Standard Model and Beyond

Corfu, September, 2018

BBN Cosmological Constraints on Beyond Standard Model Neutrino

Daniela Kirilova

Institute of Astronomy and NAO Bulgarian Academy of Sciences, Sofia, Bulgaria

Mihail Chizhov Mariana Panayotova

 BBN - the deepest reliable early Universe probe and beyond Standard Model test

- Neutrino beyond SM and BBN constraints inert neutrino, number of families, neutrino oscillations lepton asymmetry
- Neutrino oscillations lepton asymmetry interplay

 L effects on neutrino oscillations
 neutrino oscillations effects on L
 L change BBN constraints on neutrino oscillations
 constraints on L by BBN with active-sterile oscillations
 DR problem solution

Big Bang Nucleosynthesis

George Gamow 1904 – 1968 In 1946–1948 develops BBN theory. In the framework of this model predicts CMB and its T.

Theoretically well established - based on well-understood SM physics Precise data on nuclear processes rates from lab expts at low E (10 KeV – MeV) Precise observational data on light elements abundances Predicted abundances in good overall agreement with the ones inferred from observational data

Most early and precision probe for physical conditions in early Universe and for new physics at BBN energies.

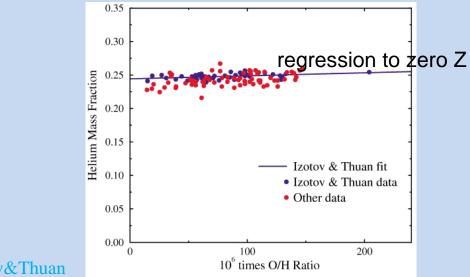
> Universe baryometer the best speedometer at RD stage the most exact Universe leptometer

Baryon fraction, N_{eff}, L, etc. measured by CMB

The Primordial Abundances of Light Elements

Main problem: Primordial abundances are not observed directly (chemical evolution after BBN).

Observations


ŝ

2.00

BBN + CMB

in systems least contaminated by stellar evolution. ICooke et al. (2014-2017)

- D is measured in high z low-Z H-rich clouds absorbing light from background QSA.
- He in clouds of ionized H (H II regions), the most metal-poor blue compact galaxies.

		Izotov&Thuan	H 0.15 0.00 0.00	
<i>Account</i> for galactic chemical evolution	,	,2565 ± 0.001(stat)± nbert,2016;Aver et al. 20		
New QSA observations:	Y _p =0,245±0,003			
D/H=(2.527±0.03) 10 ⁻⁵	Pitrou et al. 2018			

Sbordone et al. 2010

in the spheroid of our Galaxy, which

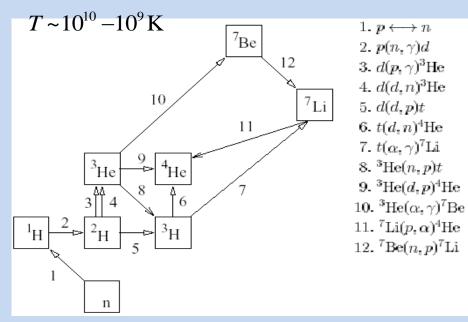
Li/H=(1.58±0.31) 10⁻¹⁰

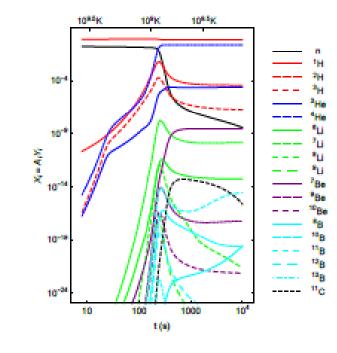
Li in Pop II (metal-poor) stars

have $Z < 1/10\ 000\ Z_{\odot}$).

Cooke et al. 2017

Y_p=0,24709± 0,00017

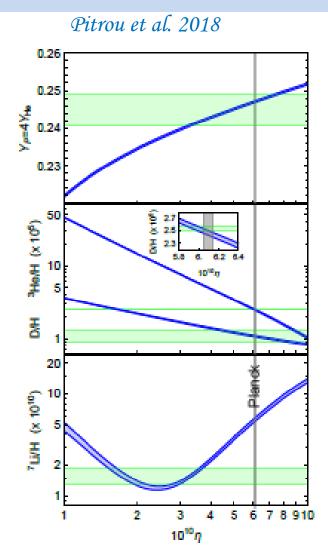

During BBN 4 light elements D, He-3, He-4, Li-7 and tiny traces of Be-9, B-10, B-11 up to CNO were produced (1 s - 20 m, MeV - Kev)


The primordially produced abundances depend on:

- ✓ baryon-to-photon ratio CMB measured now
- ✓ relativistic energy density (effective number of neutrino)

$$\rho_{v} + \rho_{X}(?) \equiv N_{v} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma} \qquad N_{eff} = 2.984 \pm 0.08 \quad LEP$$

✓ n lifetime: 879.5±0.8s *Serebrov et al.* 2017



Pitrou, Coc et al. 2018 Cyburt et al, 2016

Over 400 reactions are considered NACRE compilation *Angulo et al.99, Xu et al. 2013* More and more precise BBN codes used: PArthENoPe *Pisanti et al. 2008, Cosiglio et al. 2017* AlterBBN *Arbey, 2012* PRIMAT *Pitrou et al. 2018*

FIC. 26 Top : Dependence of $Y_{\rm P} = 4Y_{\rm *He}$ in η and observational constraints. Middle : Dependence of deuterium (to curve) and ³He (bottom curve) in η with observational constraints. The ³H has been added since it decays radioactively in ³He. Bottom : Dependence of ⁷Li in η with observational constraints. The ⁷Be has been added since it decays radioactively in ⁷Li. In all these plots, the width of the curves represents the $\pm \sigma$ uncertainty from nuclear rates and neutron lifetime.

BBN predictions $Y_P(N_v, \eta), X_D(N_v, \eta)$

for $\Omega_{\rm B} \sim 0.05$ and N v=3 are in agreement with observational data.

 $Y_{\tau} = 0,24709 \pm 0,00017$ D/H=(2.459 ± 0,036) 10⁻⁵

The good concordance between observational data and predicted by theory abundances allows to use BBN as:

- a precision probe of physical conditions in the Universe (barometer, speedometer, etc)
- > a test of beyond SM physics

BBN is the earliest and most precision probe of early Universe physics.

The primordially produced abundances of the light elements as functions of η .

Observational data (horizontal bands) compared with theory predictions for He-4 (top), D and He-3 (middle) and Li-7 (bottom) .Vertical band gives baryon density measured by CMB (Planck).

BBN constrains physics beyond SM

- BBN depend on all known interactions constrains modification of those
- Additional light (relativistic during BBN, i.e. m< MeV) particles species (generations) effecting radiation density (predicted by SUSY, string models, extradimensional models, DR, etc.)
- pre-BBN nucleon kinetics or BBN itself
- Additional interactions or processes relevant at BBN epoch (decays of heavy particles, neutrino oscillations)
- Depart from equilibrium distributions of particle densities of nucleons and leptons (caused by nu oscillations, lepton asymmetry, inhomogeneous distribution of baryons, etc.)
- SUSY, string models, extradimensional models, etc.
- etc

BBN Speedometer

Schwartzman 1969

Constraints on additional light species

BBN

2.3<N_{eff} <3.4 5.6<η<6.6

Cyburt, 2016

Δ

 $N_{eff} = 2.88^{+0.27}_{-0.27}$ (95%) *Pitrou, 2018*

Untill Plank CMB larger errors for ΔN_{eff} than BBN Planck Collaboration 2015

 $N_{eff} = 3.13^{+0.31}_{-0.31}$ (95%) $N_{eff} = 2.88^{+0.16}_{-0.16}$ (95% Planck +D+He-4) $N_{eff} = 3.01^{+0.15}_{-0.15}$ (95% Planck +BBN)

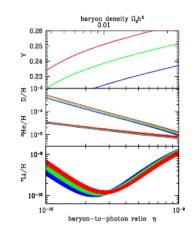


FIG. 7. The sensitivity of the light element predictions to the number of neutrino species, similar to Figure 1. Here, abundances shown by blue, green, and red bands correspond to calculated abundances assuming $N_{\nu} = 2, 3$ and 4 respectively.

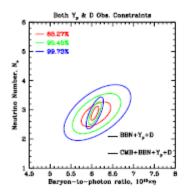


FIG. 10. The resulting 2-dimensional likelihood functions for the baryon to photon ratio (η) and the number of neutrinos (N_{ν}), marginalized over the helium mass faction Y_{p_1} , assuming different combinations of observational constraints on the light elements.

A maximum likelihood analysis Cyburt, 2016

BBN Speedometer

• Constrains the effective number of relativistic species

Non-zero ΔN_{eff} will indicate extra relativistic component, like sterile neutrino, neutrino oscillations, lepton asymmetry, neutrino decays, nonstandard thermal history, etc

- Constrains sterile neutrino production, right handed bosons
- Constrains chemical potentials

$$\Delta N_{eff} = 15/7[([\mu/T)/\pi]^4 + 2[(\mu/T)/\pi]^2$$

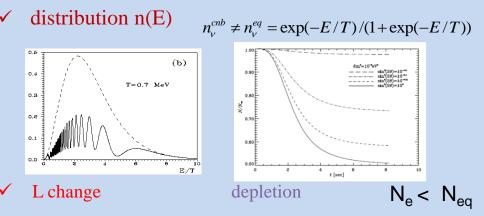
- Constrains neutrino oscillations parameters
- Constrains supersymmetric scenarios (lightest particle neutralino or gravitino), string theory, large dimensions
- Constrains decaying particles, SUSY metastable particles (solution to Li problem?)

$$\Delta N_{eff} < 0.2-0.3$$

Neutrino Oscillations Overview

$$v_{\rm m} = U_{\rm mf} v_{\rm f}, \ (f = e, \, \mu, \, \tau)$$

It has been observationally and experimentally proved that *neutrinos oscillate – flavor oscillations*.


Combined neutrino oscillations data

including SBL reactor exps + LSND +MiniBooNe +Gallium (GALLEX, SAGE):

hint to light v_s with eV mass and mixing with flavour neutrinos $\sin^2\theta$ [0.01-0.03] (in equilibrium before BBN),

Neutrino anomalies are well described in terms of flavor neutrino oscillations, but sub-leading sterile oscillations may provide better fit. Oscillations imply

✓ non-zero neutrino mass and mixing $\delta m^2 ≠ 0$ at least 2 neutrino with $m_n ≠ 0$

additional species may be brought into equillibrium

 \checkmark sterile neutrino $N_{eff} > 3$

Neutrino oscillations influence Universe processes. BBN constrains $v_s \leftrightarrow v_e$.

Neutrino oscillations cosmological effects

- Active-sterile oscillations considerable cosmological influence
- ✓ Dynamical effect: Excite additional light particles into equilibrium δN_s

$$\rho \sim g_{eff} T^4 \qquad H \sim \sqrt{g_{eff} G T^2} \qquad g_{eff} = 10.75 + \frac{7}{4} \frac{\delta N_s}{\delta N_s} \qquad \delta N_s = N_v - 3$$

Fast $v_a \leftrightarrow v_s$ effective before v_a decoupling - effect CMB and BBN through increasing ρ and H He-4 mass fraction is a strong function of the effective number of light stable particles at BBN epoch $\delta Y_d \sim 0.013 \ \delta N_s$ (the best speedometer). Dolgov 81, Barbieri &Dolgov 90, Kainulainen 91, Enquist et al.,92

✓ Distort the neutrino energy spectrum from the equilibrium FD form

 $\Gamma \sim G_F^2 E_v^2 N_v$ DK 88, DK&Chizhov 96

He-4 depends on the ν_e characteristics: ν_e decrease \rightarrow n/p freezes earlier \rightarrow ^4He is overproduced

 Change neutrino-antineutrino asymmetry of the medium (suppress / enhance) *Foot&Volkas 95,96; DK&Chizhov 96,97,2000*
 BBN is a sensitive probe to additional species and to distortions in the neutrino
 distribution.

BBN limits oscillation parameters.

DK&Chizhov 98,2000, Dolgov&Villante 03, DK04,07, DK&Panayotova, 2006, DK07

Evolution of oscillating neutrino

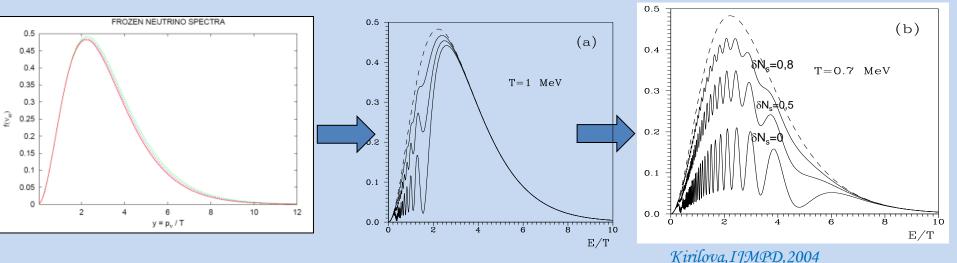
Kinetic eqs for density matrix of neutrinos in case of neutrino oscillations

$$i\frac{\partial\rho(t)}{\partial t} = Hp_{\nu}i\frac{\partial\rho(t)}{\partial p_{\nu}} + \left[\boldsymbol{H}_{0},\rho(t)\right] + i\{\boldsymbol{H},\rho(t)\}$$

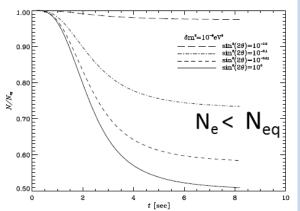
vacuum flavor oscillations *Dolgov*, 81 vacuum electron-sterile oscillations *DK* 88 $O(G_F^2)$ breaking of coherence term

Kinetic eqs for matter neutrino oscillations Rudzsky, 1990; Sigl, Raffelt, 1993; McKellar, Thompson 1994

Evolution of *nonequilibrium light oscillating neutrino* $v_e \leftrightarrow v_s$ effective after active neutrino decoupling $\delta m^2 \sin^4 2\theta \le 10^{-7}$ eV²


DK, Chizhov, 1996 DK, Chizhov, PLB 1997

In case of late oscillations distortion of neutrino momentum distribution by oscillations is possible. Approach: follow the evolution of neutrino for each momentum and account for oscillations, expansion, neutrino forward scattering and interactions with the medium simultaneously.


Even for fast oscillation case approximation – not suitable, L growth overestimated. Approximate solutions of L(t) were developed. Foot I. Volkas 97, Bell, Volkas I. Wana, 99 • Active-sterile oscillations proceeding after decoupling $\delta m^2 \sin^4 2\theta \le 10^{-7}$ may strongly distort neutrino distribution and deplete electron neutrino.

Kirilova 88, Kirilova&Chizhov PLB,97

 $n_{\nu}^{eq} \neq \exp(-E/T)/(1 + \exp(-E/T))$

The distortion due to active-sterile oscillations and the kinetic effect caused

 δN_k depends on the degree of initial population of $v_{s.}$

The effect decreases with δN_s . Precise description of neutrino momenta distribution: 1000 bins used to describe it in non-resonant case up to 10 000 in the resonant case.

• Active-sterile oscillations before neutrino decoupling slightly influence active neutrino distributions, because the states are refilled due to interactions with the plasma and bring sterile neutrino into equilibrium.

BBN with late $v_e \leftrightarrow v_s$ and L

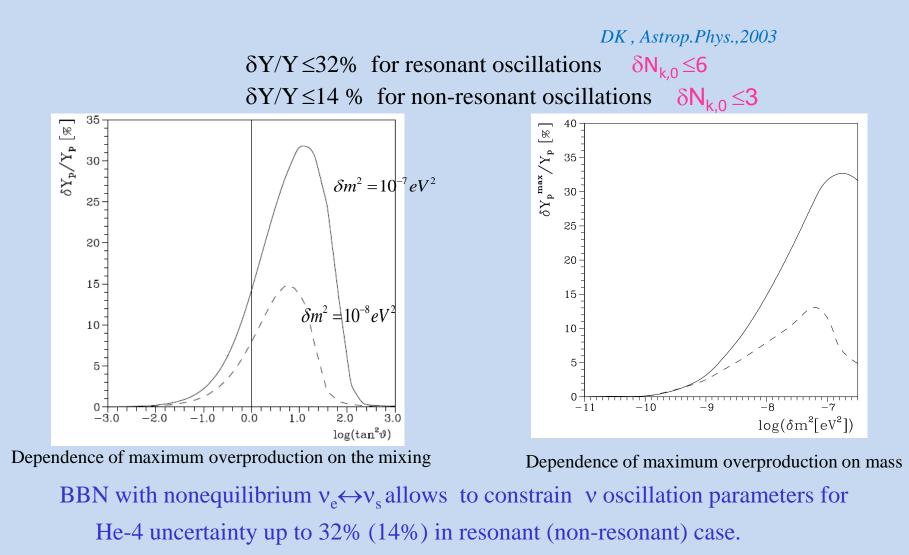
♦ In BBN with $n_e \leftrightarrow n_s$ and L neutrino spectrum distortion and the density of electron neutrino may considerably differ from the standard BBN one, leading to different nucleon kinetics, and modified BBN element production.

Evolution of nucleons in the presence of $\nu_e \leftrightarrow \nu_s$

$$\begin{aligned} \frac{\partial n_p}{\partial t} &= Hp_n \frac{\partial n_n}{\partial p_n} + \int d\Omega(e^-, p, v) \Big| A(e^- p \to vn) \Big|^2 (n_{e^-} n_p - n_n \rho_{LL}) \\ &- \int d\Omega(e^+, p, \tilde{v}) \Big| A(e^+ n \to p \, \tilde{v}) \Big|^2 (n_{e^+} n_n - n_p \, \bar{\rho}_{LL}) \\ &\delta m^2 \leq 10^{-7} eV^2 \quad all \ mixing \ angles \ \theta \quad 0 \leq \delta N_s \leq 1 \\ &2 \ MeV \geq T \geq 0.3 \ MeV \qquad 10^{-10} < L < 0.01 \end{aligned}$$

$$Y_p\left(\delta m^2, \theta, L, \delta N_s\right)$$

Numerical analysis:


- Evolution of oscillating neutrino in the presence of L
- Evolution of nucleons and n/p freezing
- He-4 primordial production

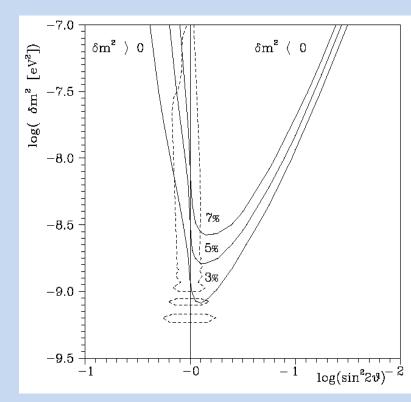
Oscillations and L dynamical and kinetic effect on BBN were explored.

 $\delta N = \delta N_{k,0} - \delta N_{k,0} \delta N_s + \delta N_s \qquad \delta Y \sim 0.013 \delta N$

Maximum He-4 overproduction in BBN with oscillations due to spectrum distortion

may be much bigger than 5% due to kinetic effects.

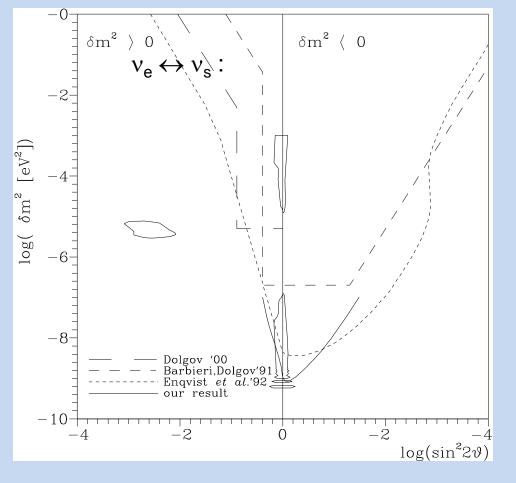
BBN constraints on $\nu_e \leftrightarrow \nu_s$


Y_p=0,2565 ± 0.001(stat)± 0,005(syst) Izotov&Thuan, 2010 93 Sp of 86 low Z HII

He-4 is the preferred element:

- \checkmark abundantly produced,
- ✓ precisely measured
- ✓ precisely calculated (0.1% uncertainty) $Y_p=0,2482\pm 0,0007$
- \checkmark has a simple post-BBN chemical evolution
- \checkmark best speedometer and leptometer
- ✓ sensitive to neutrino characteristics (n, N, sp,LA..)

Fit to BBN constraints corresponding to $\delta Y_p/Y_p=3\%$:


 $\delta m^2 \left(\sin^2 2\theta\right)^4 \le 1.5 \times 10^{-9} eV^2 \quad \delta m^2 > 0$ $\delta m^2 < 8.2 \times 10^{-10} eV^2 \quad \text{large } \theta, \ \delta m^2 < 0$

DK, Chizhov NPB2000,2001;

BBN constraints on neutrino oscillations

BBN constraints on oscillations between initially empty v_s and v_a

Barbieri, Dolgov 91 – depletion account Dolgov 2000 – dashed curve; Enquist et al. 92 – one p approx. our result DK, Chizhov - spectrum distortion and L growth Dolgov, Villante, 2003 - spectrum distortion Fits to BBN constraints corresponding to $\delta Y_p/Y_p = 3\%$: δm²>10⁻⁶ eV² $\delta m_{es}^2 \sin^4 2\theta_{es} \leq 3.16 \times 10^{-5} eV^2 \left(\Delta N_{\nu}\right)^2$ $\delta m_{\mu s}^2 \sin^4 2\theta_{\mu s} \leq 1.74 \times 10^{-5} eV^2 \left(\Delta N_{\nu}\right)^2$ $\delta m^2 \sin^4 2\theta \leq 10^{-7}$ DK., Chizhov 2001

 $\delta m^2 \left(\sin^2 2\theta\right)^4 \le 1.5 \times 10^{-9} eV^2 \quad \delta m^2 > 0$ $\delta m^2 < 8.2 \times 10^{-10} eV^2 \quad \text{large } \theta, \ \delta m^2 < 0$

- ✓ BBN constraints are by 4 orders of magnitude more stringent than experimental ones
- ✓ Excluded electron-sterile solution to LSND, LMA and LOW active-sterile solutions (1990, 1999) years before experimental results.

Generalized BBN constraints on $v_e \leftrightarrow v_s$

Additional v_s population may strengthen or relax BBN constraints.

-7,0 $\delta Y_{p}/Y_{p}=5.2\%$ -7,5 -8,0 log (δm^2 [eV²]) $\delta m^2 > 0$ $\delta m^2 < 0$ -9,0 -9.5 -1,5 -1,0 -0,5 0,0 -0.5 $\log(\sin^2 2\theta)$

Constraint contours for 3 and 5% He-4 overproduction

Due to interplay b/n the effects of non-zero initial population of v_s (partially filled) on BBN, BBN bounds change non-trivially with δN_s : In case the dynamical effect dominates, He-4 overproduction is enhanced and BBN constraints strengthen. In case the kinetic effect dominates He-4 overproduction decreases with δN_s increase and BBN constraints relax.

DKLPanayotova 2006;DK07

Dotted blue (red) contour presents $\delta Y_p/Y_p=3\%$ ($\delta Y_p/Y_p=5.2\%$) for $\delta N_s=0$ dotted curve, solid - $\delta N_s=0.5$.

Lepton Asymmetry Effects $L = (n_l - n_{\bar{l}}) / n_{\gamma} \qquad L = \sum_{i} \frac{1}{12\zeta(3)} \frac{T_{\nu_i}^3}{T_{\gamma}^3} (\xi_{\nu_i}^3 + \pi^2 \xi_{\nu_i}) \qquad \xi = \mu/T$

• Dynamical - Non-zero L increases the radiation energy density

$$\Delta N_{\text{eff}} = \frac{15}{7}((\xi/\pi)^4 + 2(\xi/\pi)^2)$$

$$\rho_{\text{r}} = \rho_{\gamma} + \rho_{\nu} + \rho_x = \left[1 + \frac{7}{8}\left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_{\gamma}$$

leading to faster expansion H= $(8/3\pi G\rho)^{1/2}$, delaying matter/radiation equality epoch ...

influence BBN, CMB, evolution of perturbations i.e. LSS

Wagoner et al.1967 .Terasawa&Sato, 1988 ...

Lesgourgues&Pastor, 99

 Direct kinetic - |L_{ve}|> 0.01 effect neutron-proton kinetics in pre-BBN epoch
$$\begin{split} \nu_{e} + n &\longleftrightarrow p + e^{-} \\ e^{+} + n &\longleftrightarrow p + \widetilde{\nu}_{e} \\ n &\to p + e^{-} + \widetilde{\nu} \end{split}$$

influence BBN, outcome is L sign dependent

Simha Steigman, 2008:

 $Y_p \sim (0.2482 \pm 0.0006) + 0.0016\eta_{10} + 0.013\Delta N_{eff} - 0.3\xi_{v_e}$

Indirect kinetic - 0.01> L ≥ 10⁻⁸ effects neutrino evolution, its number density, spectrum distribution, oscillations pattern and hence n/p kinetics and BBN

DK&ChizhovNPB98,2000;DK PNPP, 2010, 2011, DK JCAP,2012.

BBN Constraints on L

• BBN provides the most stringent constraint on L. Accounting for the dynamical and direct kinetic effect and the equilibration of the degeneracies due to neutrino oscillations before BBN:

Dolgov et al., NPB, 2002

 $|\xi_{\nu}| < 0.1$

Steigman, 2012 ; Castorini et al. 2012 ; Mangano et al., 2013

Improvement on D and He measurement – stringent BBN constraints

 $\xi_{\nu} = 0.001 \pm 0.016 \qquad |\xi_{\nu}| < 0.016(68\% CL)$

CMB provide looser bounds $\xi_{\nu} = 0.002 \pm 0.06$ *Pitrou et al., 2018*

Interplay between L and active-sterile oscillations allows to constrain strongly L.

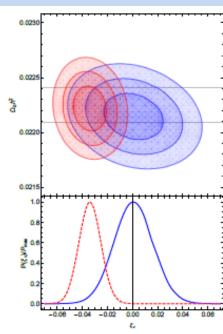


FIG. 28 $Top : P(\Omega_b h^2, \xi_r)$ with 68.27%, 95.45% and 99.73% contours. Blue : using the ⁴Ho bounds (4). Ref : using the bounds $Y_P = 0.2551 \pm 0.0022$ of botow et al. (2014). Th gray horizontal bars are the $\pm \sigma$ CMB constraints on baryon abundance. Rottom : marginalized distribution for ξ_r . Continuous line uses (4) whereas the dashed line uses the bound $Y_P = 0.2551 \pm 0.0022$ of botow et al. (2014).

BBN with electron-sterile oscillations feels and constrains tiny L

 $L < (\delta m^2 / eV^2)^{2/3}$

Kirilova, JCAP 2012, Hyperfine Int. 2013

L oscillations interplay

Neutrino active-sterile oscillations change neutrino-antineutrino asymmetry of the medium suppress pre-existing asymmetry *Barbieri&Dolgov 90.91; Enqvist et al. 1992* enhance L (MSW resonant active-sterile oscillations)

 $-f_{-}T = M$

L enhancement in MSW resonant active-sterile neutrino oscillations was first found for $\delta m^2 > 10^{-5} eV^2$ in collisions dominated oscillations Foot, Thompson Volkas 96; Bell, Volkas Wang, 99 $\delta m^2 < 10^{-7} eV^2$ in the collisionless case Kirilova Chizhov 96; DK 2012 $\theta_m(\delta m^2, \theta, L, T, ...)$

Flavor oscillations equalize L in different flavors before BBN *Dolgov et al., NPB, 2002*

✓ Relic L effects neutrino oscillations

suppresses themFoot LVolkas, 95; Kirilova LChizhov 98enhances themKirilova LChizhov 98

In BBN with neutrino oscillations spectrum distortion and L generation lead to different nucleon kinetics, and modified BBN element production.

We studied the interplay between small L and neutrino oscillations in the early Universe and their effect on BBN for the specific case:

$$v_1 = v_e \cos\theta + v_s \sin\theta$$
$$v_2 = -v_e \sin\theta + v_s \cos\theta$$

effective after active neutrino decoupling $\delta m^2 \sin^4 2\theta \le 10^{-7}$ eV²

Small L<<0.01 influence *indirectly* BBN via oscillations by:

- ✓ changing neutrino number densities
- \checkmark changing neutrino distribution and spectrum distortion
- ✓ changing neutrino oscillations pattern (suppressing or enhancing them)
 - L effect in density and direct effect in n-p kinetics negligible

Foot LVolkas 97, Bell, Volkas LWang, 99

• Different cases of L were studied:

relic initially present $L>10^{-11}$ and dynamically generated by oscillations

DK&Chizhov, NPB 96, 98, 2001 DK PNPP 2010, JCAP2012, 2018

The evolution of the L was numerically studied. L influence on oscillations was explored in the full range of model oscillation parameters and a wide range of L values. Primordial production of He-4 was calculated. Modified BBN constraints on oscillation parameters in presence of L were presented.

Evolution of neutrino in presence of $v_e \leftrightarrow v_s$ oscillations and L

• Equations governing the evolution of the oscillating v and v_s , accounting simultaneously for Universe expansion, neutrino oscillations and neutrino forward scattering.

$$\frac{\partial \rho(t)}{\partial t} = Hp_{\nu} \frac{\partial \rho(t)}{\partial p_{\nu}} + i \left[\boldsymbol{H}_{0}, \rho(t) \right] + i \sqrt{2} G_{F} \left(L - \frac{Q}{M_{W}^{2}} \right) N_{\gamma} \left[\alpha, \rho(t) \right] + O \left(G_{F}^{2} \right)$$
$$\frac{\partial \overline{\rho}(t)}{\partial t} = Hp_{\nu} \frac{\partial \overline{\rho}(t)}{\partial p_{\nu}} + i \left[\boldsymbol{H}_{0}, \overline{\rho}(t) \right] + i \sqrt{2} G_{F} \left(-L - \frac{Q}{M_{W}^{2}} \right) N_{\gamma} \left[\alpha, \overline{\rho}(t) \right] + O \left(G_{F}^{2} \right)$$

Non-zero L term leads to coupled integro-differential equations and hard numerical task . L term leads to different evolution of neutrino and antineutrino.

BBN with $v_e \leftrightarrow v_s$ and L

♦ In BBN with $\nu_e \leftrightarrow \nu_s$ and L neutrino spectrum distortion and the density of electron neutrino may considerably differ from the standard BBN one, leading to different nucleon kinetics, and modified BBN element production.

Evolution of nucleons in the presence of $v_e \leftrightarrow v_s$

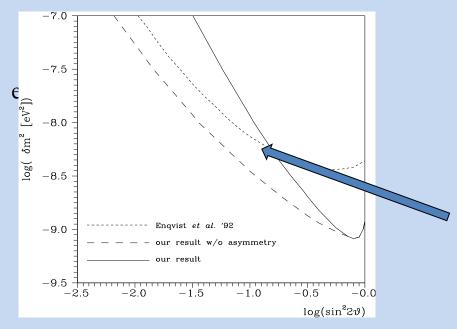
$$\begin{aligned} \frac{\partial n_p}{\partial t} &= Hp_n \frac{\partial n_n}{\partial p_n} + \int d\Omega(e^-, p, v) \Big| A(e^- p \to vn) \Big|^2 (n_{e^-} n_p - n_n \rho_{LL}) \\ &- \int d\Omega(e^+, p, \tilde{v}) \Big| A(e^+ n \to p \, \tilde{v}) \Big|^2 (n_{e^+} n_n - n_p \, \bar{\rho}_{LL}) \\ &\delta m^2 \leq 10^{-7} eV^2 \quad all \ mixing \ angles \ \theta \quad 0 \leq \delta N_s \leq 1 \\ &2 \ MeV \geq T \geq 0.3 \ MeV \qquad 10^{-10} < L < 0.01 \end{aligned}$$

$$Y_p\left(\delta m^2, \theta, L, \delta N_s\right)$$

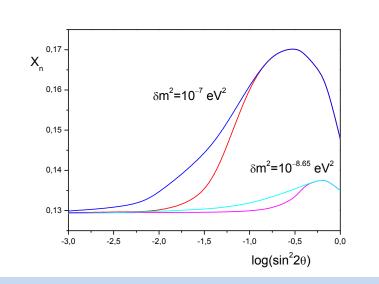
Numerical analysis:

- Evolution of oscillating neutrino in the presence of L
- Evolution of nucleons and n/p freezing
- He-4 primordial production

Oscillations and L dynamical and kinetic effect on BBN were explored.


 $\delta N = \delta N_{k,0} - \delta N_{k,0} \delta N_s + \delta N_s \qquad \delta Y \sim 0.013 \delta N$

BBN with $v_e \leftrightarrow v_s$ and L


For $\delta m^2 \sin^4 2\theta < 10^{-7} eV^2$ evolution of L is dominated by oscillations and typically L has rapid oscillatory behavior. The region of parameter space for which large enhancement of L is possible:

 $|\delta m^2|\sin^4 2\theta \le 10^{-9.5} eV^2$

Generation of L up to 5 orders of magnitude larger than β is possible, i.e. $L \sim 10^{-5}$

★ In BBN with $\nu_e \leftrightarrow \nu_s$ neutrino spectrum distortion and asymmetry generation lead to different nucleon kinetics, and modified BBN element production.

 X_n and correspondingly the primordially produced He-4decreases at small mixing parameters values due toasymmetry growth.DK, PNPP, 2010; 2011

The account of the neutrino-antineutrino asymmetry growth caused by resonant oscillations leads to relaxation of the BBN constraints for small mixings.


Relic L and BBN with $v_e \leftrightarrow v_s$

 $L > 0.1(\delta m^2)^{2/3}$ $L > (\delta m^2)^{2/3}$

suppresses oscillations inhibit oscillations. enhances oscillations relaxes BBN constraints on oscillations eliminate BBN constraints on oscillations strengthens BBN constraints

L change primordial production of He by enhancing or suppressing oscillations.

 $Y_p(\delta m^2, \theta, L)$

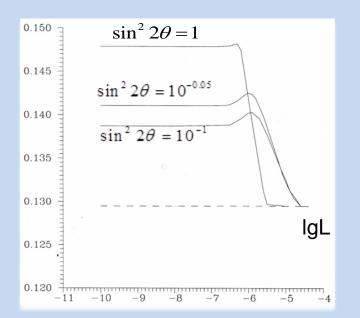
Constraints on δm^2 in case L eliminates standard BBN constraints on neutrino oscillations:

 $\delta m^2 (eV^2) < L^{3/2}$

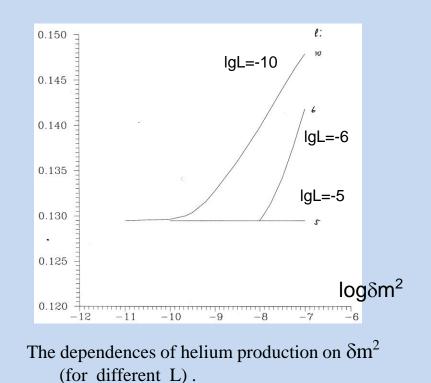
Constraints on L in case of electron-sterile oscillations with $\delta m^2 = 10^{-5} eV^2$

 $L < 10^{-3.3}$

DK&ChizhovNPB98, DK, JCAP 2012


Relic L and BBN with $v_e \leftrightarrow v_s$ $Y_p(\delta m^2, \theta, L)$ 10⁻¹¹<L<0.01

Kirilova 2018


BBN with oscillations can feel extremely small L: down to 10⁻⁸ .It is precise leptometer.

Updated constraints on L

 $L > 0.01 (\delta m^2 / eV^2)^{3/5}$

The dependences of helium production on relic L (for different mixing).

Summary

- Fruitful interplay b/n cosmology and particle physics exists.
 - Cosmology can predict the influence of BSM characteristics and test them. In particular, BBN is the earliest and the most reliable probe of beyond SMP. It «measures» neutrino mass differences, number of neutrino species, neutrino oscillations patameters, deviations from equilibrium, baryon density, L, new interactions, etc.
- BBN is the most sensitive speedometer. Stringent BBN constraints on additional light particle species N_{eff} exist. These are used to constrain SUSY, string, extradim, etc. BBN bounds on N_{eff} is strengthened in case of neutrino oscillations.
- BBN is a very sensitive leptometer. BBN bounds on L are changed in case of neutrino oscillations, |L|<0.01. L as small as 10⁻⁸ may be felt by BBN via electronstarile neutrino oscillations.
- ★ BBN constraints neutrino oscillations parameters. Constraints exist even if He-4 uncertainty were over 5%. BBN provides the most stringent constraint on δm^2 . BBN with nonequilibrium $v_e \leftrightarrow v_s$ oscillations allows to put constraints on v oscillation parameters for He-4 uncertainty up to 32%(14%) in resonant (non-resonant) case, provided v_s was not in equilibrium.
- ✤ BBN constraints on neutrino oscillations parameters depend nontrivially on the population of v_s and L in the Universe. Additional initial population of v_s not always leads to strengthening of constraints, it may relax them.
 - Relic L may provide relaxation or enhancement of BBN constraints on oscillations. Oscillations generated L relaxes BBN constraints at small mixings.

Благодаря за вниманието! *Shanks for the attention!*

Oscillations in the Early Universe medium

• The thermal background of the early Universe influences the propagation of v. Differences in the interactions with the particles from the plasma lead to different average potentials for different neutrino types V_f f= e, μ , τ

Notzold&Raffelt 88		In	the Sun L>>Q
$V_{f} = Q-L$	for neutrino		
$V_f = Q + L$	for antineutrino		
Q=-bET ⁴	/(δm²M² _w)	L=-aET ³ L _{α} /(m ²)	

• In the early Universe, E>10 MeV, Q>L if L is of the order of B.

In the adiabatic case the effect of the medium can be hidden in matter oscillation parameters: $\sin^2 \theta_m = \sin^2 \theta / [\sin^2 \theta + (Q \pm L - \cos 2\theta)^2]$

In general the medium suppresses oscillations.

When $Q \pm L = \cos 2\theta$ mixing in matter becomes maximal independent of mixing in vacuum - enhanced oscillation transfer.

- for Q>L $\delta m^2 < 0$ resonant oscillations both for neutrino and antineutrino
- for Q<L at $\delta m^2 < 0$ resonant for antineutrinos, $\delta m^2 > 0$ for neutrinos