

Freeze-in

2018 Workshop on the Standard Model and Beyond

Corfu, Greece

Andreas Goudelis LPTHE - Paris

Outline

 \cdot Freeze-in: General framework and practical computations

 \cdot A bit of model-building: Clockworking FIMPs

 \cdot Signatures of freeze-in

 \cdot Summary and outlook

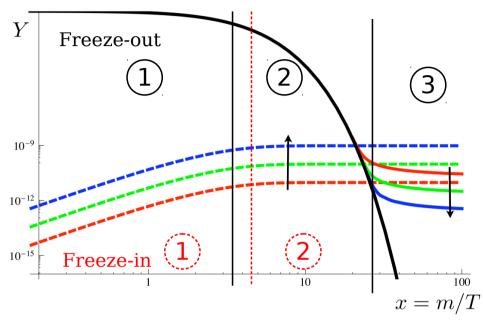
Based on:

- G. Bélanger, F. Boudjema, A.G., A. Pukhov, B. Zaldivar, arXiv:1801.03509
- A. G. *et al*, contribution in arXiv:1803.10379
- A.G., K. Mohan, D. Sengupta, arXiv:1807.06642
- A.G. et al, arXiv:1809.XXXXX

Freeze-in: general idea

arXiv:hep-ph/0106249 arXiv:0911.1120 arXiv:1706.07442...

Tweaked from arXiv:0911.1120



Two basic premises :

- \cdot DM interacts very weakly with the SM.
- \cdot DM has a negligible initial density.

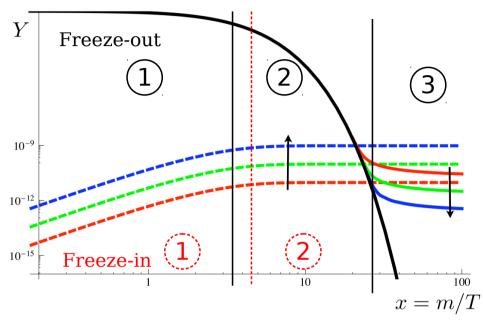
Assume that in reaction $A \to B$, ξ_A / ξ_B particles of type χ are destroyed/created. Integrated Boltzmann equation :

$$\dot{n}_{\chi} + 3Hn_{\chi} = \sum_{A,B} (\xi_B - \xi_A) \mathcal{N}(A \to B)$$

Freeze-in: general idea

arXiv:hep-ph/0106249 arXiv:0911.1120 arXiv:1706.07442...

Tweaked from arXiv:0911.1120



Two basic premises :

- \cdot DM interacts very weakly with the SM.
- \cdot DM has a negligible initial density.

Assume that in reaction $A \to B$, ξ_A / ξ_B particles of type χ are destroyed/created. Integrated Boltzmann equation :

$$\dot{n}_{\chi} + 3Hn_{\chi} = \sum_{A,B} (\xi_B - \xi_A) \mathcal{N}(A \to B)$$

$$\checkmark$$

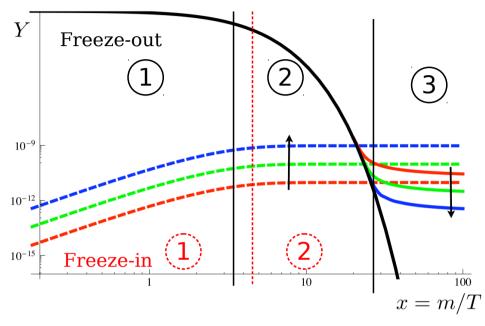
$$\checkmark$$

$$(in \to out) = \int \prod_{i=in} \left(\frac{d^3 p_i}{(2\pi)^3 2E_i} f_i \right) \prod_{j=out} \left(\frac{d^3 p_j}{(2\pi)^3 2E_j} (1 \mp f_j) \right) \times (2\pi)^4 \delta^4 (\sum_{i=in} P_i - \sum_{j=out} P_j) C_{in} |\mathcal{M}|^2$$

Freeze-in: general idea

arXiv:hep-ph/0106249 arXiv:0911.1120 arXiv:1706.07442...

Tweaked from arXiv:0911.1120



Two basic premises :

- \cdot DM interacts *very* weakly with the SM.
- \cdot DM has a negligible initial density.

Assume that in reaction $A \to B$, ξ_A / ξ_B particles of type χ are destroyed/created. Integrated Boltzmann equation :

$$\dot{n}_{\chi} + 3Hn_{\chi} = \sum_{A,B} (\xi_B - \xi_A) \mathcal{N}(A \to B) \quad \bullet$$

DM produced from decays/annihilations of other particles.

DM production disfavoured \rightarrow Abundance freezes-in

Freeze-in vs freeze-out

Naively, the freeze-in BE is simpler than the freeze-out one. However :

Initial conditions:

 \cdot FO: equilibrium erases all memory.

· FI: Ωh^2 depends on the initial conditions.

Heavier particles:

- \cdot FO: pretty irrelevant (exc. coannihilations/late decays).
- \cdot FI: their decays can dominate DM production.

Need to track the evolution of heavier states.

In equilibrium? Relics? FIMPs?

Need dedicated Boltzmann eqs

Relevant temperature:

- · FO: around $m_{\chi}/20$.
- · FI: several possibilities ($m_{\chi}/3$, $m_{\text{parent}}/3$, T_{R} or higher), depending on nature of underlying theory.

- Statistics/early Universe physics can become important.

- Phase transitions may occur *after* DM production.

Automatising freeze-in calculations

Given the previous subtleties and the potentially large number of contributing processes, freeze-in calculations can get tricky.

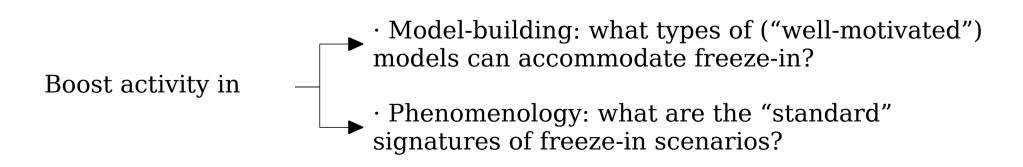
 \cdot Until recently, no publicly available computational tools:

micrOMEGAs5.0: freeze-in

G. Bélanger^{1†}, F. Boudjema^{1‡}, A. Goudelis^{2§}, A. Pukhov^{3¶}, B. Zaldivar^{1††}

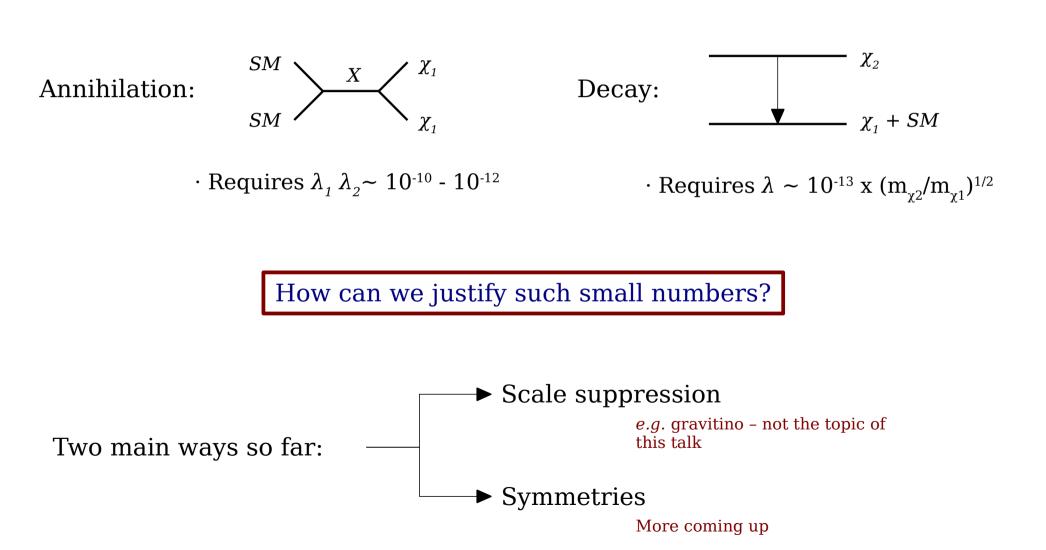
arXiv:1801.03509

 \rightarrow Can compute the freeze-in DM abundance in fairly generic BSM scenarios: scattering, decays of heavier bath particles/FIMPs/relics.



Model-building issues

What kind of models can accommodate successful freeze-in? Let's have a look at the necessary couplings:



Symmetries: Clockworking FIMPs

A. G., K. Mohan, D. Sengupta, arXiv:1807.06642

The Clockwork mechanism was introduced to address completely different issues. Has found many more applications (inflation, neutrinos, flavour, axions...).

arXiv:1511.01827, 1511.00132, 1610.07962...

 \cdot Clockwork FIMP approach: DM-SM coupling protected *e.g.* by Goldstone or chiral symmetry.

· A Scalar Clockwork FIMP :

$$\mathcal{L}_{sFIMP} = \mathcal{L}_{kin} - \frac{1}{2} \sum_{i,j=0}^{N} \phi_i M_{ij}^2 \phi^j - \frac{m^2}{24f^2} \sum_{i,j=0}^{N} (\phi_i \tilde{M}_{ij}^2 \phi^j)^2 - \kappa |H^{\dagger} H| \phi_n^2 + \sum_{i=0}^{n} \frac{t^2}{2} \phi_i^2$$

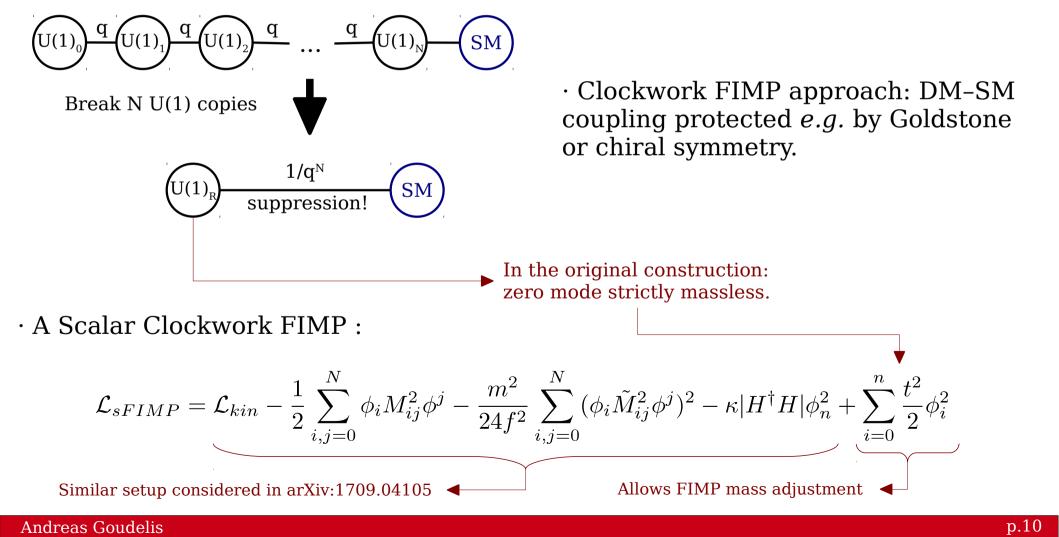
Similar setup considered in arXiv:1709.04105

Symmetries: Clockworking FIMPs

A. G., K. Mohan, D. Sengupta, arXiv:1807.06642

The Clockwork mechanism was introduced to address completely different issues. Has found many more applications (inflation, neutrinos, flavour, axions...).

arXiv:1511.01827, 1511.00132, 1610.07962...



Example: a fermion Clockwork FIMP

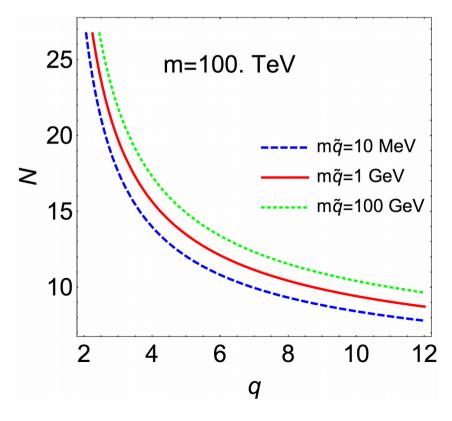
A. G., K. Mohan, D. Sengupta, arXiv:1807.06642

Consider Lagrangian as :

$$\mathcal{L}_{fFIMP} = \mathcal{L}_{kin} - m \sum_{i=0}^{N-1} (\bar{\psi}_{L,j} \psi_{R,j} - q \bar{\psi}_{L,j} \psi_{R,j+1} + h.c) - \frac{M_{L}}{2} \sum_{i=0}^{N-1} (\bar{\psi}_{L,i}^{c} \psi_{L,i}) - \frac{M_{R}}{2} \sum_{i=0}^{N} (\bar{\psi}_{R,i}^{c} \psi_{R,i}) + i\bar{L}DL + i\bar{R}DR + M_{D}(\bar{L}R) + Y\bar{L}\tilde{H}\psi_{R,N} + h.c$$

$$-\psi_{LR}: \text{ CW sector chiral fermions}$$

- *L/R*: (1, 2, -1/2) VL leptons



 \cdot Proof of principle: the Clockwork mechanism can be used to construct freeze-in models.

 \cdot CW gears + VL fermions have un-suppressed couplings \rightarrow thermalise with the SM.

 \cdot For chosen parameter values freeze-in dominated by decays of CW gears + VL fermions into DM + SM.

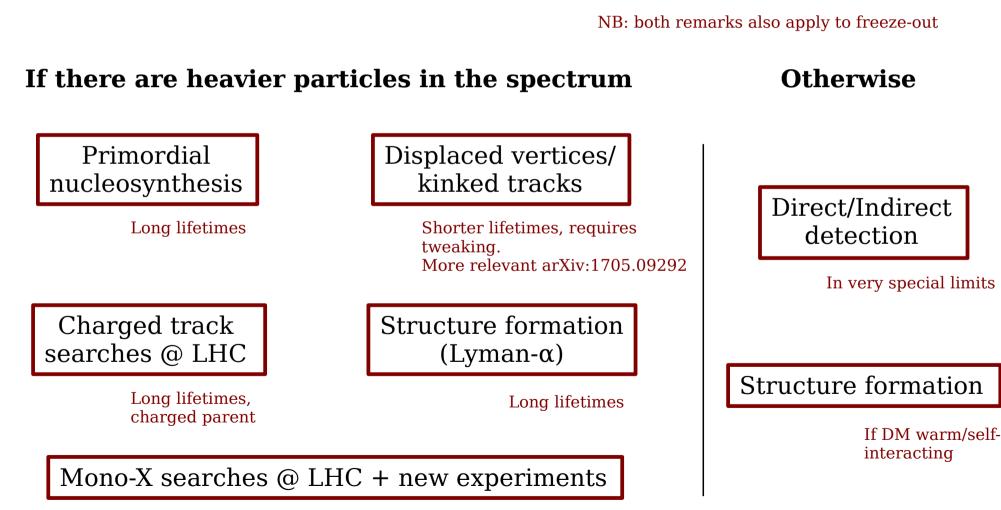
NB: Not a universal feature.

Other constructions possible, can have observable signals.

Freeze-in phenomenology

Can we test freeze-in? Certainly not in full generality, but

There are actually numerous handles!



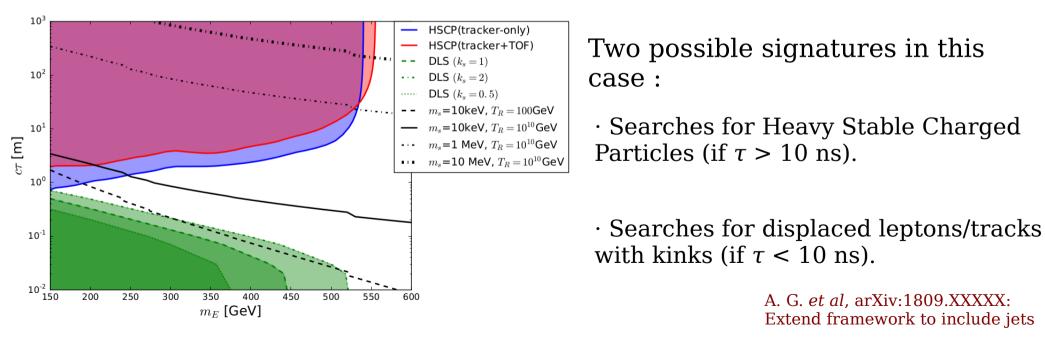
Long lifetimes, neutral parent, cf e.g. arXiv:1806.07396

An example @ the LHC

Consider an extension of the SM by a real singlet scalar *s* and a VL fermion *E* transforming as (1, 1, -1) under SU(3)xSU(2)xU(1), both Z_2 -odd.

$$\mathcal{L} = \mathcal{L}_{SM} + (\partial_{\mu}s) (\partial^{\mu}s) + \frac{\mu_s^2}{2}s^2 - \frac{\lambda_s}{4}s^4 - \lambda_{hs}s^2 (H^{\dagger}H) + i (\bar{E}_L D E_L + \bar{E}_R D E_R) - (m_E \bar{E}_L E_R + y_{sEe}s \bar{E}_L e_R + h.c.)$$

Direct FIMP production suppressed, but can Drell-Yan – produce the heavy electron.



A. G. et al, contribution in arXiv:1803.10379, arXiv:1809.XXXXX

Outlook

 \cdot Freeze-in is a well-established alternative mechanism to explain the dark matter abundance in the Universe relying on (effectively) feebly interacting particles.

 \cdot It can be implemented in many (simple or sophisticated) extensions of the SM.

· Despite involving small couplings, it may have numerous different experimental signatures (cosmology, astrophysics, intensity frontier, colliders).

 \cdot Although freeze-in has picked up a lot of momentum, a systematic exploration of models and signatures is still missing.

 \cdot micrOMEGAs 5 can compute the freeze-in DM abundance in generic BSM models.

Have fun with it!

 \cdot Still several open questions. One I'm particularly interested in: what if a phase transition occurs during DM production?

Reminder: dark matter relic density

The dark matter yield (comoving number density) $Y_{\gamma} = n_{\gamma}/s$ is computed as

$$Y_{\chi}^{0} = \int_{T_{0}}^{T_{R}} \frac{dT}{T\overline{H}(T)s(T)} \left(\mathcal{N}(bath \to \chi X) + 2\mathcal{N}(bath \to \chi \chi) \right)$$

where
$$\overline{H}(T) = \frac{H(T)}{1 + \frac{1}{3} \frac{d \ln(h_{\text{eff}}(T))}{d \ln T}}$$

The dark matter relic density is computed as

$$\Omega h^2 = \frac{m_{\chi} Y_{\chi}^0 s_0 h^2}{\rho_c}$$

Decay rate in a medium

Consider the decay of a particle *Y* into two particles a, b in the early Universe. The number of decays per unit space-time volume is

$$\mathcal{N}(Y \to a, b) = \int \frac{d^3 p_Y}{(2\pi)^3 2E_Y} \frac{d^3 p_a}{(2\pi)^3 2E_a} \frac{d^3 p_b}{(2\pi)^3 2E_b} f_Y(1 \mp f_a)(1 \mp f_b) \\ \times (2\pi)^4 \delta(P_Y - P_a - P_b) |\mathcal{M}|^2 .$$

Replacing $f_Y(p_Y) \longrightarrow (2\pi)^3 \delta^3(\vec{p} - \vec{p}_Y)/g_1$ we get :

$$\begin{split} G_{Y \to a,b} &= \frac{1}{2E_Y} \int \frac{d^3 p_a}{(2\pi)^3 2E_a} \frac{d^3 p_b}{(2\pi)^3 2E_b} (1 \mp f_a) (1 \mp f_b) \\ & \times (2\pi)^4 \delta(P_Y - P_a - P_b) \overline{|\mathcal{M}|}^2 \end{split} \qquad \qquad \begin{array}{l} \text{Decay rate of } Y \text{ in the} \\ \text{medium created by } a, b \end{array}$$

Defining:
$$S(p/T, x_Y, x_a, x_b, \eta_a, \eta_b) = \frac{1}{2} \int_{-1}^{1} dc_\theta \frac{e^{E_Y^{CF}/T}}{(e^{E_a^{CF}/T} - \eta_a)(e^{E_b^{CF}/T} - \eta_b)}$$

Calculable analytically

We obtain :

$$G_{Y \to a,b} = \frac{m_Y \Gamma_{Y \to a,b}}{E_Y^{\text{CF}}} S\left(p/T, x_Y, x_a, x_b, \eta_a, \eta_b\right)$$

S contains all the stat. mech. information