matrix elements, 
 where the theoretical uncertainty are significantly reduced.

1 Introduction

A deviation of the standard model (SM) prediction from the experimental result is
recently reported in the direct CP violation of the K ! ⇡⇡ decays, which is called
✏
0. The latest lattice calculations of the hadron matrix elements significantly reduced
the theoretical uncertainty [1–4] and yield [5, 6]

✓
✏
0

✏

◆

SM

=

8
<

:

(1.38 ± 6.90) ⇥ 10�4
, [RBC-UKQCD]

(1.9 ± 4.5) ⇥ 10�4
, [Buras et al.]

(1.06 ± 5.07) ⇥ 10�4
. [Kitahara et al.]

(1.1)

They are lower than the experimental result [7–10],
✓

✏
0

✏

◆

exp

= (16.6 ± 2.3) ⇥ 10�4
. (1.2)

The deviations correspond to the 2.8–2.9� level.
Several new physics (NP) models have been explored to explain the discrep-

ancy [11–21]. In the literature, electroweak penguin contributions to ✏
0
/✏ have been

studied.#1 In particular, the Z penguin contributions have been studied in de-
tail [11, 13, 15, 22]. The decay, s ! dqq̄ (q = u, d), proceeds by intermediating the Z

boson, and its flavor-changing (s–d) interaction is enhanced by NP. Then, the branch-
ing ratios of K ! ⇡⌫⌫̄ are likely to be deviated from the SM predictions once the
✏
0
/✏ discrepancy is explained. This is because the Z boson couples to the neutrinos

as well as the up and down quarks. They could be a signal to test the scenario.
Such a signal is constrained by the indirect CP violation of the K mesons. The

flavor-changing Z couplings a↵ect the indirect CP violation via the so-called double
penguin diagrams; the Z boson intermediates the transition, both of whose couplings
are provided by the flavor-changing Z couplings. Such a contribution is enhanced
when there are both the left- and right-handed couplings because of the chiral en-
hancement of the hadron matrix elements. This is stressed by Ref. [15] in the context
of the Z

0-exchange scenario. In the Z-boson case, since the left-handed coupling is
installed by the SM, the right-handed coupling must be constrained even without
NP contributions to the left-handed one. Such interference contributions between the
NP and the SM are overlooked in Refs. [11, 13, 15, 22] [23]. Therefore, the parameter
regions allowed by the indirect CP violation will change significantly. In this letter,
we revisit the Z-boson scenario.#2 It will be shown that the NP contributions to the
right-handed s–d coupling are tightly constrained due to the interference, and thus,
the branching ratio of KL ! ⇡

0
⌫⌫̄ is likely to be smaller than the SM predictions if

the ✏
0
/✏ discrepancy is explained. We will discuss that NP parameters are necessarily

tuned to enhance the ratio. A degree of the parameter tuning will be investigated to
estimate how large B(KL ! ⇡

0
⌫⌫̄) and B(K+

! ⇡
+
⌫⌫̄) can become.

#1 QCD penguin contributions, e.g., through Kaluza-Klein gluons, have also been considered [11].
#2 In this letter, we focus on the s–d transitions. The �F = 2 transitions such as �mB generally

involve the interference contributions.

1
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arXiv:1505.07863
arXiv:1507.06345
arXiv:1607.06727

arXiv:hep-ex/0208009, 
0208007,1011.0127,PDG

2.8-2.9σ discrepancy

 K0(s̄�5d), K0(d̄�5s): JP=0-, ≠ (mass, CP eigenstate)

 CP eigenstate: |K 1
2
i = 1

2

h
|K0i± |K0i

i ⇣
c.f. CP |K0i = |K0i

⌘

CP even CP odd

 mass eigenstate: |KSi ⇠ |K1i+ ✏̄ |K2i, |KLi ⇠ |K2i+ ✏̄ |K1i
shorter lifetime longer lifetime

CPV parameter (εbar~10-3)
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Three anomalies: RK(*)[+associates], RD(*), ε’/ε
 CP |K±i = ±|K±i, CP |⇡0⇡0i = +|⇡0⇡0i, CP |⇡0⇡0⇡0i = �|⇡0⇡0⇡0i

 KL → ππ is prohibited if CP is an exact symmetry:

|KLi ⇠ |K2i+ ✏̄ |K1i

|⇡⇡i

|⇡⇡i

indirect CPV
CPV during oscillation
direct CPV

CPV at decay

CP-ev
en

CP-ev
en

CP-ev
en

CP-od
d

 Two CVP decay modes: KL → π+π-, KL → π0π0

- The ratios of amplitudes works as order parameters:

 ⌘00 =
A(KL ! ⇡0⇡0)

A(KS ! ⇡0⇡0)
= ✏(K) � 2✏0(K)

 ⌘+� =
A(KL ! ⇡+⇡�)

A(KS ! ⇡+⇡�)
= ✏(K) + ✏0(K)

Indirect CPVs are universal. 

Direct CPVs 
appear differently.
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Three anomalies: RK(*)[+associates], RD(*), ε’/ε
 What kind of new physics is required (at tree level)?

Straightforward candidates are new gauge bosons.
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 What kind of new physics is required (at tree level)?

s

b

s

b µ

µ

Z 0 Such a flavorful Z’
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µ
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flavor-changing

Straightforward candidates are new gauge bosons.
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W’, Z’,
massive gluon

(pure hadronic)
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Intro: 10/10

SU(8) (composite) vector scenario provides all of them!

- Chiral couplings are requested.
- No enough contribution for RD(*) is achievable.

see e.g., arXiv:1303.5794,1307.5683,1308.1501, 
1408.1627,1411.3161,1412.1791, plus many others

see e.g., arXiv:1206.3760, 
1210.8443,1303.5877,1306.6493, 
1309.0301, plus many others

see e.g., arXiv:1507.06316, 
1512.02869, 1603.07960, 
1604.07400,1608.01444, 
plus others

Trying to address them 
simultaneously
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0. Introduction (10 pages)
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 When a coupling becomes strong, composite particles appear.

qL/R =

0

BBB@

u
d
s
...

1

CCCA

L/R

 

SU(3)L×SU(3)R
(approximated)
chiral symmetry

q q̄

weekly coupled
(UV-fundamental) particles

strongly coupled
(theory of composite 

particles)

 

g

hq̄AqBi ⇠ ⇤3
QCD�

AB(confinement) !

q q̄g

Spontaneous breakdown:
SU(3)L×SU(3)R → SU(3)V

p

p0

p00
(momentum)

ΛQCD

QCD as Composite scenario Sec. 1: 1/4

Energy

 It provides us a well-established way for describing (vector) mesons.

QCD Hidden QCD



 When a coupling becomes strong, composite particles appear.

[arXiv:hep-ex/0606035]
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SU(3)L×SU(3)R
(approximated)
chiral symmetry

q q̄

weekly coupled (UV-fundamental) particles
strongly coupled

(theory of composite 
particles)

 

g

hq̄AqBi ⇠ ⇤3
QCD�

AB(confinement) !

q q̄g

Spontaneous breakdown:
SU(3)L×SU(3)R → SU(3)V

(d.o.f.s: 8*2 → 8)

p

p0

p00

 Chiral symmetry governs low-energy composite (meson) spectrum.

quarks

a meson qq̄

 pseudo-scalars (pions) as pseudo NG bosons

 vector mesons (rhos) as gauge bosons of hidden local symmetry (SU(3)V, gauged)

32-1=8 pions 32-1=8 rhos

[pictures from Web]

[Bando,Kugo,Uehara,Yamawaki, Phys.Rev.Lett.,54(1985)1215]
[Bando,Kugo,Yamawaki, Nucl.Phys.,B259(1985)493]
[reviewed by e.g., Harada,Yamawaki, arXiv:hep-ph/0302103]

Global symmetry → Meson patterns Sec. 1: 2/4

In case of QCD



Sec. 1: 3/4Vector-like hidden “QCD” (hypercolor[HC])

F
F 0

 

g0

We consider an SU(NHC) confining gauge theory (fermion: F, gauge boson: g’)

⇢µ



F
F 0

 

g0

We consider an SU(NHC) confining gauge theory (fermion: F, gauge boson: g’)

In a situation that ρμ “mix with”
the SM gauge boson, ρμ may couple with

the SM fermions in an effective way!

⇢µ V SM
µ holding the Same

(SM) quantum #

⇢µ, V
SM
µ

(fSM
i )(L)

(fSM
j )(L)

 flavor indices 
(in gauge eigenbasis)

undesignated/assumed
physics with flavor-changing 

Gauge-invariant (effective) operator
including it can be written down

in terms of hidden local symmetry
(with nonlinear basis)

Sec. 1: 3/4Vector-like hidden “QCD” (hypercolor[HC])



F
F 0

 

g0

We consider an SU(NHC) confining gauge theory (fermion: F, gauge boson: g’)

⇢µ V SM
µ holding the Same

(SM) quantum #

 
SU(NHC) SU(3)c SU(2)W U(1)Y

QL/R =

0

@ U

D

1

A

L/R

NHC 3 2 1/6

LL/R =

0

@ N

E

1

A

L/R

NHC 1 2 �1/2

TABLE I: The SM charge assignment for eight HC fermions FL/R = (Q,L)TL/R in the one-family model.

velop the nonzero “chiral” condensate hF̄
A
F

B
i ⇠ ⇤3

HC
· �

AB (A and B being indices for SU(8)

fundamental representations), which breaks the “chiral” symmetry of 8 HC fermions down to the

vectorial one: SU(8)FL ⇥ SU(8)FR ! SU(8)FV . According to the spontaneous breaking, the 63

Nambu-Goldstone (NG) bosons emerge, which will be pseudoscalars by the explicit breaking terms

including the SM gauge interactions and possibly present vectorlike fermion mass terms likem0

F F̄F ,

as discussed in Refs. [3–6].

By naively scaling the hadron spectroscopy in QCD, we may find 63 composite vectors (HC

⇢ mesons) as the next-to-lightest HC hadrons #3 #4. Thus the low-energy e↵ective theory of the

HC sector would be constructed from the 63 HC pions (⇠ F̄
A
i�5F

B) and also 63 HC rho mesons

(⇠ F̄
A
�µF

B). Then the HC rho couplings to the SM particles arise indirectly from mixing be-

tween the SM gauge bosons (“indirect couplings”), and directly by an extended HC theory (“direct

couplings”), which could be generated from extended (vector, or scalar) interactions communicat-
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Vector-like hidden “QCD” [HC] (cont’d)

composite vector constituent color isospin

⇢
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↵
L) singlet triplet

TABLE II: The HC rho mesons and their associated constituent HC quarks Qc = (U,D)c and leptons

L = (N,E). Here �
a (a = 1, · · · , 8) are the Gell-Mann matrices, ⌧↵ SU(2) generators defined as ⌧↵ = �

↵
/2

(↵ = 1, 2, 3) with the Pauli matrices �
↵, and the label c stands for the QCD-three colors, c = r, g, b. The

numbers attached in lower scripts (1, 3, 8) correspond to the representations under the QCD color, i.e.,

singlet, triplet and octet for (1, 3, 8).

where q and l are SU(2)FL,FR doublets for the quark and lepton fields. The SM-covariant derivatives

that act on the f -fermion multiplets are then expressed as the 8⇥ 8 matrix forms:

DµfL = (@µfL) · 18⇥8 � i[Lf
µ]8⇥8 · fL ,

DµfR = (@µfR) · 18⇥8 � i[Rf
µ]8⇥8 · fR , (II.13)
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+ gY Q

q
emBµ ⌦ 13⇥3 06⇥2

02⇥6 gY Q
l
emBµ

1

A , (II.14)

where Gµ,Wµ and Bµ are the SU(3)c⇥SU(2)W⇥U(1)Y gauge fields along with the gauge couplings

gs, gW and gY , respectively; and Q
q,l
em is the electromagnetic (EM) charge defined as

Q
q
em =

0

@ 2/3 0

0 �1/3

1

A , Q
l
em =

0

@ 0 0

0 �1

1

A . (II.15)

The covariant derivatives for the HC fermions can also be written in terms of the 8⇥ 8 matrix

form. We may relate the charges of the HC fermions with those of the SM quark and lepton

charges, involving the HC-quark and -lepton numbers. Then the nonlinear bases ⇠L,R in Eq.(II.3)
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[vector meson spectrum] NOT ONLY Z’ candidates! 

Z’ (and W’)
included

vector
leptoquarks

massive
gluons

Sec. 1: 4/4

19 in total



composite vector constituent color isospin

⇢
↵
(8)a

1p
2
Q̄�µ�

a
⌧
↵
Q octet triplet

⇢
0

(8)a
1

2
p
2
Q̄�µ�

a
Q octet singlet

⇢
↵
(3)c

⇣
⇢̄
↵
(3)c

⌘
1p
2
Q̄c�µ⌧

↵
L (h.c.) triplet triplet

⇢
0

(3)c

⇣
⇢̄
0

(3)c

⌘
1

2
p
2
Q̄c�µL (h.c.) triplet singlet

⇢
↵
(1)0

1

2
p
3
(Q̄�µ⌧

↵
Q� 3L̄�µ⌧↵L) singlet triplet

⇢
0

(1)0
1

4
p
3
(Q̄�µQ� 3L̄�µL) singlet singlet

⇢
↵
(1)

1

2
(Q̄�µ⌧

↵
Q+ L̄�µ⌧

↵
L) singlet triplet

TABLE II: The HC rho mesons and their associated constituent HC quarks Qc = (U,D)c and leptons

L = (N,E). Here �
a (a = 1, · · · , 8) are the Gell-Mann matrices, ⌧↵ SU(2) generators defined as ⌧↵ = �

↵
/2

(↵ = 1, 2, 3) with the Pauli matrices �
↵, and the label c stands for the QCD-three colors, c = r, g, b. The

numbers attached in lower scripts (1, 3, 8) correspond to the representations under the QCD color, i.e.,

singlet, triplet and octet for (1, 3, 8).

where q and l are SU(2)FL,FR doublets for the quark and lepton fields. The SM-covariant derivatives

that act on the f -fermion multiplets are then expressed as the 8⇥ 8 matrix forms:

DµfL = (@µfL) · 18⇥8 � i[Lf
µ]8⇥8 · fL ,

DµfR = (@µfR) · 18⇥8 � i[Rf
µ]8⇥8 · fR , (II.13)

with

h
L
f
µ

i

8⇥8

=

0

@ 12⇥2 ⌦ gsG
a
µ
�a

2
+
�
gWWµ⌧

↵ + 1

6
gY Bµ

�
⌦ 13⇥3 06⇥2

02⇥6 gWW
↵
µ ⌧

↵
�

1

2
gY Bµ · 12⇥2

1

A

=
p
2gsG

a
µT(8)a +

2
p
3
gY BµT(1)0 + 2gWW

↵
µ T

↵
(1)

,

h
R

f
µ

i

8⇥8

=

0

@ 12⇥2 ⌦ gsG
a
µ
�a

2
+ gY Q

q
emBµ ⌦ 13⇥3 06⇥2

02⇥6 gY Q
l
emBµ

1

A , (II.14)

where Gµ,Wµ and Bµ are the SU(3)c⇥SU(2)W⇥U(1)Y gauge fields along with the gauge couplings

gs, gW and gY , respectively; and Q
q,l
em is the electromagnetic (EM) charge defined as

Q
q
em =

0

@ 2/3 0

0 �1/3

1

A , Q
l
em =

0

@ 0 0

0 �1

1

A . (II.15)

The covariant derivatives for the HC fermions can also be written in terms of the 8⇥ 8 matrix

form. We may relate the charges of the HC fermions with those of the SM quark and lepton

charges, involving the HC-quark and -lepton numbers. Then the nonlinear bases ⇠L,R in Eq.(II.3)

13

composite vector constituent color isospin

⇢
↵
(8)a

1p
2
Q̄�µ�

a
⌧
↵
Q octet triplet

⇢
0

(8)a
1

2
p
2
Q̄�µ�

a
Q octet singlet

⇢
↵
(3)c

⇣
⇢̄
↵
(3)c

⌘
1p
2
Q̄c�µ⌧

↵
L (h.c.) triplet triplet

⇢
0

(3)c

⇣
⇢̄
0

(3)c

⌘
1

2
p
2
Q̄c�µL (h.c.) triplet singlet

⇢
↵
(1)0

1

2
p
3
(Q̄�µ⌧

↵
Q� 3L̄�µ⌧↵L) singlet triplet

⇢
0

(1)0
1

4
p
3
(Q̄�µQ� 3L̄�µL) singlet singlet

⇢
↵
(1)

1

2
(Q̄�µ⌧

↵
Q+ L̄�µ⌧

↵
L) singlet triplet

TABLE II: The HC rho mesons and their associated constituent HC quarks Qc = (U,D)c and leptons

L = (N,E). Here �
a (a = 1, · · · , 8) are the Gell-Mann matrices, ⌧↵ SU(2) generators defined as ⌧↵ = �

↵
/2

(↵ = 1, 2, 3) with the Pauli matrices �
↵, and the label c stands for the QCD-three colors, c = r, g, b. The

numbers attached in lower scripts (1, 3, 8) correspond to the representations under the QCD color, i.e.,

singlet, triplet and octet for (1, 3, 8).

where q and l are SU(2)FL,FR doublets for the quark and lepton fields. The SM-covariant derivatives

that act on the f -fermion multiplets are then expressed as the 8⇥ 8 matrix forms:

DµfL = (@µfL) · 18⇥8 � i[Lf
µ]8⇥8 · fL ,

DµfR = (@µfR) · 18⇥8 � i[Rf
µ]8⇥8 · fR , (II.13)

with

h
L
f
µ

i

8⇥8

=

0

@ 12⇥2 ⌦ gsG
a
µ
�a

2
+

�
gWWµ⌧

↵ + 1

6
gY Bµ

�
⌦ 13⇥3 06⇥2

02⇥6 gWW
↵
µ ⌧

↵
�

1

2
gY Bµ · 12⇥2

1

A

=
p
2gsG

a
µT(8)a +

2
p
3
gY BµT(1)0 + 2gWW

↵
µ T

↵
(1)

,

h
R

f
µ

i

8⇥8

=

0

@ 12⇥2 ⌦ gsG
a
µ
�a

2
+ gY Q

q
emBµ ⌦ 13⇥3 06⇥2

02⇥6 gY Q
l
emBµ

1

A , (II.14)

where Gµ,Wµ and Bµ are the SU(3)c⇥SU(2)W⇥U(1)Y gauge fields along with the gauge couplings

gs, gW and gY , respectively; and Q
q,l
em is the electromagnetic (EM) charge defined as

Q
q
em =

0

@ 2/3 0

0 �1/3

1

A , Q
l
em =

0

@ 0 0

0 �1

1

A . (II.15)

The covariant derivatives for the HC fermions can also be written in terms of the 8⇥ 8 matrix

form. We may relate the charges of the HC fermions with those of the SM quark and lepton

charges, involving the HC-quark and -lepton numbers. Then the nonlinear bases ⇠L,R in Eq.(II.3)

13

 

[gauge structure] 

for SU(2)W-doublet SM leptons

for SU(2)W-doublet SM quarks

SM gauge boson
structure of (q,l)L

in SU(8)V form

SU(8)V, gauged (ρµ)

Z’ (and W’)
included

vector
leptoquarks

massive
gluons

[vector meson spectrum] NOT ONLY Z’ candidates!

where ⌧
↵ = �

↵
/2 (�↵: Pauli matrices), �a and ec represent the Gell-Mann matrices and three-

dimensional unit vectors in color space, respectively, and the generator T
A is normalized as

tr[TA
T
B] = �

AB
/2. For color-triplet components (leptoquarks), we define the following eigen-

forms which discriminate 3 and 3̄ states of the SU(3)c gauge group,
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Also, the following relations hold:
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which are useful for rewriting the above decomposition in the eigenforms. The following normal-

ization conditions of the 3 and 3̄ states of the SU(3)c gauge group in the new bases are also useful:

tr[T i
(3)cT

j
(3̄)c0

] = �
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�cc0/2, tr[T 0

(3)cT
0

(3̄)c0 ] = �cc0/2, (others) = 0.

We can express the vector fields ⇢ of 8⇥ 8 matrix with block matrices as
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. (II.9)

The SU(2)W charge, in terms of which the HC rho field is decomposed as in Eq.(II.8), is identified

with the one in the SM. The SM fermions will carry corresponding SU(2)W charges so that they

10

Sec. 1: 4/4

19 in total

Vector-like hidden “QCD” [HC] (cont’d)



composite vector constituent color isospin

⇢
↵
(8)a

1p
2
Q̄�µ�

a
⌧
↵
Q octet triplet

⇢
0

(8)a
1

2
p
2
Q̄�µ�

a
Q octet singlet

⇢
↵
(3)c

⇣
⇢̄
↵
(3)c

⌘
1p
2
Q̄c�µ⌧

↵
L (h.c.) triplet triplet

⇢
0

(3)c

⇣
⇢̄
0

(3)c

⌘
1

2
p
2
Q̄c�µL (h.c.) triplet singlet

⇢
↵
(1)0

1

2
p
3
(Q̄�µ⌧

↵
Q� 3L̄�µ⌧↵L) singlet triplet

⇢
0

(1)0
1

4
p
3
(Q̄�µQ� 3L̄�µL) singlet singlet

⇢
↵
(1)

1

2
(Q̄�µ⌧

↵
Q+ L̄�µ⌧

↵
L) singlet triplet

TABLE II: The HC rho mesons and their associated constituent HC quarks Qc = (U,D)c and leptons

L = (N,E). Here �
a (a = 1, · · · , 8) are the Gell-Mann matrices, ⌧↵ SU(2) generators defined as ⌧↵ = �

↵
/2

(↵ = 1, 2, 3) with the Pauli matrices �
↵, and the label c stands for the QCD-three colors, c = r, g, b. The

numbers attached in lower scripts (1, 3, 8) correspond to the representations under the QCD color, i.e.,

singlet, triplet and octet for (1, 3, 8).

where q and l are SU(2)FL,FR doublets for the quark and lepton fields. The SM-covariant derivatives

that act on the f -fermion multiplets are then expressed as the 8⇥ 8 matrix forms:

DµfL = (@µfL) · 18⇥8 � i[Lf
µ]8⇥8 · fL ,

DµfR = (@µfR) · 18⇥8 � i[Rf
µ]8⇥8 · fR , (II.13)

with

h
L
f
µ

i

8⇥8

=

0

@ 12⇥2 ⌦ gsG
a
µ
�a

2
+

�
gWWµ⌧

↵ + 1

6
gY Bµ

�
⌦ 13⇥3 06⇥2

02⇥6 gWW
↵
µ ⌧

↵
�

1

2
gY Bµ · 12⇥2

1

A

=
p
2gsG

a
µT(8)a +

2
p
3
gY BµT(1)0 + 2gWW

↵
µ T

↵
(1)

,

h
R

f
µ

i

8⇥8

=

0

@ 12⇥2 ⌦ gsG
a
µ
�a

2
+ gY Q

q
emBµ ⌦ 13⇥3 06⇥2

02⇥6 gY Q
l
emBµ

1

A , (II.14)

where Gµ,Wµ and Bµ are the SU(3)c⇥SU(2)W⇥U(1)Y gauge fields along with the gauge couplings

gs, gW and gY , respectively; and Q
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em is the electromagnetic (EM) charge defined as
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The covariant derivatives for the HC fermions can also be written in terms of the 8⇥ 8 matrix

form. We may relate the charges of the HC fermions with those of the SM quark and lepton

charges, involving the HC-quark and -lepton numbers. Then the nonlinear bases ⇠L,R in Eq.(II.3)
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gluons

 The following flavor-changing interaction can be added gauge-invariantly.
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[vector meson spectrum] NOT ONLY Z’ candidates!

Sec. 1: 4/4

19 in total

Vector-like hidden “QCD” [HC] (cont’d)

VSM-ρ mixing 
(if the partner exists)

mixed with 
gluon

with W

with B



1. Hidden “QCD” ⇒ providing vectors for anomalies (4 pages)

2. Various virtues exist in vector-like compositeness (2 pages)

3. Simultaneous addressing for B & K anomalies,
    which can be surveyed in the very near future (4 pages)

Three messages

 Summary & Discussions 

0. Introduction (10 pages)
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for B anomaly 
(in gauge eigenbasis)

(SM-fermion) mass eigenbases 

automatically 
determined 

(with CKM matrix)

[B.Bhattacharya et al., arXiv:1609.09078]

 

assuming 2⇔3 matter generation mixings 

1 1

[Our phenomenological scheme on flavor changing]

pure imaginary (1,2) for K anomaly  
⇒ very small for ε(K), K0L→µ+µ- 

Sec. 2: 1/2

[Endo et al., arXiv:1612.08839]
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assuming 2⇔3 matter generation mixings 

1 1

Using Eqs.(II.13) and (II.20), one can thus extract the HC ⇢ and VSM (SM gauge boson)

couplings to the left-handed SM fermions. As a result, we have
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where ⇢
µ
QQ, ⇢

µ
LL, and ⇢

µ
QL are combinations of the HC ⇢ mesons as defined in Eq.(II.9) and g

ij
L =

(g1L+2g2L+g3L)ij . Note that the VSM-fL-fL term in Eq.(II.24) is not the normal SM interactions

but additional contributions in this model.

The HLS invariance actually allows one to write down vector couplings other than those in

Eq.(II.24), which would take the form like
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with the generation-dependent coupling h
ij
L . As seen from Eq.(II.20), however, the 1-form ↵̂µ?

goes to vanish in the unitary gauge of the HLS; ⇠L/R ! 1 up to HC pion terms 3 @µ⇡/f⇡ + · · · .

This coupling term would thus be relevant only when the HC pions can have flavorful couplings to

the SM fermions, which is not the case in this article. We will briefly address possible e↵ects from

those HC pion couplings in the later section.

2. ⇢ - VSM mixing structures and induced-indirect couplings to SM fermions

In addition to the direct interactions of Eq.(II.24), the HC ⇢ mesons also have interactions

induced by the mixing with the SM gauge bosons. The mixing term is involved in the mass matrix

of the vector boson, which is written by
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where we used the relations in Eqs.(II.6), (II.7), (II.13) and the normalization of the SU(8) gener-

ators as tr
⇥
T
A
T
B
⇤
= �

AB
/2. Note that the mixing form is manifestly custodial-symmetric.
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f-f-ρ interaction

correction to 
f-f-VSM interaction

overall factor

gρ >> gSM is required via EW precisions.
(an example: gρ = 6 [vector dominance in QCD])

 

[flavor-changing effective interaction]

The mixing effect play a significant role 
in addressing the anomaly in ε’/ε.

Sec. 2: 1/2
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(in gauge eigenbasis)

(SM-fermion) mass eigenbases 

automatically 
determined 

(with CKM matrix)

[B.Bhattacharya et al., arXiv:1609.09078]

 

assuming 2⇔3 matter generation mixings 

1 1

Using Eqs.(II.13) and (II.20), one can thus extract the HC ⇢ and VSM (SM gauge boson)

couplings to the left-handed SM fermions. As a result, we have

L
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, (II.24)

where ⇢
µ
QQ, ⇢

µ
LL, and ⇢

µ
QL are combinations of the HC ⇢ mesons as defined in Eq.(II.9) and g

ij
L =

(g1L+2g2L+g3L)ij . Note that the VSM-fL-fL term in Eq.(II.24) is not the normal SM interactions

but additional contributions in this model.

The HLS invariance actually allows one to write down vector couplings other than those in

Eq.(II.24), which would take the form like

h
ij
L  ̄

i
L�µ↵̂

µ
? 

j
L , (II.25)

with the generation-dependent coupling h
ij
L . As seen from Eq.(II.20), however, the 1-form ↵̂µ?

goes to vanish in the unitary gauge of the HLS; ⇠L/R ! 1 up to HC pion terms 3 @µ⇡/f⇡ + · · · .

This coupling term would thus be relevant only when the HC pions can have flavorful couplings to

the SM fermions, which is not the case in this article. We will briefly address possible e↵ects from

those HC pion couplings in the later section.

2. ⇢ - VSM mixing structures and induced-indirect couplings to SM fermions

In addition to the direct interactions of Eq.(II.24), the HC ⇢ mesons also have interactions

induced by the mixing with the SM gauge bosons. The mixing term is involved in the mass matrix

of the vector boson, which is written by
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, (II.26)

where we used the relations in Eqs.(II.6), (II.7), (II.13) and the normalization of the SU(8) gener-

ators as tr
⇥
T
A
T
B
⇤
= �

AB
/2. Note that the mixing form is manifestly custodial-symmetric.
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f-f-ρ interaction

correction to 
f-f-VSM interaction

overall factor

gρ >> gSM is required via EW precisions.
(an example: gρ = 6 [vector dominance in QCD])

 

vector-meson spectrum being compressed
 (HC rho meson mass)2 ~ (mρ)2 * (1 + [gSM/gρ]2)

Sec. 2: 1/2



Important points for current pheno. (cont’d)
 vector-like HC rho mesons ⇒ harmless (tree-level) oblique corrections
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Important points for current pheno. (cont’d)
 vector-like HC rho mesons ⇒ harmless (tree-level) oblique corrections

6 couplings are relevant for (pure) HC vector-ρ phenomena:

mρ, (gL)33, (gL)12 , θD, θL, gρ

 

Sec. 2: 2/2



Important points for current pheno. (cont’d)
 vector-like HC rho mesons ⇒ harmless (tree-level) oblique corrections

 

No dynamical EWSB (vector-like) ⇒ the fundamental Higgs doublet 
should be introduced (like the SM).

 The 125GeV Higgs signal strengths are good.

6 couplings are relevant for (pure) HC vector-ρ phenomena:

mρ, (gL)33, (gL)12 , θD, θL, gρ
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Important points for current pheno. (cont’d)
 vector-like HC rho mesons ⇒ harmless (tree-level) oblique corrections

 

No dynamical EWSB (vector-like) ⇒ the fundamental Higgs doublet 
should be introduced (like the SM).

 The 125GeV Higgs signal strengths are good.

 Fascinating aspects:

 The C9 = -C10 texture (for b→sll) is naturally realized.
 Apparently gauge-anomaly free.

6 couplings are relevant for (pure) HC vector-ρ phenomena:

mρ, (gL)33, (gL)12 , θD, θL, gρ

 Due to SU(8) symmetry, contribution to RD(*) is minuscule.
(⇒ It may be OK due to the ‘vanishing’ trend in latest exp. results.)
 Proton decay via dim-5 operators are banned by hidden local sym.

Sec. 2: 2/2

1

⇤
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†)�µ
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0
(3)µ,

1
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↵
(3)µ
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prohibited 
diquark operators

[N.Assad et al., arXiv:1708.06350]



1. Hidden “QCD” ⇒ providing vectors for anomalies (4 pages)

2. Various virtues exist in vector-like compositeness (2 pages)

3. Simultaneous addressing for B & K anomalies,
    which can be surveyed in the very near future (4 pages)

Three messages

 Summary & Discussions 

0. Introduction (10 pages)



RK(*)[+associates] result
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Figure 3. The region plot in the plane (g33⇢L, ✓L) with ✓D/⇡ = 2 ⇥ 10�3 fixed for m⇢ = 1 TeV
and g⇢ = 8. The current RK(⇤) anomaly can be explained in the thick-blue region at the 2� level,
while the cyan-shaded area represents the consistent region with the current 90% C.L. upper limit
of Br[⌧� ! µ�µ+µ�] (see Fig. 1). The gray-hatched region is out of the 2�-favored area for �MBs

(see Fig. 2).

Figure 1 shows the region plot on the plane (g33⇢L, ✓L) constrained by the lepton flavor

violating ⌧ ! 3µ decay. The constraint from the�MBs on the parameter space in the plane

(g33⇢L, ✓D) is depicted in Fig. 2. We have allowed the 2� deviation for the �MBs between

the experimental and SM -predicted values, �M exp
Bs

��MSM
Bs

. This can be thought to be

conservative because of the currently present deviation & 1�, as captured from Eqs.(3.26)

and (3.27). In total, the favored parameter space in the plane (g33⇢L, ✓L) with ✓D/⇡ = 2⇥10�3

fixed #8 is drawn in Fig. 3, where the overlapped domain (thick-blue and cyan regions)

satisfies the 2� range for Cµµ
9 (= �Cµµ

10 ) around the best fit point in Eq.(3.16), hence

explains the current RK(⇤) anomaly at that level consistently. The range for the g33⇢L has

been restricted to roughly [�0.60,�0.47] or [0.44, 0.60] (at ✓L ' ⇡/2), which is required by

the �MBs bound for ✓D/⇡ = 2 ⇥ 10�3 read o↵ from Fig. 2. The gray-hatched region in

Fig. 3 is out of the 2�-favored region for �MBs , which suggests that the favored region is

limited to a muon-philic scenario with ✓L ⇠ ⇡/2. Other constraints from B ! K(⇤)⌫⌫̄ and

⌧ ! µ� are satisfied fully in the focused region.

#8 The larger ✓D case will be disfavored by the presence of the RK(⇤) anomaly.
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 b→sννbar, τ→φμ are OK in the whole of the shown region.
 The mixing angles should be tuned as θD ~ 5*10-3, θL ~ π/2.
 NLO QCD operator running is taken into account.
 Due to the update of the input, evading M[Bs] became (much) more nontrivial.✓
fBs

q
B̂Bs = (266± 18)MeV [FLAG13] ! (274± 8)MeV [FLAG17]

◆[L.D.Luzio et al., arXiv:1712.06572]

[D.Becirevie et al., hep-ph/0112303]
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 g33⇢L ⌘ g⇢ ⇥ g33L
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ε’/ε result
[LO QCD operator run] [NLO QCD operator run]

He↵ ' C6Q6

 
QCD Penguin, Q6 = (s̄bda)V�A

X

q

(q̄aqb)V+A

!

1⇄2 mixing (flavorful) VSM-ρ mixing (universal), 
required gauge invariance 

�
Wilson coefficient

Electroweak-Penguin, charged-current types also appear.

ΔMK(2σexp.) ΔMK(2σexp.)

ε’/ε ε’/ε
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 g12⇢L ⌘ g⇢ ⇥ g12L
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ε’/ε result
[LO QCD operator run] [NLO QCD operator run]

 For ε’/ε, not only QCD, but also EW corrections are significant
(due to partial cancellation between QCD & EW Penguins).

[T.Kitahara et al., arXiv:1607.06727; also hep-ph/9211321,9303284,9212203]

 mρ should be around 1TeV; heavier ones lead to insufficient contrib. to ε’/ε

ΔMK(2σexp.) ΔMK(2σexp.)

ε’/ε ε’/ε
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 g12⇢L ⌘ g⇢ ⇥ g12L

(also arXiv:1807.02520,1808.00466)



(Invisible) ν connects B and K physics
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 On the benchmark (mρ=1TeV, gρ=8, θL=π/2):

ε’/ε(1σ)
ε’/ε(2σ)

ΔMK(2σexp.) ‘RK(*)’(2σ) [when θD=2π×10-3]
‘RK(*)’(2σ) [when θD=1.5π×10-3]
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(Invisible) ν connects B and K physics
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 On the benchmark (mρ=1TeV, gρ=8, θL=π/2):

Br[K+→π+νν](2σ)

Br[KL→π
0νν](

90% upper)

These inclusive-ν channels
give us co-related bounds
between B & K physics.
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(Invisible) ν connects B and K physics
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 On the benchmark (mρ=1TeV, gρ=8, θL=π/2):

Interestingly, the valid
parameter space will be
explored completely
by the experiments of
NA62(K+) and KOTO (K0)
in the near future!

Just updated/announced
at ICHEP2018 (by KOTO)!
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Figure 6. The plots of the predicted curves for the Br[K+ ! ⇡+⌫⌫̄] (top- and bottom-left panels)
and Br[KL ! ⇡0⌫⌫̄] (top- and bottom-right panels), normalized to the SM values, in the (g12⇢L, g

33
⇢L)

plane with m⇢ = 1 TeV, g⇢ = 8 and ✓L = ⇡/2 fixed. The numbers attached on the curves denote
the values of evaluated branching ratios over the SM predictions. The plotted ranges for g12⇢L and
g33⇢L have been zoomed in on a viable parameter space extracted from Fig. 5, which fully satisfies the
�MK bound and are separated into two, depending on the sign of g33⇢L (shown in top and bottom
panels for positive and negative cases, respectively). The two red-vertical lines in each panel depict
boundaries set by the 1� (solid) and 1.5� (dashed) ranges allowed by the ✏0/✏ constraint. The
parameter spaces inside the blue and orange regions enable us to address the RK(⇤) anomaly with
✓D/⇡ = 2.0 ⇥ 10�3 and 1.5 ⇥ 10�3, respectively. The shaded regions colored in gray have already
been excluded by the current bound on Br [K+ ! ⇡+⌫⌫̄] at the 2� level [see Eq.(3.44)].
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Figure 6. The plots of the predicted curves for the Br[K+ ! ⇡+⌫⌫̄] (top- and bottom-left panels)
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plane with m⇢ = 1 TeV, g⇢ = 8 and ✓L = ⇡/2 fixed. The numbers attached on the curves denote
the values of evaluated branching ratios over the SM predictions. The plotted ranges for g12⇢L and
g33⇢L have been zoomed in on a viable parameter space extracted from Fig. 5, which fully satisfies the
�MK bound and are separated into two, depending on the sign of g33⇢L (shown in top and bottom
panels for positive and negative cases, respectively). The two red-vertical lines in each panel depict
boundaries set by the 1� (solid) and 1.5� (dashed) ranges allowed by the ✏0/✏ constraint. The
parameter spaces inside the blue and orange regions enable us to address the RK(⇤) anomaly with
✓D/⇡ = 2.0 ⇥ 10�3 and 1.5 ⇥ 10�3, respectively. The shaded regions colored in gray have already
been excluded by the current bound on Br [K+ ! ⇡+⌫⌫̄] at the 2� level [see Eq.(3.44)].

– 22 –

Sec. 3: 3/4

exclu
ded by

Br[K
+→π

+νν]
(2σ

)

θD=2π×10-3

θD=1.5π×10-3

ε’/ε
(1σ)

(2σ)

1-loop exclusion
by μ→3e (90%)

[tentative] 

(1.5σ)

OK!



Sec. 3: 4/4
Limit on mρ via LHC di-muon resonance search

Latest ATLAS upper bound
(CMS one is similar.)
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Figure 7. The dimuon resonant production cross section for the target CFVs (⇢3(1) and ⇢0(1)0) at
LHC with

p
s =13 TeV as a function of a possibly added width term (common for two CFVs) nor-

malized to the mass m⇢, for m⇢= 1 TeV, g⇢ = 8, g33⇢L = 0.5 (and ✓D ⇠ 0, ✓L = ⇡/2). The horizontal
solid, dashed and dotted lines (in red) respectively correspond to the current 95% C.L upper limit
placed by the ATLAS group with the integrated luminosity L = 36.1 fb�1 [167], and the expected
upper bounds at L = 120 fb�1 and L = 600 fb�1 estimated just by simply scaling the luminosity.
The LHC cross section has been computed by implementing the CTEQ6L1 parton distribution func-
tion (PDF) [168] in Mathematica with the help of a PDF parser package, ManeParse 2.0 [169],
and setting ⌧0 ⌘ 4m2

threshold/s = 10�6 as the minimal value of the Bjorken x in the CTEQ6L1 PDF
set, where the PDF scale is set to m⇢. The CUBA package [170] has been utilized for numerical
integrations.

L = 600 fb�1, which would constrain modeling of a concrete CFV scenario with the CFVs

coupled to a hidden sector.

5 Summary and discussion

In this paper, we have proposed flavorful and chiral vector bosons as the new physics con-

stitution at around TeV scale, to address the presently reported significant flavor anomalies

in the Kaon and B meson systems such as the CP violating Kaon decay ✏0/✏ and lepton-

flavor violating B meson decays. We have introduced the chiral-flavorful vectors (CFVs)

as a 63-plet of the global SU(8) symmetry, identified as the one-family symmetry for left-

handed quarks and leptons in the standard model (SM) forming the 8-dimensional vector.

Thus the CFVs include massive gluons (of G0 type), vector leptoquarks, and W 0, Z 0-type

bosons, which are allowed to have flavorful couplings with left-handed quarks and leptons,

and flavor-universal couplings to right-handed ones, where the latter arises from mixing

with the SM gauge bosons. The characteristic feature in the present CFV scenario based

on the one-family SU(8) symmetry is seen in the predictions derived necessarily with a
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p(u,d)p(u,d)→ρs→μ+μ-

via VSM-ρ mixing
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LHC with

p
s =13 TeV as a function of a possibly added width term (common for two CFVs) nor-

malized to the mass m⇢, for m⇢= 1 TeV, g⇢ = 8, g33⇢L = 0.5 (and ✓D ⇠ 0, ✓L = ⇡/2). The horizontal
solid, dashed and dotted lines (in red) respectively correspond to the current 95% C.L upper limit
placed by the ATLAS group with the integrated luminosity L = 36.1 fb�1 [167], and the expected
upper bounds at L = 120 fb�1 and L = 600 fb�1 estimated just by simply scaling the luminosity.
The LHC cross section has been computed by implementing the CTEQ6L1 parton distribution func-
tion (PDF) [168] in Mathematica with the help of a PDF parser package, ManeParse 2.0 [169],
and setting ⌧0 ⌘ 4m2

threshold/s = 10�6 as the minimal value of the Bjorken x in the CTEQ6L1 PDF
set, where the PDF scale is set to m⇢. The CUBA package [170] has been utilized for numerical
integrations.

L = 600 fb�1, which would constrain modeling of a concrete CFV scenario with the CFVs

coupled to a hidden sector.

5 Summary and discussion

In this paper, we have proposed flavorful and chiral vector bosons as the new physics con-
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We need more than 30% additional
decay branch(s) for relaxing the σ13TeV.
⇒ It can be provided as ‘ρ→ππ’.

Sec. 3: 4/4

Latest ATLAS upper bound
(CMS one is similar.)

p(u,d)p(u,d)→ρs→μ+μ-

via VSM-ρ mixing
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Virtues of (vector-like) composite model are (e.g.,) 

The RK(*) [~best fit] & ε’/ε [~1.5σ] anomalies are addressed consistently.
The region for both of RK(*) & ε’/ε is surveyed in NA62, KOTO; also LHC.

 

 Discovering lots of new particles is expected at the LHC,
distinguishable from other scenarios.

(probably taking account of opening ρ→2π)

 The C9 = -C10 texture (for b→sll) is naturally realized (for ‘RK(*)’).

 Apparently gauge-anomaly free.

 Due to SU(8) symmetry, contribution to RD(*) is minuscule.
(⇒ It may be OK due to the ‘vanishing’ trend in latest exp. results.)
 Proton decay via dim-5 operators are banned by hidden local sym.
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Misc on pions (skippable)
 typical spectrum
(ΛHC~1TeV, ΛUV~1016GeV)

have another source which would allow some HC pions to get more massive: since the present HC

theory consists of the one-family content with the number of HC fermions NF = 8, the masses of

HC pions having the SM charges could be enhanced by the amplification of the explicit breaking

e↵ect, as discussed in [69] and references therein. The enhancement will then be most eminent for

QCD colored pions, ⇡(3) and ⇡(8) due to the relatively large QCD coupling strength. Following

[69], we evaluate the size of colored HC pion masses from the QCD gluon exchange contribution

as M2
⇡(3),(8)

⇠ C2↵s(M⇡)⇤2
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ln
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, with C2 = 4

3
(3) for color-triplet (octet) HC pions, where ⇤UV

denotes some ultraviolet high-energy scale up to which the HC theory is valid. Taking ↵s(M⇡) ⇠ 0.1

and ⇤UV ⇠ 1016 GeV, for example, we thus estimate the ⇡(3) and ⇡(8) masses as M⇡(3)
⇠ 3 TeV

and M⇡(8)
⇠ 4 TeV, respectively, for ⇤HC ⇠ 1 TeV.

In a similar way, the EW gauge interaction makes masses of EW-charged HC pions lifted up.

This e↵ect becomes operative for the ⇡±,3
(1)

and ⇡
±,3
(1)0 pions to yieldM⇡±,3

(1),(1)0
⇠ 2TeV for ⇤HC ⇠ 1TeV

and ⇤UV ⇠ 1016GeV as a benchmark. Hereafter, The indices ‘±’ and ‘3’ discriminate components

of SU(2)W triplets. The index ‘0’ emphasizes that the designated states are SU(2)W singlets.

Thus, the sizes of the HC pion masses are roughly expected as

M⇡0
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⇠ O(f⇡) = O(100)GeV ,
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⇠ 3TeV ,

M⇡±,3,0
(8)

⇠ 4TeV , (II.11)

for ⇤HC ⇠ 1TeV and ⇤UV ⇠ 1016GeV. This is the significant feature for the HC pion in our model

particularly when we discuss collider bound on the HC rho mesons. Hereafter we shall take the

above HC pion spectroscopy as a benchmark in the present study on the HC rho meson physics.

E. Couplings to SM particles

1. Direct V -fL-fL coupling terms: extended HC-origin

The SM fermion fields are written as an eight-dimensional vector on the base of the fundamental

representation of SU(8),

fL =

0

@ q

l

1
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L

, fR =

0

@ q

l

1
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R

, (II.12)
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(ΛHC~1TeV, ΛUV~1016GeV)
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eigenstates G̃a and ⇢̃(8)a are given as

G
µ
a =

g⇢
eGµ
a +

p
2gse⇢µ(8)aq

g2⇢ + 2g2s
, ⇢

µ
(8)a =

p
2gs eGµ

a � g⇢e⇢µ(8)aq
g2⇢ + 2g2s

, (II.38)

with

M
2

G = 0, M
2

⇢(8)
= m

2

⇢(1 + 2r2gs). (II.39)

Here, the ratio rgs is defined as gs/g⇢.

The indirect couplings of the HC ⇢ mesons to SM fermions thus arise from the above flavor-

universal VSM-⇢ mixings in the mass eigenstates. As seen from the expressions of the mixings, such

flavor-universal couplings are suppressed for rg ⌧ 1, namely, for large g⇢, which is also required

for the oblique corrections to be negligible. This is, indeed, inferred from the QCD case. (See the

later sections.) On the other hand, flavor-specific couplings of the HC ⇢ mesons to SM fermions are

also given with the form g⇢g
ij
L as in Eq.(II.24) and then it can significantly contribute to variety of

flavor processes, as we will see in the next section.

3. Couplings including HC ⇡

From the chiral Lagrangian in Eq.(II.1) with the concrete form of the covariantized Maurer–

Cartan one forms in Eqs.(II.18) and (II.19), we find that the following types of HC pion coupling

terms emerge after the expansion (up to the quartic order in fields): ⇢-⇡-⇡, V-⇡-⇡, V-V-⇡-⇡ and

⇡-⇡-⇡-⇡. Their interaction forms easily read

L⇢-⇡-⇡ = ag⇢i tr [[@µ⇡,⇡]⇢
µ] , (II.40)

LV-⇡-⇡ = 2i
⇣
1�

a

2

⌘
tr [[@µ⇡,⇡]V

µ] , (II.41)

LV-V-⇡-⇡ = �tr {[Vµ,⇡] [V
µ
,⇡]} , (II.42)

L⇡-⇡-⇡-⇡ = �
3

f⇡
tr {(@µ⇡) [⇡, [⇡, @

µ
⇡]]} , (II.43)

with a ⌘ m
2
⇢/(g

2
⇢f

2
⇡). The specific choice, a = 2, turns out to make the V-⇡-⇡ term vanishes at the

leading order. This is referred to as the vector dominance in which the chiral perturbation theory

reproduces experimental results regarding QCD. For the present study, we may therefore assume

the vector dominance scenario and then see that the ⇢-⇡-⇡ coupling g⇢⇡⇡ is completely set by the

18

 (ρ, π)-interactions
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 (ρ, π)-interactions

sure how the decay channels to HC pion pairs open, we list up the total values of the final-state

particle masses (m⇡⇡): (c.f., Appendix A),

• ⇢
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(3)
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0

(3)
⇡
0

(1)0 : m⇡⇡ ⇠ (3 +O(0.1))TeV,
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• ⇢
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�
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�
(1)0 : m⇡⇡ ⇠ (1 + 2)TeV = 3TeV,

• ⇢
↵
(1)

! ⇡̄
�
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⇡
�
(1)

: m⇡⇡ ⇠ (1 + 2)TeV = 3TeV.

Then, additional contributions to the HC rho’s decay branches appear when m⇢ & 3TeV at the

present benchmark point, f⇡ ⇠ O(100)GeV and ⇤HC ⇠ 1TeV. On the other hand, when f⇡

is somewhat greater than ⇠ 100GeV (with a sizable explicit breaking scale m
0

F ), the HC pions

becomes heavier and we may block the HC rho’s decays to the HC pions consistently, keeping the

relation m⇢ ⇠ O(10)f⇡ intact.

Thus our assumption m⇢ < 2m⇡ may be justified even in the range m⇢ & 3TeV, so that we

may be able to ignore decays to HC pion pairs. Of interest enough is then that all of the physical

HC ⇢ components have the common value in the total width as

�⇢ =
g
2

⇢Lm⇢

48⇡
, (V.15)

where we simply ignored tiny contributions through mixing e↵ects. Details of partial widths are

provided in appendix C. The curve of the ratio �⇢/m⇢ as a function of g⇢L is illustrated in Fig. 6.

2. Forms of resonant cross sections

We summarize the forms of di↵erential production (on the solid angle ⌦ in the center-of-mass

flame) cross section at the LHC. As we pointed out, we set the mixing angles ✓D = 0 and ✓L = 0

or ⇡/2 and consider that all of the HC ⇢ mesons are completely degenerated. We note that in the

limit of ✓D = 0, the possible initial state is bb̄ only. Due to this mass degeneracy, we should take

all of the HC ⇢ contributions simultaneously.
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Here, the ratio rgs is defined as gs/g⇢.

The indirect couplings of the HC ⇢ mesons to SM fermions thus arise from the above flavor-

universal VSM-⇢ mixings in the mass eigenstates. As seen from the expressions of the mixings, such
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for the oblique corrections to be negligible. This is, indeed, inferred from the QCD case. (See the

later sections.) On the other hand, flavor-specific couplings of the HC ⇢ mesons to SM fermions are

also given with the form g⇢g
ij
L as in Eq.(II.24) and then it can significantly contribute to variety of

flavor processes, as we will see in the next section.

3. Couplings including HC ⇡

From the chiral Lagrangian in Eq.(II.1) with the concrete form of the covariantized Maurer–

Cartan one forms in Eqs.(II.18) and (II.19), we find that the following types of HC pion coupling

terms emerge after the expansion (up to the quartic order in fields): ⇢-⇡-⇡, V-⇡-⇡, V-V-⇡-⇡ and

⇡-⇡-⇡-⇡. Their interaction forms easily read

L⇢-⇡-⇡ = ag⇢i tr [[@µ⇡,⇡]⇢
µ] , (II.40)

LV-⇡-⇡ = 2i
⇣
1�

a

2

⌘
tr [[@µ⇡,⇡]V

µ] , (II.41)

LV-V-⇡-⇡ = �tr {[Vµ,⇡] [V
µ
,⇡]} , (II.42)

L⇡-⇡-⇡-⇡ = �
3

f⇡
tr {(@µ⇡) [⇡, [⇡, @

µ
⇡]]} , (II.43)

with a ⌘ m
2
⇢/(g

2
⇢f

2
⇡). The specific choice, a = 2, turns out to make the V-⇡-⇡ term vanishes at the

leading order. This is referred to as the vector dominance in which the chiral perturbation theory

reproduces experimental results regarding QCD. For the present study, we may therefore assume

the vector dominance scenario and then see that the ⇢-⇡-⇡ coupling g⇢⇡⇡ is completely set by the

18

eigenstates G̃a and ⇢̃(8)a are given as

G
µ
a =

g⇢
eGµ
a +

p
2gse⇢µ(8)aq

g2⇢ + 2g2s
, ⇢

µ
(8)a =

p
2gs eGµ

a � g⇢e⇢µ(8)aq
g2⇢ + 2g2s

, (II.38)

with

M
2

G = 0, M
2

⇢(8)
= m

2

⇢(1 + 2r2gs). (II.39)

Here, the ratio rgs is defined as gs/g⇢.
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For mρ <~3TeV, ρ decay width is
narrow.



Misc on pions (skippable)
 typical spectrum
(ΛHC~1TeV, ΛUV~1016GeV)

have another source which would allow some HC pions to get more massive: since the present HC

theory consists of the one-family content with the number of HC fermions NF = 8, the masses of

HC pions having the SM charges could be enhanced by the amplification of the explicit breaking

e↵ect, as discussed in [69] and references therein. The enhancement will then be most eminent for

QCD colored pions, ⇡(3) and ⇡(8) due to the relatively large QCD coupling strength. Following

[69], we evaluate the size of colored HC pion masses from the QCD gluon exchange contribution

as M2
⇡(3),(8)

⇠ C2↵s(M⇡)⇤2

HC
ln

⇤
2

UV

⇤
2

HC

, with C2 = 4

3
(3) for color-triplet (octet) HC pions, where ⇤UV

denotes some ultraviolet high-energy scale up to which the HC theory is valid. Taking ↵s(M⇡) ⇠ 0.1

and ⇤UV ⇠ 1016 GeV, for example, we thus estimate the ⇡(3) and ⇡(8) masses as M⇡(3)
⇠ 3 TeV

and M⇡(8)
⇠ 4 TeV, respectively, for ⇤HC ⇠ 1 TeV.

In a similar way, the EW gauge interaction makes masses of EW-charged HC pions lifted up.

This e↵ect becomes operative for the ⇡±,3
(1)

and ⇡
±,3
(1)0 pions to yieldM⇡±,3

(1),(1)0
⇠ 2TeV for ⇤HC ⇠ 1TeV

and ⇤UV ⇠ 1016GeV as a benchmark. Hereafter, The indices ‘±’ and ‘3’ discriminate components

of SU(2)W triplets. The index ‘0’ emphasizes that the designated states are SU(2)W singlets.

Thus, the sizes of the HC pion masses are roughly expected as

M⇡0

(1)0
⇠ O(f⇡) = O(100)GeV ,

M⇡±,3
(1)0

⇠ 2TeV ,

M⇡±,3
(1)

⇠ 2TeV ,

M⇡±,3,0
(3)

⇠ 3TeV ,

M⇡±,3,0
(8)

⇠ 4TeV , (II.11)

for ⇤HC ⇠ 1TeV and ⇤UV ⇠ 1016GeV. This is the significant feature for the HC pion in our model

particularly when we discuss collider bound on the HC rho mesons. Hereafter we shall take the

above HC pion spectroscopy as a benchmark in the present study on the HC rho meson physics.

E. Couplings to SM particles

1. Direct V -fL-fL coupling terms: extended HC-origin

The SM fermion fields are written as an eight-dimensional vector on the base of the fundamental

representation of SU(8),

fL =

0

@ q

l

1

A

L

, fR =

0

@ q

l

1

A

R

, (II.12)
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 (ρ, π)-interactions

sure how the decay channels to HC pion pairs open, we list up the total values of the final-state

particle masses (m⇡⇡): (c.f., Appendix A),

• ⇢
0

(3)
! ⇡̄

0

(3)
⇡
0

(1)0 : m⇡⇡ ⇠ (3 +O(0.1))TeV,

• ⇢
↵
(3)

! ⇡̄
↵
(3)

⇡
0

(1)0 : m⇡⇡ ⇠ (3 +O(0.1))TeV,

• ⇢
0

(8)
! ⇡̄

0

(3)
⇡
0

(3)
: m⇡⇡ ⇠ (3 + 3)TeV = 6TeV,

• ⇢
↵
(8)

! ⇡̄
0

(3)
⇡
↵
(3)

: m⇡⇡ ⇠ (3 + 3)TeV = 6TeV,

• ⇢
0

(1)0 ! ⇡̄
0

(3)
⇡
0

(3)
: m⇡⇡ ⇠ (3 + 3)TeV = 6TeV,

• ⇢
↵
(1)0 ! ⇡̄

�
(1)

⇡
�
(1)0 : m⇡⇡ ⇠ (1 + 2)TeV = 3TeV,

• ⇢
↵
(1)

! ⇡̄
�
(1)

⇡
�
(1)

: m⇡⇡ ⇠ (1 + 2)TeV = 3TeV.

Then, additional contributions to the HC rho’s decay branches appear when m⇢ & 3TeV at the

present benchmark point, f⇡ ⇠ O(100)GeV and ⇤HC ⇠ 1TeV. On the other hand, when f⇡

is somewhat greater than ⇠ 100GeV (with a sizable explicit breaking scale m
0

F ), the HC pions

becomes heavier and we may block the HC rho’s decays to the HC pions consistently, keeping the

relation m⇢ ⇠ O(10)f⇡ intact.

Thus our assumption m⇢ < 2m⇡ may be justified even in the range m⇢ & 3TeV, so that we

may be able to ignore decays to HC pion pairs. Of interest enough is then that all of the physical

HC ⇢ components have the common value in the total width as

�⇢ =
g
2

⇢Lm⇢

48⇡
, (V.15)

where we simply ignored tiny contributions through mixing e↵ects. Details of partial widths are

provided in appendix C. The curve of the ratio �⇢/m⇢ as a function of g⇢L is illustrated in Fig. 6.

2. Forms of resonant cross sections

We summarize the forms of di↵erential production (on the solid angle ⌦ in the center-of-mass

flame) cross section at the LHC. As we pointed out, we set the mixing angles ✓D = 0 and ✓L = 0

or ⇡/2 and consider that all of the HC ⇢ mesons are completely degenerated. We note that in the

limit of ✓D = 0, the possible initial state is bb̄ only. Due to this mass degeneracy, we should take

all of the HC ⇢ contributions simultaneously.
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Combined with the above two sources, the squared amplitudes are computed as

��M
��2
WZW

= 1024A2(p1 · p2)
2
, (V.7)

��M
��2
top

= 16 g2A|ry⌧f(⌧)|
2(p1 · p2)

2
, (V.8)

��M
��2
int

= 128AgA [ry⌧f(⌧) + (ry⌧f(⌧))
⇤] (p1 · p2)

2
, (V.9)

��M
��2 =

��M
��2
WZW

+
��M
��2
top

+
��M
��2
int

, (V.10)

with the factor

A = �
NHC

16
p
3⇡2 · 4

g
2
s

f⇡
. (V.11)

Through the relations 2 p1 · p2 = M
2

⇡0

(1)0
and �(⇡0

(1)0 ! GG) = |M|
2
/(2⇥ 16⇡M⇡0

(1)0
), we obtain

�(⇡0

(1)0 ! GG) =

⇣
M⇡0

(1)0

⌘
3

⇡

⇢
8A2 +

1

8
g
2

A|ry⌧f(⌧)|
2 +AgAry [⌧f(⌧) + (⌧f(⌧))⇤]

�

=

⇣
M⇡0

(1)0

⌘
3

⇡

⇢
8A2 +

1

8
g
2

A|ry⌧f(⌧)|
2 + 2AgAryRe [⌧f(⌧)]

�
. (V.12)

Through the well known formula for cross section with a spin-J resonance that arises from a

proton-proton collision with gluonic initial state [120]

�(GG ! ⇡
0

(1)0 ! ��) =
2J + 1

s
CGG

�(⇡0

(1)0 ! GG)

M⇡0

(1)0

�(⇡0

(1)0 ! ��)

�⇡0

(1)0

, (V.13)

(where s is the center of mass energy and CGG|13TeV = 2137 [120] denotes the luminosity coe�cient

for a pair of gluons as initial partons,) we can immediately calculate the diphoton cross section.

First, we shall consider the simplest case with ry = 0, (namely, no coupling to top quark pair.)

In this case, we estimate the diphoton cross section

�(GG ! ⇡
0

(1)0 ! ��)

�����
ry=0

⇠ 0.1 fb⇥


NHC

3

�
2 h

↵s

0.1

i
2

"
B(⇡0

(1)0 ! ��)

10�3

# 
M⇡0

(1)0

f⇡

!2

. (V.14)

Note that, in the case of ry = 0, B(⇡0

(1)0 ! ��) is completely free from the ⇡
0

(1)0 mass dependence

because ⇡(1)0 decays only to the massless final states, 2� and 2G. Hence the diphoton cross section

in Eq.(V.14) is controlled only by the ratio (M⇡0

(1)0
/f⇡). To survey a generic parameter space in

the present model, we shall momentarily take the value of M⇡0

(1)0
in a range from O(100) GeV

[low mass] up to O(TeV) [high mass] #13, and discuss the phenomenological constraints from the

diphoton cross section of Eq.(V.14).

#13 As listed in Eq.(II.11), a typical size of the M⇡0
(1)0

is expected to be O(100) GeV. However, the TeV mass range

might be achieved when one consider possible e↵ects from extended HC sector, which could be enhanced in the case
of many flavor QCD (nearly conformal/walking gauge theory), in a way similar to extended technicolor scenarios.
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typical cross section of resonant π production (through WZW anomaly term)

eigenstates G̃a and ⇢̃(8)a are given as

G
µ
a =

g⇢
eGµ
a +

p
2gse⇢µ(8)aq

g2⇢ + 2g2s
, ⇢

µ
(8)a =

p
2gs eGµ

a � g⇢e⇢µ(8)aq
g2⇢ + 2g2s

, (II.38)

with

M
2

G = 0, M
2

⇢(8)
= m

2

⇢(1 + 2r2gs). (II.39)

Here, the ratio rgs is defined as gs/g⇢.

The indirect couplings of the HC ⇢ mesons to SM fermions thus arise from the above flavor-

universal VSM-⇢ mixings in the mass eigenstates. As seen from the expressions of the mixings, such

flavor-universal couplings are suppressed for rg ⌧ 1, namely, for large g⇢, which is also required

for the oblique corrections to be negligible. This is, indeed, inferred from the QCD case. (See the

later sections.) On the other hand, flavor-specific couplings of the HC ⇢ mesons to SM fermions are

also given with the form g⇢g
ij
L as in Eq.(II.24) and then it can significantly contribute to variety of

flavor processes, as we will see in the next section.

3. Couplings including HC ⇡

From the chiral Lagrangian in Eq.(II.1) with the concrete form of the covariantized Maurer–

Cartan one forms in Eqs.(II.18) and (II.19), we find that the following types of HC pion coupling

terms emerge after the expansion (up to the quartic order in fields): ⇢-⇡-⇡, V-⇡-⇡, V-V-⇡-⇡ and

⇡-⇡-⇡-⇡. Their interaction forms easily read

L⇢-⇡-⇡ = ag⇢i tr [[@µ⇡,⇡]⇢
µ] , (II.40)

LV-⇡-⇡ = 2i
⇣
1�

a

2

⌘
tr [[@µ⇡,⇡]V

µ] , (II.41)

LV-V-⇡-⇡ = �tr {[Vµ,⇡] [V
µ
,⇡]} , (II.42)

L⇡-⇡-⇡-⇡ = �
3

f⇡
tr {(@µ⇡) [⇡, [⇡, @

µ
⇡]]} , (II.43)

with a ⌘ m
2
⇢/(g

2
⇢f

2
⇡). The specific choice, a = 2, turns out to make the V-⇡-⇡ term vanishes at the

leading order. This is referred to as the vector dominance in which the chiral perturbation theory

reproduces experimental results regarding QCD. For the present study, we may therefore assume

the vector dominance scenario and then see that the ⇢-⇡-⇡ coupling g⇢⇡⇡ is completely set by the
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If this factor is less than a few,
no problem.



Composite scenario: QCD as showing example
 If a gauge theory is strongly-coupled, composite mesons (and other types)
are observed (like QCD below ~1GeV).
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2 A Brief Review of the Chiral Perturbation Theory

In this section we briefly review the Chiral Perturbation Theory (ChPT) [190, 79, 81],

which gives the systematic low-energy expansion of Green functions of QCD related to

light pseudoscalar mesons. The Lagrangian is constructed via non-linear realization of the

chiral symmetry based on the manifold SU(Nf)L× SU(Nf)R/SU(Nf )V, with Nf being the

number of light flavors. Here we generically use π for the pseudoscalar NG bosons (pions

and their flavor partners) even for Nf ≠ 2. For physical pions, on the other hand, we write

their charges explicitly as π± and π0.

In Sec. 2.1 we give a conceptual relation between the generating functional of QCD and

that of the ChPT following Ref. [79, 81]. Then, after introducing the derivative expansion

in Sec. 2.2, we review how to perform the order counting systematically in the ChPT in

Sec. 2.3. The Lagrangian of the ChPT up until O(p4) is given in Sec. 2.4. We review the

renormalization and the values of the coefficients of the O(p4) terms in Secs. 2.5 and 2.6.

The particle assignment in the realistic case of Nf = 3 is shown in Sec. 2.7. Finally, we

review the applications of the ChPT to physical quantities such as the vector form factors

of the pseudoscalar mesons (Sec. 2.8) and π → eνγ amplitude (Sec. 2.9).

2.1 Generating functional of QCD

Let us start with the QCD Lagrangian with external source fields:

LQCD = L0
QCD + qLγ

µLµqL + qRγ
µRµqR + qL [S + iP] qR + qR [S − iP] qL , (2.1)

where Lµ and Rµ are external gauge fields corresponding to SU(Nf)L and SU(Nf )R, and

S and P are external scalar and pseudoscalar source fields. L0
QCD is the ordinary QCD

Lagrangian with Nf massless quarks:

L0
QCD = q̄iD/ q − 1

2
tr [GµνG

µν ] , (2.2)

where

Dµq = (∂µ − igsGµ) q ,

Gµν = ∂µGµ − ∂νGµ − igs [Gµ , Gν ] , (2.3)

with Gµ and gs being the gluon field matrix and the QCD gauge coupling constant.
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pure QCD part

couplings to external
gauge fields (W±,Z,γ)

current mass terms
(via the Higgs mechanism)
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SU(Nf)L×SU(Nf)R global flavor (chiral) symmetry, realized

[explicit breaking: SU(Nf)L×SU(Nf)R → SU(Nf)V]above ΛQCD



SU(Nf)L×SU(Nf)R global flavor (chiral) symmetry, realized

 If a gauge theory is strongly-coupled, composite mesons (and other types)
are observed (like QCD below ~1GeV).
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Sec. 2.3. The Lagrangian of the ChPT up until O(p4) is given in Sec. 2.4. We review the

renormalization and the values of the coefficients of the O(p4) terms in Secs. 2.5 and 2.6.

The particle assignment in the realistic case of Nf = 3 is shown in Sec. 2.7. Finally, we

review the applications of the ChPT to physical quantities such as the vector form factors

of the pseudoscalar mesons (Sec. 2.8) and π → eνγ amplitude (Sec. 2.9).

2.1 Generating functional of QCD

Let us start with the QCD Lagrangian with external source fields:

LQCD = L0
QCD + qLγ

µLµqL + qRγ
µRµqR + qL [S + iP] qR + qR [S − iP] qL , (2.1)

where Lµ and Rµ are external gauge fields corresponding to SU(Nf)L and SU(Nf )R, and

S and P are external scalar and pseudoscalar source fields. L0
QCD is the ordinary QCD

Lagrangian with Nf massless quarks:

L0
QCD = q̄iD/ q − 1

2
tr [GµνG

µν ] , (2.2)

where

Dµq = (∂µ − igsGµ) q ,

Gµν = ∂µGµ − ∂νGµ − igs [Gµ , Gν ] , (2.3)

with Gµ and gs being the gluon field matrix and the QCD gauge coupling constant.

pure QCD part

couplings to external
gauge fields (W±,Z,γ)

current mass terms
(via the Higgs mechanism)

 

 

[QCD Lagrangian]

qL/R =

0

BBB@

u
d
s
...

1

CCCA

L/R

 

[explicit breaking: SU(Nf)L×SU(Nf)R → SU(Nf)V]

 hq̄AqBi ⇠ ⇤3
QCD�

AB(confinement) ! SU(Nf)L×SU(Nf)R → SU(Nf)V spontaneously
→ (Nf)2-1 #s of (pseudo) NG bosons emerge.

Composite scenario: QCD as showing example

 Spin-one vector mesons can be described by hidden local symmetry (HLS).

[Chiral perturbation theory ⇒ effective description]

SU(Nf)L×SU(Nf)R ⇒ [SU(Nf)L×SU(Nf)R]global×[SU(Nf)V]gauged

→ (Nf)2-1 #s of vector mesons are introduced.

[reviewed by e.g., M.Harada & 
 K.Yamawaki, arXiv:hep-ph/0302103]

Confined 

around below ΛQCD



Basic ingredients of chiral perturbation theory (with HLS): 

The e↵ective Lagrangian for those vectors can be formulated based on the HLS formalism, which

has succeeded in QCD rho meson physics [40–44], where the ⇢’s are introduced as the gauge bosons

of the HLS. Based on the nonlinear realization of the HLS and the “chiral” SU(8)FL ⇥ SU(8)FR

symmetry, the Lagrangian is written as #5

L = �
1

2
tr[⇢2µ⌫ ] + f

2

⇡tr[↵̂
2

?µ] +
m

2
⇢

g2⇢
tr[↵̂2

||µ] + · · · , (II.1)

in a manner invariant under the SU(8)FL ⇥SU(8)FR ⇥ [SU(8)FV ]HLS symmetries, where we define

⇢µ⌫ = @µ⇢⌫ � @⌫⇢µ � ig⇢[⇢µ, ⇢⌫ ] ,

↵̂?µ =
Dµ⇠R · ⇠

†
R �Dµ⇠L · ⇠

†
L

2i
, ↵̂||µ =

Dµ⇠R · ⇠
†
R +Dµ⇠L · ⇠

†
L

2i
, (II.2)

Dµ⇠R(L) = @µ⇠R(L) � ig⇢⇢µ⇠R(L) + i⇠R(L)Rµ(Lµ) ,

with the HLS gauge coupling g⇢, the HC pion decay constant f⇡, and the external gauge fields

Rµ and Lµ that are associated by gauging the “chiral” symmetry. Ellipses include terms of higher

derivative orders [44, 68]. Under the HLS and the “chiral” symmetry, the transformation properties

for basic variables – ⇠L,R (nonlinear bases), ⇢µ (HLS field), and ↵̂?µ, ↵̂||µ (covariantized Maurer–

Cartan one forms) – are described as

⇠L ! h(x) · ⇠L · g
†
L(x) , ⇠R ! h(x) · ⇠R · g

†
R(x) ,

⇢µ ! h(x) · ⇢µ · h
†(x) +

i

g⇢
h(x) · @µh

†(x) , ⇢µ⌫ ! h(x) · ⇢µ⌫ · h
†(x) , (II.3)

↵̂?µ ! h(x) · ↵̂?µ · h
†(x) , ↵̂||µ ! h(x) · ↵̂||µ · h

†(x) ,

where h(x) 2 [SU(8)FV ]HLS and gR,L(x) 2 [SU(8)FR,L ]gauged. The HLS is thus the gauge degree of

freedom independent of the SM-external gauges and has spontaneously been broken together with

the “chiral” symmetry in terms of the nonlinear realization: h⇠L,Ri = 1. The nonlinear bases ⇠L

and ⇠R can be parametrized by the NG bosons ⇡ for the “chiral” symmetry and P for the HLS.

Hence, they are parametrized as ⇠R
L
= e

iP/fP · e
±i⇡/f⇡ , where the HLS decay constant fP is related

to the HC rho mass as m⇢ = g⇢fP and then the Ps are eaten by the HLS gauge boson ⇢µ due to

the Higgs mechanism.

Note that, by construction, at the leading order of derivative expansion the HLS completely

forbids triple vector vertices involving the external gauge fields along with HLS, such as G � G � ⇢

#5 We have imposed the C and P invariance as well, and assumed that the P invariance is violated only through the
weak interactions when the HC pions and ⇢ mesons couple to the SM fermions through the external weak gauges
(See also the ⇢ couplings to the SM fermions in Eq.(II.23), which take the left-handed form).
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 (non-linear basis of chiral symmetries)
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for rho mesons 
(longitudinal d.o.f.s)

 ⇢µ = ⇢aµT
a (T a : SU(8) generators) (HC rho meson fields)

Form of effective Lagrangian



Basic ingredients of chiral perturbation theory (with HLS): 

The e↵ective Lagrangian for those vectors can be formulated based on the HLS formalism, which

has succeeded in QCD rho meson physics [40–44], where the ⇢’s are introduced as the gauge bosons

of the HLS. Based on the nonlinear realization of the HLS and the “chiral” SU(8)FL ⇥ SU(8)FR

symmetry, the Lagrangian is written as #5

L = �
1

2
tr[⇢2µ⌫ ] + f

2

⇡tr[↵̂
2

?µ] +
m

2
⇢

g2⇢
tr[↵̂2

||µ] + · · · , (II.1)

in a manner invariant under the SU(8)FL ⇥SU(8)FR ⇥ [SU(8)FV ]HLS symmetries, where we define

⇢µ⌫ = @µ⇢⌫ � @⌫⇢µ � ig⇢[⇢µ, ⇢⌫ ] ,

↵̂?µ =
Dµ⇠R · ⇠

†
R �Dµ⇠L · ⇠

†
L

2i
, ↵̂||µ =

Dµ⇠R · ⇠
†
R +Dµ⇠L · ⇠

†
L

2i
, (II.2)

Dµ⇠R(L) = @µ⇠R(L) � ig⇢⇢µ⇠R(L) + i⇠R(L)Rµ(Lµ) ,

with the HLS gauge coupling g⇢, the HC pion decay constant f⇡, and the external gauge fields

Rµ and Lµ that are associated by gauging the “chiral” symmetry. Ellipses include terms of higher

derivative orders [44, 68]. Under the HLS and the “chiral” symmetry, the transformation properties

for basic variables – ⇠L,R (nonlinear bases), ⇢µ (HLS field), and ↵̂?µ, ↵̂||µ (covariantized Maurer–

Cartan one forms) – are described as

⇠L ! h(x) · ⇠L · g
†
L(x) , ⇠R ! h(x) · ⇠R · g

†
R(x) ,

⇢µ ! h(x) · ⇢µ · h
†(x) +

i

g⇢
h(x) · @µh

†(x) , ⇢µ⌫ ! h(x) · ⇢µ⌫ · h
†(x) , (II.3)

↵̂?µ ! h(x) · ↵̂?µ · h
†(x) , ↵̂||µ ! h(x) · ↵̂||µ · h

†(x) ,

where h(x) 2 [SU(8)FV ]HLS and gR,L(x) 2 [SU(8)FR,L ]gauged. The HLS is thus the gauge degree of

freedom independent of the SM-external gauges and has spontaneously been broken together with

the “chiral” symmetry in terms of the nonlinear realization: h⇠L,Ri = 1. The nonlinear bases ⇠L

and ⇠R can be parametrized by the NG bosons ⇡ for the “chiral” symmetry and P for the HLS.

Hence, they are parametrized as ⇠R
L
= e

iP/fP · e
±i⇡/f⇡ , where the HLS decay constant fP is related

to the HC rho mass as m⇢ = g⇢fP and then the Ps are eaten by the HLS gauge boson ⇢µ due to

the Higgs mechanism.

Note that, by construction, at the leading order of derivative expansion the HLS completely

forbids triple vector vertices involving the external gauge fields along with HLS, such as G � G � ⇢

#5 We have imposed the C and P invariance as well, and assumed that the P invariance is violated only through the
weak interactions when the HC pions and ⇢ mesons couple to the SM fermions through the external weak gauges
(See also the ⇢ couplings to the SM fermions in Eq.(II.23), which take the left-handed form).

8

 (non-linear basis of chiral symmetries)
pions (NG bosons)would-be NGs 

for rho mesons 
(longitudinal d.o.f.s)

 ⇢µ = ⇢aµT
a (T a : SU(8) generators)

 Materials for constructing effective Lagrangian:

The e↵ective Lagrangian for those vectors can be formulated based on the HLS formalism, which

has succeeded in QCD rho meson physics [40–44], where the ⇢’s are introduced as the gauge bosons

of the HLS. Based on the nonlinear realization of the HLS and the “chiral” SU(8)FL ⇥ SU(8)FR

symmetry, the Lagrangian is written as #5

L = �
1

2
tr[⇢2µ⌫ ] + f

2

⇡tr[↵̂
2

?µ] +
m

2
⇢

g2⇢
tr[↵̂2

||µ] + · · · , (II.1)

in a manner invariant under the SU(8)FL ⇥SU(8)FR ⇥ [SU(8)FV ]HLS symmetries, where we define

⇢µ⌫ = @µ⇢⌫ � @⌫⇢µ � ig⇢[⇢µ, ⇢⌫ ] ,

↵̂?µ =
Dµ⇠R · ⇠

†
R �Dµ⇠L · ⇠

†
L

2i
, ↵̂||µ =

Dµ⇠R · ⇠
†
R +Dµ⇠L · ⇠

†
L

2i
, (II.2)

Dµ⇠R(L) = @µ⇠R(L) � ig⇢⇢µ⇠R(L) + i⇠R(L)Rµ(Lµ) ,

with the HLS gauge coupling g⇢, the HC pion decay constant f⇡, and the external gauge fields

Rµ and Lµ that are associated by gauging the “chiral” symmetry. Ellipses include terms of higher

derivative orders [44, 68]. Under the HLS and the “chiral” symmetry, the transformation properties

for basic variables – ⇠L,R (nonlinear bases), ⇢µ (HLS field), and ↵̂?µ, ↵̂||µ (covariantized Maurer–

Cartan one forms) – are described as

⇠L ! h(x) · ⇠L · g
†
L(x) , ⇠R ! h(x) · ⇠R · g

†
R(x) ,

⇢µ ! h(x) · ⇢µ · h
†(x) +

i

g⇢
h(x) · @µh

†(x) , ⇢µ⌫ ! h(x) · ⇢µ⌫ · h
†(x) , (II.3)

↵̂?µ ! h(x) · ↵̂?µ · h
†(x) , ↵̂||µ ! h(x) · ↵̂||µ · h

†(x) ,

where h(x) 2 [SU(8)FV ]HLS and gR,L(x) 2 [SU(8)FR,L ]gauged. The HLS is thus the gauge degree of

freedom independent of the SM-external gauges and has spontaneously been broken together with

the “chiral” symmetry in terms of the nonlinear realization: h⇠L,Ri = 1. The nonlinear bases ⇠L

and ⇠R can be parametrized by the NG bosons ⇡ for the “chiral” symmetry and P for the HLS.

Hence, they are parametrized as ⇠R
L
= e

iP/fP · e
±i⇡/f⇡ , where the HLS decay constant fP is related

to the HC rho mass as m⇢ = g⇢fP and then the Ps are eaten by the HLS gauge boson ⇢µ due to

the Higgs mechanism.

Note that, by construction, at the leading order of derivative expansion the HLS completely

forbids triple vector vertices involving the external gauge fields along with HLS, such as G � G � ⇢

#5 We have imposed the C and P invariance as well, and assumed that the P invariance is violated only through the
weak interactions when the HC pions and ⇢ mesons couple to the SM fermions through the external weak gauges
(See also the ⇢ couplings to the SM fermions in Eq.(II.23), which take the left-handed form).
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The e↵ective Lagrangian for those vectors can be formulated based on the HLS formalism, which

has succeeded in QCD rho meson physics [40–44], where the ⇢’s are introduced as the gauge bosons

of the HLS. Based on the nonlinear realization of the HLS and the “chiral” SU(8)FL ⇥ SU(8)FR

symmetry, the Lagrangian is written as #5

L = �
1

2
tr[⇢2µ⌫ ] + f

2

⇡tr[↵̂
2

?µ] +
m

2
⇢

g2⇢
tr[↵̂2

||µ] + · · · , (II.1)

in a manner invariant under the SU(8)FL ⇥SU(8)FR ⇥ [SU(8)FV ]HLS symmetries, where we define

⇢µ⌫ = @µ⇢⌫ � @⌫⇢µ � ig⇢[⇢µ, ⇢⌫ ] ,

↵̂?µ =
Dµ⇠R · ⇠

†
R �Dµ⇠L · ⇠

†
L

2i
, ↵̂||µ =

Dµ⇠R · ⇠
†
R +Dµ⇠L · ⇠

†
L

2i
, (II.2)

Dµ⇠R(L) = @µ⇠R(L) � ig⇢⇢µ⇠R(L) + i⇠R(L)Rµ(Lµ) ,

with the HLS gauge coupling g⇢, the HC pion decay constant f⇡, and the external gauge fields

Rµ and Lµ that are associated by gauging the “chiral” symmetry. Ellipses include terms of higher

derivative orders [44, 68]. Under the HLS and the “chiral” symmetry, the transformation properties

for basic variables – ⇠L,R (nonlinear bases), ⇢µ (HLS field), and ↵̂?µ, ↵̂||µ (covariantized Maurer–

Cartan one forms) – are described as

⇠L ! h(x) · ⇠L · g
†
L(x) , ⇠R ! h(x) · ⇠R · g

†
R(x) ,

⇢µ ! h(x) · ⇢µ · h
†(x) +

i

g⇢
h(x) · @µh

†(x) , ⇢µ⌫ ! h(x) · ⇢µ⌫ · h
†(x) , (II.3)

↵̂?µ ! h(x) · ↵̂?µ · h
†(x) , ↵̂||µ ! h(x) · ↵̂||µ · h

†(x) ,

where h(x) 2 [SU(8)FV ]HLS and gR,L(x) 2 [SU(8)FR,L ]gauged. The HLS is thus the gauge degree of

freedom independent of the SM-external gauges and has spontaneously been broken together with

the “chiral” symmetry in terms of the nonlinear realization: h⇠L,Ri = 1. The nonlinear bases ⇠L

and ⇠R can be parametrized by the NG bosons ⇡ for the “chiral” symmetry and P for the HLS.

Hence, they are parametrized as ⇠R
L
= e

iP/fP · e
±i⇡/f⇡ , where the HLS decay constant fP is related

to the HC rho mass as m⇢ = g⇢fP and then the Ps are eaten by the HLS gauge boson ⇢µ due to

the Higgs mechanism.

Note that, by construction, at the leading order of derivative expansion the HLS completely

forbids triple vector vertices involving the external gauge fields along with HLS, such as G � G � ⇢

#5 We have imposed the C and P invariance as well, and assumed that the P invariance is violated only through the
weak interactions when the HC pions and ⇢ mesons couple to the SM fermions through the external weak gauges
(See also the ⇢ couplings to the SM fermions in Eq.(II.23), which take the left-handed form).
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Form of effective Lagrangian (cont’d)
Effective Lagrangian (lowest terms): 

The e↵ective Lagrangian for those vectors can be formulated based on the HLS formalism, which

has succeeded in QCD rho meson physics [40–44], where the ⇢’s are introduced as the gauge bosons

of the HLS. Based on the nonlinear realization of the HLS and the “chiral” SU(8)FL ⇥ SU(8)FR

symmetry, the Lagrangian is written as #5

L = �
1

2
tr[⇢2µ⌫ ] + f

2

⇡tr[↵̂
2

?µ] +
m

2
⇢

g2⇢
tr[↵̂2

||µ] + · · · , (II.1)

in a manner invariant under the SU(8)FL ⇥SU(8)FR ⇥ [SU(8)FV ]HLS symmetries, where we define

⇢µ⌫ = @µ⇢⌫ � @⌫⇢µ � ig⇢[⇢µ, ⇢⌫ ] ,

↵̂?µ =
Dµ⇠R · ⇠

†
R �Dµ⇠L · ⇠

†
L

2i
, ↵̂||µ =

Dµ⇠R · ⇠
†
R +Dµ⇠L · ⇠

†
L

2i
, (II.2)

Dµ⇠R(L) = @µ⇠R(L) � ig⇢⇢µ⇠R(L) + i⇠R(L)Rµ(Lµ) ,

with the HLS gauge coupling g⇢, the HC pion decay constant f⇡, and the external gauge fields

Rµ and Lµ that are associated by gauging the “chiral” symmetry. Ellipses include terms of higher

derivative orders [44, 68]. Under the HLS and the “chiral” symmetry, the transformation properties

for basic variables – ⇠L,R (nonlinear bases), ⇢µ (HLS field), and ↵̂?µ, ↵̂||µ (covariantized Maurer–

Cartan one forms) – are described as

⇠L ! h(x) · ⇠L · g
†
L(x) , ⇠R ! h(x) · ⇠R · g

†
R(x) ,

⇢µ ! h(x) · ⇢µ · h
†(x) +

i

g⇢
h(x) · @µh

†(x) , ⇢µ⌫ ! h(x) · ⇢µ⌫ · h
†(x) , (II.3)

↵̂?µ ! h(x) · ↵̂?µ · h
†(x) , ↵̂||µ ! h(x) · ↵̂||µ · h

†(x) ,

where h(x) 2 [SU(8)FV ]HLS and gR,L(x) 2 [SU(8)FR,L ]gauged. The HLS is thus the gauge degree of

freedom independent of the SM-external gauges and has spontaneously been broken together with

the “chiral” symmetry in terms of the nonlinear realization: h⇠L,Ri = 1. The nonlinear bases ⇠L

and ⇠R can be parametrized by the NG bosons ⇡ for the “chiral” symmetry and P for the HLS.

Hence, they are parametrized as ⇠R
L
= e

iP/fP · e
±i⇡/f⇡ , where the HLS decay constant fP is related

to the HC rho mass as m⇢ = g⇢fP and then the Ps are eaten by the HLS gauge boson ⇢µ due to

the Higgs mechanism.

Note that, by construction, at the leading order of derivative expansion the HLS completely

forbids triple vector vertices involving the external gauge fields along with HLS, such as G � G � ⇢

#5 We have imposed the C and P invariance as well, and assumed that the P invariance is violated only through the
weak interactions when the HC pions and ⇢ mesons couple to the SM fermions through the external weak gauges
(See also the ⇢ couplings to the SM fermions in Eq.(II.23), which take the left-handed form).
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Form of effective Lagrangian (cont’d)
Effective Lagrangian (lowest terms): 

The e↵ective Lagrangian for those vectors can be formulated based on the HLS formalism, which

has succeeded in QCD rho meson physics [40–44], where the ⇢’s are introduced as the gauge bosons

of the HLS. Based on the nonlinear realization of the HLS and the “chiral” SU(8)FL ⇥ SU(8)FR

symmetry, the Lagrangian is written as #5

L = �
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2
tr[⇢2µ⌫ ] + f

2

⇡tr[↵̂
2

?µ] +
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2
⇢

g2⇢
tr[↵̂2

||µ] + · · · , (II.1)

in a manner invariant under the SU(8)FL ⇥SU(8)FR ⇥ [SU(8)FV ]HLS symmetries, where we define
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†
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, ↵̂||µ =
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†
L
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, (II.2)

Dµ⇠R(L) = @µ⇠R(L) � ig⇢⇢µ⇠R(L) + i⇠R(L)Rµ(Lµ) ,

with the HLS gauge coupling g⇢, the HC pion decay constant f⇡, and the external gauge fields

Rµ and Lµ that are associated by gauging the “chiral” symmetry. Ellipses include terms of higher

derivative orders [44, 68]. Under the HLS and the “chiral” symmetry, the transformation properties

for basic variables – ⇠L,R (nonlinear bases), ⇢µ (HLS field), and ↵̂?µ, ↵̂||µ (covariantized Maurer–

Cartan one forms) – are described as

⇠L ! h(x) · ⇠L · g
†
L(x) , ⇠R ! h(x) · ⇠R · g

†
R(x) ,

⇢µ ! h(x) · ⇢µ · h
†(x) +

i

g⇢
h(x) · @µh

†(x) , ⇢µ⌫ ! h(x) · ⇢µ⌫ · h
†(x) , (II.3)

↵̂?µ ! h(x) · ↵̂?µ · h
†(x) , ↵̂||µ ! h(x) · ↵̂||µ · h

†(x) ,

where h(x) 2 [SU(8)FV ]HLS and gR,L(x) 2 [SU(8)FR,L ]gauged. The HLS is thus the gauge degree of

freedom independent of the SM-external gauges and has spontaneously been broken together with

the “chiral” symmetry in terms of the nonlinear realization: h⇠L,Ri = 1. The nonlinear bases ⇠L

and ⇠R can be parametrized by the NG bosons ⇡ for the “chiral” symmetry and P for the HLS.

Hence, they are parametrized as ⇠R
L
= e

iP/fP · e
±i⇡/f⇡ , where the HLS decay constant fP is related

to the HC rho mass as m⇢ = g⇢fP and then the Ps are eaten by the HLS gauge boson ⇢µ due to

the Higgs mechanism.

Note that, by construction, at the leading order of derivative expansion the HLS completely

forbids triple vector vertices involving the external gauge fields along with HLS, such as G � G � ⇢

#5 We have imposed the C and P invariance as well, and assumed that the P invariance is violated only through the
weak interactions when the HC pions and ⇢ mesons couple to the SM fermions through the external weak gauges
(See also the ⇢ couplings to the SM fermions in Eq.(II.23), which take the left-handed form).
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transform under the HLS and the SM gauge group G = SU(3)c ⇥ SU(2)W ⇥ U(1)Y as

⇠L ! h(x) · ⇠L · [g†L(x)]G , ⇠R ! h(x) · ⇠R · [g†R(x)]G . (II.16)

From Table I, one thus finds that the external gauge fields Lµ and Rµ, coupled to the nonlinear

bases ⇠L,R as in Eq.(II.2), are identified with those coupled to the SM fermions as described in

Eq.(II.13):

Lµ = L
f
µ , Rµ = L

f
µ ,

i.e., Vµ =
Rµ + Lµ

2
= L

f
µ , Aµ =

Rµ � Lµ

2
= 0 . (II.17)

It is useful to expand ↵̂||µ and ↵̂?µ in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):

↵̂||µ = Vµ � g⇢⇢µ �
i

2f2
⇡
[@µ⇡,⇡]�

i

f⇡
[Aµ,⇡] + · · · , (II.18)

and

↵̂?µ =
@µ⇡

f⇡
+Aµ �

i

f⇡
[Vµ,⇡]�

1

6f3
⇡
[⇡, [⇡, @µ⇡]] + · · · , (II.19)

with Vµ = (Rµ + Lµ)/2 and Aµ = (Rµ � Lµ)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = L
f
µ � g⇢⇢µ + · · · , ↵̂?µ = 0 + · · · . (II.20)

We may define the dressed fields for the left-handed SM fermions,

 L ⌘ ⇠L · fL ,  L ⌘ ⇠R · fL , (II.21)

which transform as

 L ! h(x) · L ,  L ! h(x) ·  L . (II.22)

These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as

L⇢ff = g
ij
1L

⇣
 ̄i

L�
µ
↵̂||µ 

j
L

⌘
+ g

ij
2L

⇣
 ̄i

L�
µ
↵̂||µ 

j
L + h.c.

⌘
+ g

ij
3L

⇣
 ̄
i
L�

µ
↵̂||µ 

j
L

⌘
, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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composite vector constituent color isospin

⇢
↵
(8)a

1p
2
Q̄�µ�

a
⌧
↵
Q octet triplet

⇢
0

(8)a
1

2
p
2
Q̄�µ�

a
Q octet singlet

⇢
↵
(3)c

⇣
⇢̄
↵
(3)c

⌘
1p
2
Q̄c�µ⌧

↵
L (h.c.) triplet triplet

⇢
0

(3)c

⇣
⇢̄
0

(3)c

⌘
1

2
p
2
Q̄c�µL (h.c.) triplet singlet

⇢
↵
(1)0

1

2
p
3
(Q̄�µ⌧

↵
Q� 3L̄�µ⌧↵L) singlet triplet

⇢
0

(1)0
1

4
p
3
(Q̄�µQ� 3L̄�µL) singlet singlet

⇢
↵
(1)

1

2
(Q̄�µ⌧

↵
Q+ L̄�µ⌧

↵
L) singlet triplet

TABLE II: The HC rho mesons and their associated constituent HC quarks Qc = (U,D)c and leptons

L = (N,E). Here �
a (a = 1, · · · , 8) are the Gell-Mann matrices, ⌧↵ SU(2) generators defined as ⌧↵ = �

↵
/2

(↵ = 1, 2, 3) with the Pauli matrices �
↵, and the label c stands for the QCD-three colors, c = r, g, b. The

numbers attached in lower scripts (1, 3, 8) correspond to the representations under the QCD color, i.e.,

singlet, triplet and octet for (1, 3, 8).

where q and l are SU(2)FL,FR doublets for the quark and lepton fields. The SM-covariant derivatives

that act on the f -fermion multiplets are then expressed as the 8⇥ 8 matrix forms:

DµfL = (@µfL) · 18⇥8 � i[Lf
µ]8⇥8 · fL ,

DµfR = (@µfR) · 18⇥8 � i[Rf
µ]8⇥8 · fR , (II.13)

with

h
L
f
µ

i

8⇥8

=

0

@ 12⇥2 ⌦ gsG
a
µ
�a

2
+
�
gWWµ⌧

↵ + 1

6
gY Bµ

�
⌦ 13⇥3 06⇥2

02⇥6 gWW
↵
µ ⌧

↵
�

1

2
gY Bµ · 12⇥2

1

A

=
p
2gsG

a
µT(8)a +

2
p
3
gY BµT(1)0 + 2gWW

↵
µ T

↵
(1)

,

h
R

f
µ

i

8⇥8

=

0

@ 12⇥2 ⌦ gsG
a
µ
�a

2
+ gY Q

q
emBµ ⌦ 13⇥3 06⇥2

02⇥6 gY Q
l
emBµ

1

A , (II.14)

where Gµ,Wµ and Bµ are the SU(3)c⇥SU(2)W⇥U(1)Y gauge fields along with the gauge couplings

gs, gW and gY , respectively; and Q
q,l
em is the electromagnetic (EM) charge defined as

Q
q
em =

0

@ 2/3 0

0 �1/3

1

A , Q
l
em =

0

@ 0 0

0 �1

1

A . (II.15)

The covariant derivatives for the HC fermions can also be written in terms of the 8⇥ 8 matrix

form. We may relate the charges of the HC fermions with those of the SM quark and lepton

charges, involving the HC-quark and -lepton numbers. Then the nonlinear bases ⇠L,R in Eq.(II.3)
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for SU(2)W-doublet quarks

for SU(2)W-doublet leptons

have another source which would allow some HC pions to get more massive: since the present HC

theory consists of the one-family content with the number of HC fermions NF = 8, the masses of

HC pions having the SM charges could be enhanced by the amplification of the explicit breaking

e↵ect, as discussed in [69] and references therein. The enhancement will then be most eminent for

QCD colored pions, ⇡(3) and ⇡(8) due to the relatively large QCD coupling strength. Following

[69], we evaluate the size of colored HC pion masses from the QCD gluon exchange contribution

as M2
⇡(3),(8)

⇠ C2↵s(M⇡)⇤2

HC
ln

⇤
2

UV

⇤
2

HC

, with C2 = 4

3
(3) for color-triplet (octet) HC pions, where ⇤UV

denotes some ultraviolet high-energy scale up to which the HC theory is valid. Taking ↵s(M⇡) ⇠ 0.1

and ⇤UV ⇠ 1016 GeV, for example, we thus estimate the ⇡(3) and ⇡(8) masses as M⇡(3)
⇠ 3 TeV

and M⇡(8)
⇠ 4 TeV, respectively, for ⇤HC ⇠ 1 TeV.

In a similar way, the EW gauge interaction makes masses of EW-charged HC pions lifted up.

This e↵ect becomes operative for the ⇡±,3
(1)

and ⇡
±,3
(1)0 pions to yieldM⇡±,3

(1),(1)0
⇠ 2TeV for ⇤HC ⇠ 1TeV

and ⇤UV ⇠ 1016GeV as a benchmark. Hereafter, The indices ‘±’ and ‘3’ discriminate components

of SU(2)W triplets. The index ‘0’ emphasizes that the designated states are SU(2)W singlets.

Thus, the sizes of the HC pion masses are roughly expected as

M⇡0

(1)0
⇠ O(f⇡) = O(100)GeV ,

M⇡±,3
(1)0

⇠ 2TeV ,

M⇡±,3
(1)

⇠ 2TeV ,

M⇡±,3,0
(3)

⇠ 3TeV ,

M⇡±,3,0
(8)

⇠ 4TeV , (II.11)

for ⇤HC ⇠ 1TeV and ⇤UV ⇠ 1016GeV. This is the significant feature for the HC pion in our model

particularly when we discuss collider bound on the HC rho mesons. Hereafter we shall take the

above HC pion spectroscopy as a benchmark in the present study on the HC rho meson physics.

E. Couplings to SM particles

1. Direct V -fL-fL coupling terms: extended HC-origin

The SM fermion fields are written as an eight-dimensional vector on the base of the fundamental

representation of SU(8),

fL =

0

@ q

l

1

A

L

, fR =

0

@ q

l

1

A

R

, (II.12)

12

0

0

SM gauge bosons HC rho mesons

HC pion decay constant (typical) HC rho-meson mass scale



Form of effective Lagrangian (cont’d)
Effective Lagrangian (lowest terms): 

The e↵ective Lagrangian for those vectors can be formulated based on the HLS formalism, which

has succeeded in QCD rho meson physics [40–44], where the ⇢’s are introduced as the gauge bosons

of the HLS. Based on the nonlinear realization of the HLS and the “chiral” SU(8)FL ⇥ SU(8)FR

symmetry, the Lagrangian is written as #5

L = �
1

2
tr[⇢2µ⌫ ] + f

2

⇡tr[↵̂
2

?µ] +
m

2
⇢

g2⇢
tr[↵̂2

||µ] + · · · , (II.1)

in a manner invariant under the SU(8)FL ⇥SU(8)FR ⇥ [SU(8)FV ]HLS symmetries, where we define

⇢µ⌫ = @µ⇢⌫ � @⌫⇢µ � ig⇢[⇢µ, ⇢⌫ ] ,

↵̂?µ =
Dµ⇠R · ⇠

†
R �Dµ⇠L · ⇠

†
L

2i
, ↵̂||µ =

Dµ⇠R · ⇠
†
R +Dµ⇠L · ⇠

†
L

2i
, (II.2)

Dµ⇠R(L) = @µ⇠R(L) � ig⇢⇢µ⇠R(L) + i⇠R(L)Rµ(Lµ) ,

with the HLS gauge coupling g⇢, the HC pion decay constant f⇡, and the external gauge fields

Rµ and Lµ that are associated by gauging the “chiral” symmetry. Ellipses include terms of higher

derivative orders [44, 68]. Under the HLS and the “chiral” symmetry, the transformation properties

for basic variables – ⇠L,R (nonlinear bases), ⇢µ (HLS field), and ↵̂?µ, ↵̂||µ (covariantized Maurer–

Cartan one forms) – are described as

⇠L ! h(x) · ⇠L · g
†
L(x) , ⇠R ! h(x) · ⇠R · g

†
R(x) ,

⇢µ ! h(x) · ⇢µ · h
†(x) +

i

g⇢
h(x) · @µh

†(x) , ⇢µ⌫ ! h(x) · ⇢µ⌫ · h
†(x) , (II.3)

↵̂?µ ! h(x) · ↵̂?µ · h
†(x) , ↵̂||µ ! h(x) · ↵̂||µ · h

†(x) ,

where h(x) 2 [SU(8)FV ]HLS and gR,L(x) 2 [SU(8)FR,L ]gauged. The HLS is thus the gauge degree of

freedom independent of the SM-external gauges and has spontaneously been broken together with

the “chiral” symmetry in terms of the nonlinear realization: h⇠L,Ri = 1. The nonlinear bases ⇠L

and ⇠R can be parametrized by the NG bosons ⇡ for the “chiral” symmetry and P for the HLS.

Hence, they are parametrized as ⇠R
L
= e

iP/fP · e
±i⇡/f⇡ , where the HLS decay constant fP is related

to the HC rho mass as m⇢ = g⇢fP and then the Ps are eaten by the HLS gauge boson ⇢µ due to

the Higgs mechanism.

Note that, by construction, at the leading order of derivative expansion the HLS completely

forbids triple vector vertices involving the external gauge fields along with HLS, such as G � G � ⇢

#5 We have imposed the C and P invariance as well, and assumed that the P invariance is violated only through the
weak interactions when the HC pions and ⇢ mesons couple to the SM fermions through the external weak gauges
(See also the ⇢ couplings to the SM fermions in Eq.(II.23), which take the left-handed form).
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transform under the HLS and the SM gauge group G = SU(3)c ⇥ SU(2)W ⇥ U(1)Y as

⇠L ! h(x) · ⇠L · [g†L(x)]G , ⇠R ! h(x) · ⇠R · [g†R(x)]G . (II.16)

From Table I, one thus finds that the external gauge fields Lµ and Rµ, coupled to the nonlinear

bases ⇠L,R as in Eq.(II.2), are identified with those coupled to the SM fermions as described in

Eq.(II.13):

Lµ = L
f
µ , Rµ = L

f
µ ,

i.e., Vµ =
Rµ + Lµ

2
= L

f
µ , Aµ =

Rµ � Lµ

2
= 0 . (II.17)

It is useful to expand ↵̂||µ and ↵̂?µ in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):

↵̂||µ = Vµ � g⇢⇢µ �
i

2f2
⇡
[@µ⇡,⇡]�

i

f⇡
[Aµ,⇡] + · · · , (II.18)

and

↵̂?µ =
@µ⇡

f⇡
+Aµ �

i

f⇡
[Vµ,⇡]�

1

6f3
⇡
[⇡, [⇡, @µ⇡]] + · · · , (II.19)

with Vµ = (Rµ + Lµ)/2 and Aµ = (Rµ � Lµ)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = L
f
µ � g⇢⇢µ + · · · , ↵̂?µ = 0 + · · · . (II.20)

We may define the dressed fields for the left-handed SM fermions,

 L ⌘ ⇠L · fL ,  L ⌘ ⇠R · fL , (II.21)

which transform as

 L ! h(x) · L ,  L ! h(x) ·  L . (II.22)

These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as

L⇢ff = g
ij
1L

⇣
 ̄i

L�
µ
↵̂||µ 

j
L

⌘
+ g

ij
2L

⇣
 ̄i

L�
µ
↵̂||µ 

j
L + h.c.

⌘
+ g

ij
3L

⇣
 ̄
i
L�

µ
↵̂||µ 

j
L

⌘
, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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From Table I, one thus finds that the external gauge fields Lµ and Rµ, coupled to the nonlinear

bases ⇠L,R as in Eq.(II.2), are identified with those coupled to the SM fermions as described in

Eq.(II.13):

Lµ = L
f
µ , Rµ = L

f
µ ,

i.e., Vµ =
Rµ + Lµ

2
= L

f
µ , Aµ =

Rµ � Lµ

2
= 0 . (II.17)

It is useful to expand ↵̂||µ and ↵̂?µ in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):
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+Aµ �

i

f⇡
[Vµ,⇡]�

1

6f3
⇡
[⇡, [⇡, @µ⇡]] + · · · , (II.19)

with Vµ = (Rµ + Lµ)/2 and Aµ = (Rµ � Lµ)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = L
f
µ � g⇢⇢µ + · · · , ↵̂?µ = 0 + · · · . (II.20)

We may define the dressed fields for the left-handed SM fermions,

 L ⌘ ⇠L · fL ,  L ⌘ ⇠R · fL , (II.21)

which transform as
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⇣
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⇣
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, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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⇢
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2
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Q octet singlet

⇢
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⇣
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L (h.c.) triplet triplet

⇢
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TABLE II: The HC rho mesons and their associated constituent HC quarks Qc = (U,D)c and leptons

L = (N,E). Here �
a (a = 1, · · · , 8) are the Gell-Mann matrices, ⌧↵ SU(2) generators defined as ⌧↵ = �

↵
/2

(↵ = 1, 2, 3) with the Pauli matrices �
↵, and the label c stands for the QCD-three colors, c = r, g, b. The

numbers attached in lower scripts (1, 3, 8) correspond to the representations under the QCD color, i.e.,

singlet, triplet and octet for (1, 3, 8).

where q and l are SU(2)FL,FR doublets for the quark and lepton fields. The SM-covariant derivatives

that act on the f -fermion multiplets are then expressed as the 8⇥ 8 matrix forms:

DµfL = (@µfL) · 18⇥8 � i[Lf
µ]8⇥8 · fL ,

DµfR = (@µfR) · 18⇥8 � i[Rf
µ]8⇥8 · fR , (II.13)

with

h
L
f
µ

i

8⇥8

=

0

@ 12⇥2 ⌦ gsG
a
µ
�a

2
+
�
gWWµ⌧

↵ + 1

6
gY Bµ

�
⌦ 13⇥3 06⇥2

02⇥6 gWW
↵
µ ⌧

↵
�

1

2
gY Bµ · 12⇥2

1

A

=
p
2gsG

a
µT(8)a +

2
p
3
gY BµT(1)0 + 2gWW

↵
µ T

↵
(1)

,

h
R

f
µ

i

8⇥8

=

0

@ 12⇥2 ⌦ gsG
a
µ
�a

2
+ gY Q

q
emBµ ⌦ 13⇥3 06⇥2

02⇥6 gY Q
l
emBµ

1

A , (II.14)

where Gµ,Wµ and Bµ are the SU(3)c⇥SU(2)W⇥U(1)Y gauge fields along with the gauge couplings

gs, gW and gY , respectively; and Q
q,l
em is the electromagnetic (EM) charge defined as

Q
q
em =

0

@ 2/3 0

0 �1/3

1

A , Q
l
em =

0

@ 0 0

0 �1

1

A . (II.15)

The covariant derivatives for the HC fermions can also be written in terms of the 8⇥ 8 matrix

form. We may relate the charges of the HC fermions with those of the SM quark and lepton

charges, involving the HC-quark and -lepton numbers. Then the nonlinear bases ⇠L,R in Eq.(II.3)
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for SU(2)W-doublet quarks

for SU(2)W-doublet leptons

have another source which would allow some HC pions to get more massive: since the present HC

theory consists of the one-family content with the number of HC fermions NF = 8, the masses of

HC pions having the SM charges could be enhanced by the amplification of the explicit breaking

e↵ect, as discussed in [69] and references therein. The enhancement will then be most eminent for

QCD colored pions, ⇡(3) and ⇡(8) due to the relatively large QCD coupling strength. Following

[69], we evaluate the size of colored HC pion masses from the QCD gluon exchange contribution

as M2
⇡(3),(8)

⇠ C2↵s(M⇡)⇤2

HC
ln

⇤
2

UV

⇤
2

HC

, with C2 = 4

3
(3) for color-triplet (octet) HC pions, where ⇤UV

denotes some ultraviolet high-energy scale up to which the HC theory is valid. Taking ↵s(M⇡) ⇠ 0.1

and ⇤UV ⇠ 1016 GeV, for example, we thus estimate the ⇡(3) and ⇡(8) masses as M⇡(3)
⇠ 3 TeV

and M⇡(8)
⇠ 4 TeV, respectively, for ⇤HC ⇠ 1 TeV.

In a similar way, the EW gauge interaction makes masses of EW-charged HC pions lifted up.

This e↵ect becomes operative for the ⇡±,3
(1)

and ⇡
±,3
(1)0 pions to yieldM⇡±,3

(1),(1)0
⇠ 2TeV for ⇤HC ⇠ 1TeV

and ⇤UV ⇠ 1016GeV as a benchmark. Hereafter, The indices ‘±’ and ‘3’ discriminate components

of SU(2)W triplets. The index ‘0’ emphasizes that the designated states are SU(2)W singlets.

Thus, the sizes of the HC pion masses are roughly expected as

M⇡0

(1)0
⇠ O(f⇡) = O(100)GeV ,

M⇡±,3
(1)0

⇠ 2TeV ,

M⇡±,3
(1)

⇠ 2TeV ,

M⇡±,3,0
(3)

⇠ 3TeV ,

M⇡±,3,0
(8)

⇠ 4TeV , (II.11)

for ⇤HC ⇠ 1TeV and ⇤UV ⇠ 1016GeV. This is the significant feature for the HC pion in our model

particularly when we discuss collider bound on the HC rho mesons. Hereafter we shall take the

above HC pion spectroscopy as a benchmark in the present study on the HC rho meson physics.

E. Couplings to SM particles

1. Direct V -fL-fL coupling terms: extended HC-origin

The SM fermion fields are written as an eight-dimensional vector on the base of the fundamental

representation of SU(8),

fL =

0

@ q

l

1

A

L

, fR =

0

@ q

l

1

A

R

, (II.12)
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transform under the HLS and the SM gauge group G = SU(3)c ⇥ SU(2)W ⇥ U(1)Y as

⇠L ! h(x) · ⇠L · [g†L(x)]G , ⇠R ! h(x) · ⇠R · [g†R(x)]G . (II.16)

From Table I, one thus finds that the external gauge fields Lµ and Rµ, coupled to the nonlinear

bases ⇠L,R as in Eq.(II.2), are identified with those coupled to the SM fermions as described in

Eq.(II.13):

Lµ = L
f
µ , Rµ = L

f
µ ,

i.e., Vµ =
Rµ + Lµ

2
= L

f
µ , Aµ =

Rµ � Lµ

2
= 0 . (II.17)

It is useful to expand ↵̂||µ and ↵̂?µ in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):

↵̂||µ = Vµ � g⇢⇢µ �
i

2f2
⇡
[@µ⇡,⇡]�

i

f⇡
[Aµ,⇡] + · · · , (II.18)

and

↵̂?µ =
@µ⇡

f⇡
+Aµ �

i

f⇡
[Vµ,⇡]�

1

6f3
⇡
[⇡, [⇡, @µ⇡]] + · · · , (II.19)

with Vµ = (Rµ + Lµ)/2 and Aµ = (Rµ � Lµ)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = L
f
µ � g⇢⇢µ + · · · , ↵̂?µ = 0 + · · · . (II.20)

We may define the dressed fields for the left-handed SM fermions,

 L ⌘ ⇠L · fL ,  L ⌘ ⇠R · fL , (II.21)

which transform as

 L ! h(x) · L ,  L ! h(x) ·  L . (II.22)

These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as

L⇢ff = g
ij
1L

⇣
 ̄i

L�
µ
↵̂||µ 

j
L

⌘
+ g

ij
2L

⇣
 ̄i

L�
µ
↵̂||µ 

j
L + h.c.

⌘
+ g

ij
3L

⇣
 ̄
i
L�

µ
↵̂||µ 

j
L

⌘
, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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with Vµ = (Rµ + Lµ)/2 and Aµ = (Rµ � Lµ)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = L
f
µ � g⇢⇢µ + · · · , ↵̂?µ = 0 + · · · . (II.20)

We may define the dressed fields for the left-handed SM fermions,

 L ⌘ ⇠L · fL ,  L ⌘ ⇠R · fL , (II.21)

which transform as

 L ! h(x) · L ,  L ! h(x) ·  L . (II.22)

These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions
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where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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Form of effective Lagrangian (cont’d)
Effective Lagrangian (lowest terms): 

The e↵ective Lagrangian for those vectors can be formulated based on the HLS formalism, which

has succeeded in QCD rho meson physics [40–44], where the ⇢’s are introduced as the gauge bosons

of the HLS. Based on the nonlinear realization of the HLS and the “chiral” SU(8)FL ⇥ SU(8)FR

symmetry, the Lagrangian is written as #5

L = �
1

2
tr[⇢2µ⌫ ] + f

2

⇡tr[↵̂
2

?µ] +
m

2
⇢

g2⇢
tr[↵̂2

||µ] + · · · , (II.1)

in a manner invariant under the SU(8)FL ⇥SU(8)FR ⇥ [SU(8)FV ]HLS symmetries, where we define

⇢µ⌫ = @µ⇢⌫ � @⌫⇢µ � ig⇢[⇢µ, ⇢⌫ ] ,

↵̂?µ =
Dµ⇠R · ⇠

†
R �Dµ⇠L · ⇠

†
L

2i
, ↵̂||µ =

Dµ⇠R · ⇠
†
R +Dµ⇠L · ⇠

†
L

2i
, (II.2)

Dµ⇠R(L) = @µ⇠R(L) � ig⇢⇢µ⇠R(L) + i⇠R(L)Rµ(Lµ) ,

with the HLS gauge coupling g⇢, the HC pion decay constant f⇡, and the external gauge fields

Rµ and Lµ that are associated by gauging the “chiral” symmetry. Ellipses include terms of higher

derivative orders [44, 68]. Under the HLS and the “chiral” symmetry, the transformation properties

for basic variables – ⇠L,R (nonlinear bases), ⇢µ (HLS field), and ↵̂?µ, ↵̂||µ (covariantized Maurer–

Cartan one forms) – are described as

⇠L ! h(x) · ⇠L · g
†
L(x) , ⇠R ! h(x) · ⇠R · g

†
R(x) ,

⇢µ ! h(x) · ⇢µ · h
†(x) +

i

g⇢
h(x) · @µh

†(x) , ⇢µ⌫ ! h(x) · ⇢µ⌫ · h
†(x) , (II.3)

↵̂?µ ! h(x) · ↵̂?µ · h
†(x) , ↵̂||µ ! h(x) · ↵̂||µ · h

†(x) ,

where h(x) 2 [SU(8)FV ]HLS and gR,L(x) 2 [SU(8)FR,L ]gauged. The HLS is thus the gauge degree of

freedom independent of the SM-external gauges and has spontaneously been broken together with

the “chiral” symmetry in terms of the nonlinear realization: h⇠L,Ri = 1. The nonlinear bases ⇠L

and ⇠R can be parametrized by the NG bosons ⇡ for the “chiral” symmetry and P for the HLS.

Hence, they are parametrized as ⇠R
L
= e

iP/fP · e
±i⇡/f⇡ , where the HLS decay constant fP is related

to the HC rho mass as m⇢ = g⇢fP and then the Ps are eaten by the HLS gauge boson ⇢µ due to

the Higgs mechanism.

Note that, by construction, at the leading order of derivative expansion the HLS completely

forbids triple vector vertices involving the external gauge fields along with HLS, such as G � G � ⇢

#5 We have imposed the C and P invariance as well, and assumed that the P invariance is violated only through the
weak interactions when the HC pions and ⇢ mesons couple to the SM fermions through the external weak gauges
(See also the ⇢ couplings to the SM fermions in Eq.(II.23), which take the left-handed form).
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transform under the HLS and the SM gauge group G = SU(3)c ⇥ SU(2)W ⇥ U(1)Y as

⇠L ! h(x) · ⇠L · [g†L(x)]G , ⇠R ! h(x) · ⇠R · [g†R(x)]G . (II.16)

From Table I, one thus finds that the external gauge fields Lµ and Rµ, coupled to the nonlinear

bases ⇠L,R as in Eq.(II.2), are identified with those coupled to the SM fermions as described in

Eq.(II.13):

Lµ = L
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2
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It is useful to expand ↵̂||µ and ↵̂?µ in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):
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1
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with Vµ = (Rµ + Lµ)/2 and Aµ = (Rµ � Lµ)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = L
f
µ � g⇢⇢µ + · · · , ↵̂?µ = 0 + · · · . (II.20)

We may define the dressed fields for the left-handed SM fermions,

 L ⌘ ⇠L · fL ,  L ⌘ ⇠R · fL , (II.21)

which transform as

 L ! h(x) · L ,  L ! h(x) ·  L . (II.22)

These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as

L⇢ff = g
ij
1L

⇣
 ̄i

L�
µ
↵̂||µ 

j
L

⌘
+ g

ij
2L

⇣
 ̄i

L�
µ
↵̂||µ 

j
L + h.c.

⌘
+ g

ij
3L

⇣
 ̄
i
L�

µ
↵̂||µ 

j
L

⌘
, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as
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1L

⇣
 ̄i

L�
µ
↵̂||µ 

j
L

⌘
+ g

ij
2L

⇣
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⇣
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j
L
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, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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composite vector constituent color isospin

⇢
↵
(8)a

1p
2
Q̄�µ�

a
⌧
↵
Q octet triplet

⇢
0

(8)a
1

2
p
2
Q̄�µ�

a
Q octet singlet

⇢
↵
(3)c

⇣
⇢̄
↵
(3)c

⌘
1p
2
Q̄c�µ⌧

↵
L (h.c.) triplet triplet

⇢
0

(3)c

⇣
⇢̄
0

(3)c

⌘
1

2
p
2
Q̄c�µL (h.c.) triplet singlet

⇢
↵
(1)0

1

2
p
3
(Q̄�µ⌧

↵
Q� 3L̄�µ⌧↵L) singlet triplet

⇢
0

(1)0
1

4
p
3
(Q̄�µQ� 3L̄�µL) singlet singlet

⇢
↵
(1)

1

2
(Q̄�µ⌧

↵
Q+ L̄�µ⌧

↵
L) singlet triplet

TABLE II: The HC rho mesons and their associated constituent HC quarks Qc = (U,D)c and leptons

L = (N,E). Here �
a (a = 1, · · · , 8) are the Gell-Mann matrices, ⌧↵ SU(2) generators defined as ⌧↵ = �

↵
/2

(↵ = 1, 2, 3) with the Pauli matrices �
↵, and the label c stands for the QCD-three colors, c = r, g, b. The

numbers attached in lower scripts (1, 3, 8) correspond to the representations under the QCD color, i.e.,

singlet, triplet and octet for (1, 3, 8).

where q and l are SU(2)FL,FR doublets for the quark and lepton fields. The SM-covariant derivatives

that act on the f -fermion multiplets are then expressed as the 8⇥ 8 matrix forms:

DµfL = (@µfL) · 18⇥8 � i[Lf
µ]8⇥8 · fL ,

DµfR = (@µfR) · 18⇥8 � i[Rf
µ]8⇥8 · fR , (II.13)

with

h
L
f
µ

i

8⇥8

=

0

@ 12⇥2 ⌦ gsG
a
µ
�a

2
+
�
gWWµ⌧

↵ + 1

6
gY Bµ

�
⌦ 13⇥3 06⇥2

02⇥6 gWW
↵
µ ⌧

↵
�

1

2
gY Bµ · 12⇥2

1

A

=
p
2gsG

a
µT(8)a +

2
p
3
gY BµT(1)0 + 2gWW

↵
µ T

↵
(1)

,

h
R

f
µ

i

8⇥8

=

0

@ 12⇥2 ⌦ gsG
a
µ
�a

2
+ gY Q

q
emBµ ⌦ 13⇥3 06⇥2

02⇥6 gY Q
l
emBµ

1

A , (II.14)

where Gµ,Wµ and Bµ are the SU(3)c⇥SU(2)W⇥U(1)Y gauge fields along with the gauge couplings

gs, gW and gY , respectively; and Q
q,l
em is the electromagnetic (EM) charge defined as

Q
q
em =

0

@ 2/3 0

0 �1/3

1

A , Q
l
em =

0

@ 0 0

0 �1

1

A . (II.15)

The covariant derivatives for the HC fermions can also be written in terms of the 8⇥ 8 matrix

form. We may relate the charges of the HC fermions with those of the SM quark and lepton

charges, involving the HC-quark and -lepton numbers. Then the nonlinear bases ⇠L,R in Eq.(II.3)
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for SU(2)W-doublet quarks

for SU(2)W-doublet leptons

have another source which would allow some HC pions to get more massive: since the present HC

theory consists of the one-family content with the number of HC fermions NF = 8, the masses of

HC pions having the SM charges could be enhanced by the amplification of the explicit breaking

e↵ect, as discussed in [69] and references therein. The enhancement will then be most eminent for

QCD colored pions, ⇡(3) and ⇡(8) due to the relatively large QCD coupling strength. Following

[69], we evaluate the size of colored HC pion masses from the QCD gluon exchange contribution

as M2
⇡(3),(8)

⇠ C2↵s(M⇡)⇤2

HC
ln

⇤
2

UV

⇤
2

HC

, with C2 = 4

3
(3) for color-triplet (octet) HC pions, where ⇤UV

denotes some ultraviolet high-energy scale up to which the HC theory is valid. Taking ↵s(M⇡) ⇠ 0.1

and ⇤UV ⇠ 1016 GeV, for example, we thus estimate the ⇡(3) and ⇡(8) masses as M⇡(3)
⇠ 3 TeV

and M⇡(8)
⇠ 4 TeV, respectively, for ⇤HC ⇠ 1 TeV.

In a similar way, the EW gauge interaction makes masses of EW-charged HC pions lifted up.

This e↵ect becomes operative for the ⇡±,3
(1)

and ⇡
±,3
(1)0 pions to yieldM⇡±,3

(1),(1)0
⇠ 2TeV for ⇤HC ⇠ 1TeV

and ⇤UV ⇠ 1016GeV as a benchmark. Hereafter, The indices ‘±’ and ‘3’ discriminate components

of SU(2)W triplets. The index ‘0’ emphasizes that the designated states are SU(2)W singlets.

Thus, the sizes of the HC pion masses are roughly expected as

M⇡0

(1)0
⇠ O(f⇡) = O(100)GeV ,

M⇡±,3
(1)0

⇠ 2TeV ,

M⇡±,3
(1)

⇠ 2TeV ,

M⇡±,3,0
(3)

⇠ 3TeV ,

M⇡±,3,0
(8)

⇠ 4TeV , (II.11)

for ⇤HC ⇠ 1TeV and ⇤UV ⇠ 1016GeV. This is the significant feature for the HC pion in our model

particularly when we discuss collider bound on the HC rho mesons. Hereafter we shall take the

above HC pion spectroscopy as a benchmark in the present study on the HC rho meson physics.

E. Couplings to SM particles

1. Direct V -fL-fL coupling terms: extended HC-origin

The SM fermion fields are written as an eight-dimensional vector on the base of the fundamental

representation of SU(8),

fL =

0

@ q

l

1

A

L

, fR =

0

@ q

l

1

A

R

, (II.12)
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transform under the HLS and the SM gauge group G = SU(3)c ⇥ SU(2)W ⇥ U(1)Y as

⇠L ! h(x) · ⇠L · [g†L(x)]G , ⇠R ! h(x) · ⇠R · [g†R(x)]G . (II.16)

From Table I, one thus finds that the external gauge fields Lµ and Rµ, coupled to the nonlinear

bases ⇠L,R as in Eq.(II.2), are identified with those coupled to the SM fermions as described in

Eq.(II.13):

Lµ = L
f
µ , Rµ = L

f
µ ,

i.e., Vµ =
Rµ + Lµ

2
= L

f
µ , Aµ =

Rµ � Lµ

2
= 0 . (II.17)

It is useful to expand ↵̂||µ and ↵̂?µ in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):

↵̂||µ = Vµ � g⇢⇢µ �
i

2f2
⇡
[@µ⇡,⇡]�

i

f⇡
[Aµ,⇡] + · · · , (II.18)

and

↵̂?µ =
@µ⇡

f⇡
+Aµ �

i

f⇡
[Vµ,⇡]�

1

6f3
⇡
[⇡, [⇡, @µ⇡]] + · · · , (II.19)

with Vµ = (Rµ + Lµ)/2 and Aµ = (Rµ � Lµ)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = L
f
µ � g⇢⇢µ + · · · , ↵̂?µ = 0 + · · · . (II.20)

We may define the dressed fields for the left-handed SM fermions,

 L ⌘ ⇠L · fL ,  L ⌘ ⇠R · fL , (II.21)

which transform as

 L ! h(x) · L ,  L ! h(x) ·  L . (II.22)

These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as

L⇢ff = g
ij
1L

⇣
 ̄i

L�
µ
↵̂||µ 

j
L

⌘
+ g

ij
2L

⇣
 ̄i

L�
µ
↵̂||µ 

j
L + h.c.

⌘
+ g

ij
3L

⇣
 ̄
i
L�

µ
↵̂||µ 

j
L

⌘
, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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fermions

SM gauge bosons

Effective couplings of fL-fL-ρ (being gauge-invariant): 

transform under the HLS and the SM gauge group G = SU(3)c ⇥ SU(2)W ⇥ U(1)Y as
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where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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(undetermined) 3×3 matrices

⇠L/R = 1 + · · ·

gijL ⌘ (g1L + 2g2L + g3L)
ij

(No additional fermion/scalar is required.)

HC pion decay constant (typical) HC rho-meson mass scale

HC rho mesons



Dynamical EWSB Scenarios

type

Technicolor
(chiral

condensation)

125GeV scalar

dilaton
(in walking case)

 simplest

 UV theory is known.

 Another complicated 
      dynamics is required 
      for SM fermion masses.

 disfavored by S,T parameters,  
      and Higgs signal strengths

(+ others)

Good Points Problems(?)



type

Technicolor
(chiral

condensation)

“Composite”
Higgs 

125GeV scalar

dilaton
(in walking case)

 simplest

 UV theory is known.

 Another complicated 
      dynamics is required 
      for SM fermion masses.

Composite
SU(2)L

doublet(s)
[pseudo NG

bosons of
new dynamics]

 lots of possibilities

 existence of new fermions 
      as triggers of EWSB  
      → LHC!

 UV theory is not so clear.
 EW precision is still nontrivial.

(+ others)

Dynamical EWSB Scenarios

Good Points Problems(?)

 disfavored by S,T parameters,  
      and Higgs signal strengths
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Technicolor
(chiral

condensation)

“Composite”
Higgs 

125GeV scalar

dilaton
(in walking case)
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 UV theory is known.

 Another complicated 
      dynamics is required 
      for SM fermion masses.

Composite
SU(2)L

doublet(s)
[pseudo NG

bosons of
new dynamics]

 lots of possibilities

 existence of new fermions 
      as triggers of EWSB  
      → LHC!

 UV theory is not so clear.
 EW precision is still nontrivial.

Vector-like
confinement

Fundamental
SU(2)L

doublet(s)
(+

singlet(s))

 Classically scale invariance 
      → dynamical EWSB 
           triggered by the  
           confinement.

 UV theory is known.

 No problem in SM 
      fermion massess

 Additional scalars are added.

 SM Yukawa couplings are 
      not related to the dynamics.

(+ others)

Dynamical EWSB Scenarios

Good Points Problems(?)

 disfavored by S,T parameters,  
      and Higgs signal strengths



 disfavored by S,T parameters,  
      and Higgs signal strengths
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Technicolor
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condensation)

“Composite”
Higgs 

125GeV scalar

dilaton
(in walking case)

 simplest

 UV theory is known.

 Another complicated 
      dynamics is required 
      for SM fermion masses.

Composite
SU(2)L

doublet(s)
[pseudo NG

bosons of
new dynamics]

 lots of possibilities

 existence of new fermions 
      as triggers of EWSB  
      → LHC!

 UV theory is not so clear.
 EW precision is still nontrivial.

Vector-like
confinement

Fundamental
SU(2)L

doublet(s)
(+

singlet(s))

 Classically scale invariance 
      → dynamical EWSB 
           triggered by the  
           confinement.

 UV theory is known.

 Additional scalars are added.

 SM Yukawa couplings are 
      not related to the dynamics.
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In this write-up, the one-family hypercolor (HC) model in Ref. [1] is extended to be a classically
scale-invariant version. The eight-flavor HC dynamics can generically be an almost-scale invari-
ant/walking dynamics, hence the composite dilaton can arise as a pseudo Nambu-Goldstone boson
of the scale symmetry, and have the mass as small as the EW scale. In the present setup, the
scale-invariance forbids the mass term for the standard-model (SM) Higgs as well as the vectorlike
HC fermion mass explicitly breaking the “chiral” symmetry of the HC sector. Those masses are
dynamically generated as a consequence of a seesaw mechanism, triggered among the composite HC
dilaton and an elementary scalar (dilaton) allowed to couple to the HC sector. Accordingly, the
electroweak symmetry breaking (EWSB) is also dynamically achieved by the dilaton seesaw, and its
phenomenological consequence can be seen in the significant deviation of the Higgs coupling prop-
erty, to be tested in precise coupling measurements in the future collider experiments. In addition to
the composite HC dilaton with the EW scale mass, as the dilaton-seesaw partner, the present model
thus predicts the light scalar with the mass . O(100) GeV, which can couple to the SM particles
with the small strength arising from the mixing with the SM Higgs. The HC dilaton, with mass of
order of hundreds of GeV, can be produced at the LHC via the gluon fusion process, decaying to SM
gauge bosons, among which the �� and Z� cross sections are large enough to be accessible in the
future LHC searches. The presence of the HC dilaton can also be related to the currently reported
B anomalies: the flavorful HC rhos, which can account for the B anomalies, significantly couple
also to the HC dilaton together with the SM gauge bosons, to be clarified by the future diboson
measurements.

PACS numbers:

I. SETUP

We assume the scale-invariance at the classical level for the SM and HC sectors, so that the SM Higgs and HC

fermion mass terms are absent. Instead, we introduce an elementary scalar ' (an elementary dilaton) which is

singlet under all symmetries in the SM and HC sectors. Then, the invariant potential terms including the ' can

unambiguously be written as

V = y' '(F̄F ) +
�'

4
'
4
+ �H(H

†
H)

2
+ ' '

2
(H

†
H) , (1)

where F = (Q,L)
T

and H are HC fermions forming the one-family content as in Ref. [1] and the Higgs doublet,

respectively. The quartic couplings �H ,�' and ' satisfy the condition to make the potential bounded from below:

�H > 0 , �' > 0 , �'�H � 
2

'
> 0 . (2)

We assume the Yukawa coupling y' to be small, y' ⌧ 1, which turns out to be consistent with the dilaton seesaw

mechanism as will be seen later.

II. EFFECTIVE POTENTIAL AT THE HC SCALE

The potential in Eq.(1) is regarded as the form at an ultraviolet scale ⇤UV, below which at the HC scale ⇤HC the

HC fermion develops nonzero chiral condensate hF̄F i. Then, both the chiral and scale symmetries are spontaneously

broken, yielding the Nambu-Goldstone bosons for the chiral (HC pions ⇡) and scale (HC dilaton �) symmetries. Since

the one-family HC theory having the eight flavors can be almost scale-invariant even at the quantum level, that is

called walking gauge theory, the HC dilaton �, arising as the F̄F -bound state, can be much lighter than other HC

hadrons such as HC rhos, as in the case of the one-family walking technicolor [2]. As was clearly discussed in Ref. [3],

the coupling of HC dilaton to the composite F̄F operator is then completely fixed by the Ward-Takahashi identity

e.g., [T.Hur & P.Ko, arXiv:1103.2571]
hidden vector fermion singlet scalar Higgs doublet

When this part condensates, a tadpole term emerges
⇒ dynamical EWSB!

 No problem in SM 
      fermion massess

(+ others)

Dynamical EWSB Scenarios

Good Points Problems(?)



Review: Kaon state
 K0(s̄�5d), K0(d̄�5s): JP=0-, ≠ (mass, CP eigenstate)

 CP eigenstate: |K 1
2
i = 1

2

h
|K0i± |K0i

i ⇣
c.f. CP |K0i = |K0i

⌘

CP even CP odd

 mass eigenstate: |KSi ⇠ |K1i+ ✏̄ |K2i, |KLi ⇠ |K2i+ ✏̄ |K1i
shorter lifetime longer lifetime

CPV parameter (εbar~10-3)

 (ML + MS)/2 ~ 500 MeV 
 (ML - MS)/2  ~ 10-12 MeV 
 ΓS ~ 10-12 MeV 
 ΓL ~ 10-14 MeV

[Data]

almost mass-degenerated

significant difference due to 
CP-conserved primaly decay patterns 

(KS → 2π, KL → 3π)

“CP-o
dd”

“CP-e
ven”



Review: Kaon system
 |�(t)i = aK(t)|K0i+ aK̄(t)|K0i

i
d

dt

✓
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aK̄(t)

◆
= H

✓
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◆
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✓
M11 � i

2�11 M12 � i
2�12

M21 � i
2�21 M22 � i

2�22

◆
 

CPT: M11 = M22, Γ11 = Γ22 

Hermiticity: M21 = (M12)*, Γ21 = (Γ12)*
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 KL → ππ is prohibited if CP is an exact symmetry:
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Review: CPV in K → 2π
 Two CVP decay modes: KL → π+π-, KL → π0π0

 ⌘00 =
A(KL ! ⇡0⇡0)

A(KS ! ⇡0⇡0)
= ✏(K) � 2✏0(K)

 ⌘+� =
A(KL ! ⇡+⇡�)

A(KS ! ⇡+⇡�)
= ✏(K) + ✏0(K)

- The ratios of amplitudes works as order parameters:

Indirect CPVs are universal. 

Direct CPVs 
appear differently.



Review: ε(K) & ε’(K)

 Decay amplitudes in gauge-isospin basis:

 A(K0 ! (⇡⇡)I=0) = A0e
i�0 , A(K0 ! (⇡⇡)I=0) = A⇤

0e
i�0

 A(K0 ! (⇡⇡)I=2) = A2e
i�2 , A(K0 ! (⇡⇡)I=2) = A⇤

2e
i�2

strong 
CP phases

(including) weak 
CP phases
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Review: properties of  ε’(K)/ε(K)

✏0

✏
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
ImA2

ReA2
� ImA0

ReA0
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
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ImA2
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W± W±
s

t t

g

d

u, d u, d

t t

�, Z

QCD penguin EW penguin

CPV

• EW penguin is comparable to QCD due to 1/ω~22 (ΔI=1/2) 

• Almost cancel out between A0 and A2

isospin violation

Standard Model (enhancement 
factor)' 22

QCD Penguin 
operator(s)

EW Penguin 
operator(s)

In SM, there is accidental cancellation between ImA0 and ImA2 due to
the enhancement	factor	1/ω

ε’/ε

2 Basic formulae 10

with [31, 32]

B
(1/2)
6 = B

(3/2)
8 = 1 (43)

in the large-N limit. As had been demonstrated in [10], B
(1/2)
6 and B

(3/2)
8 exhibit a

very weak scale dependence. The dimensionful parameters entering (41), (42) are given
by [33,34]

mK = 497.614MeV, F⇡ = 130.41(20)MeV,
FK

F⇡
= 1.194(5) , (44)

ms(mc) = 109.1(2.8)MeV, md(mc) = 5.44(19)MeV . (45)

In [34], the light quark masses are presented at a scale of 2GeV, and we have evolved
them to µ = mc = 1.3GeV with the help of the renormalisation group equation. For the
comparison with lattice results below, we also need their values at µ = 1.53GeV, which
are found to be

ms(1.53GeV) = 102.3(2.7)MeV, md(1.53GeV) = 5.10(17)MeV . (46)

Below, we will neglect the tiny errors on mK , FK , and F⇡.
It should be emphasised that the overall factor h in (41), (42) depends on the nor-

malisation of the amplitudes A0,2. In [10] and recent papers of the RBC-UKQCD col-
laboration [23, 35] h =

p
3/2 is used whereas in most recent phenomenological pa-

pers [4, 17, 20, 21], h = 1. Correspondingly, the experimental values quoted for A0,2

di↵er by this factor. To facilitate comparison with [10] and the RBC-UKQCD collabora-
tion results [23, 25, 35], we will set h =

p
3/2 in the present paper and consequently the

experimental numbers to be used are

ReA0 = 33.22(1)⇥ 10�8 GeV , ReA2 = 1.479(3)⇥ 10�8 GeV , (47)

which display the �I = 1/2 rule

ReA0

ReA2
⌘ 1

!
= 22.46 . (48)

We also note that while equation (41) is identical to (5.10) in [10], the definition of B(3/2)
8

in the present paper di↵ers from [10] [cf (5.18) there]. This is to ensure that B(1/2)
6 = 1

and B
(3/2)
8 = 1 both correctly reproduce the large-N limit of QCD. In contrast, (5.18)

in [10] was based on the so-called vacuum insertion approximation, in which additional

terms appear in the normalisation of B(3/2)
8 . Such terms misrepresent the large-N limit

of QCD. With our conventions, 1/N corrections in (41) and (42) are represented by the

departure of B(1/2)
6 and B

(3/2)
8 from unity. They have been investigated in [22] and very

recently in [24] with the result summarised in (4). We refer to this paper for further
details.

We now turn to the parameter q which enters (36). We first note that, like B(1/2)
6 and

B
(3/2)
8 , it is nearly renormalisation-scale independent. Its value can be estimated in the

large-N approach [17]; as this approach correctly accounts for the bulk of the experimental
value of ReA0, the ensuing estimate can be considered a plausible one. In the large-N

ΔI=1/2	rule

EW penguinQCD penguin
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 If less-canceled, sizable contrib.’s of NP are expected.
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3.2 Flavor changing processes converting the second and first generations

We next move on to the flavor constraints on the CFVs coming from theK system. Looking

at the flavor texture introduced in Sec. 2.3, we find that the NP contributions to the s� d

transition observables, ✏0/✏, K ! ⇡⌫⌫̄ and K0-K̄0 mixing (�MK) are possibly generated.

As discussed in the previous section, we first note that the down-sector rotation angle ✓D
is severely constrained by B observables, most stringently by B0

s -B
0
s mixing, to be almost

vanishing,

✓D ⇠ 0 , (3.31)

(but should be finite to address B anomalies like b ! sµ+µ�), while the lepton angle ✓L
has to be

✓L ⇠ ⇡

2
. (3.32)

In discussing the K system, we shall take these conditions to survey the allowed parameter

space for the CFVs.

3.2.1 K ! ⇡⇡

NP e↵ects on the K ! ⇡⇡ process have extensively been investigated in various context

of scenarios beyond the SM [140–154]. To this process, in terms of e↵ective operators, the

contributions can be classified into i) (V � A) ⇥ (V � A), ii) (V + A) ⇥ (V + A), and iii)

(V �A)⇥(V +A) current interaction types. Since in the present model, CFVs couple only to

left-handed (V �A) current fermions with the generation conversion allowed, only the types

of i) and iii) will be relevant. As to the type i) (V �A)⇥(V �A) interactions, characterized

by called Q2 = (s̄u)V�A(ūd)V�A (charged current type), Q3 = (s̄d)V�A
P

q(q̄q)V�A (QCD

penguin type) and Q9 = (s̄d)V�A
P

q Q
q
em(q̄q)V�A (EW penguin type) operators, we see

that the CFVs exchanges having only the flavored gij⇢L couplings do not generate any

contributions, because of the third-generation-philic texture for the gij⇢L in Eq.(2.9) and the

rotation matrix D in Eq.(2.12) with the constraint on ✓D in Eq.(3.31) taken into account.

Thus the nontrivial-leading terms to the type i) as well as the type iii) are generated

necessarily along with the flavor-universal interactions suppressed by (gs,W,Y /g⇢), where

only the neutral CFVs ⇢3(1), ⇢
0
(1)0 and ⇢0(8) contribute to the e↵ective four-fermion operators

(see Eq.(A.19)). We thus find the relevant induced four-fermion operators like

He↵ =
X

j=1-10

Cj ·Qj ,

Q1 = (s̄b0ua0)V�A(ū
a0db0)V�A , Q2 = (s̄0u0)V�A(ū

0d0)V�A ,

Q3 = (s̄0d0)V�A

X

q0

(q̄0q0)V�A , Q4 = (s̄b0da0)V�A

X

q0

(q̄a0qb0)V�A ,

Q5 = (s̄0d0)V�A

X

q0

(q̄0q0)V+A , Q6 = (s̄b0da0)V�A

X

q0
(q̄a0qb0)V+A ,

Q7 =
3

2
(s̄0d0)V�A

X

q0

Qq
em(q̄0q0)V+A , Q8 =

3

2
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where µ represents a reference scale of the phenomenon. In later numerical calculations,
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The CFV contributions to the direct CP violation in the K ! ⇡⇡ processes are eval-
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 operators for ε’/ε:

 Wilson coefficients in our scenario:
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isospin breaking correction 

The vector forms h ~Q(µ)T iI (I = 0, 2) are defined from hQj(µ)iI like ~C(m⇢) #9. The factors

for the isospin breaking correction are described in the matrix form,

(1� ⌦̂e↵)ij =

8
>><

>>:

0.852 (i = j = 1� 6),

0.983 (i = j = 7� 10),

0 (i 6= j).

(3.38)

Here the scale µ is set to be 1.3GeV. In the LO analysis where C5(m⇢), C6(m⇢) and

C7(m⇢) bring main e↵ects on C6(mc) and C8(mc), we found that the contributions from

QCD penguin Q6 dominates in the ✏0/✏, and the EW penguin Q8 term yields about 60%

contribution of them.

Actually, leptoquark-type CFVs (⇢0,↵(3) ) would also contribute to the ✏0/✏ at the one-

loop level as discussed in Ref. [150]. However, in contrast to the literature, this kind

of contributions are highly suppressed by a tiny ✓D in the present third-generation-philic

scenario required by the constraint from the B meson system, specifically from the B0
s �B̄0

s

mixing (Eq.(3.31)). This di↵erence manifests the characteristic feature in the present CFV

scenario based on the one-family SU(8) symmetry, by which the predictions in flavor physics

are derived necessarily with a significant correlation between the 2 $ 3 and 1 $ 2 transition

processes, as will be more clearly seen later.

3.2.2 K+ ! ⇡+⌫⌫̄ and KL ! ⇡0⌫⌫̄

To these processes, the CFVs give contributions from the color-singlet Z 0-like (⇢3(1), ⇢
0
(1)0)

and the color-triplet vector leptoquark-like (⇢3,0(3)) exchanges. Those CFVs exchange con-

tributions are read o↵ from Eq.(B.17) in Appendix B as follows:

He↵(s ! d⌫⌫̄) '
 
�i

7

16

g12⇢Lg
33
⇢L

m2
⇢

!
(s0L�µd

0
L)(⌫µL�

µ⌫µL)

+

 
i
1

4

g12⇢L
m2

⇢

(g2W + g2Y /3)

g⇢

!
(s0L�µd

0
L)

X

l=e,µ,⌧

(⌫lL�
µ⌫lL) , (3.39)

where we have taken into account ✓L ⇠ ⇡/2 (muon-philic condition in Eq.(3.32)) in eval-

uating the contribution along with the flavorful coupling g33⇢L (first line). The term in the

first line comes from the Z 0-type CFVs (⇢3(1), ⇢
0
(1)0) and the vector-leptoquark type ones

(⇢0,3(3)) -exchanges, while the one in the second line from the Z 0-type ones. The dominant

term actually comes from the vector-leptoquark type exchanges: the prefactor for the fla-

vorful coupling term in the first line of Eq.(3.39) reads 7/16 = (�1/16)⇢0
(1)0

+(1/2)⇢0,↵(3)
(see

Eq.(B.17)) #10.

#9 The values of h ~Q(µ)T iI and the form of Û (µ,m⇢) are available in [2].
#10 A similar leptoquark scenario for addressing K ! ⇡⌫⌫̄ based on the third-generation-philic texture in

light of the RK(⇤) anomaly has been discussed in Ref. [157] where scalar leptoquarks at one-loop level play

the game.
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