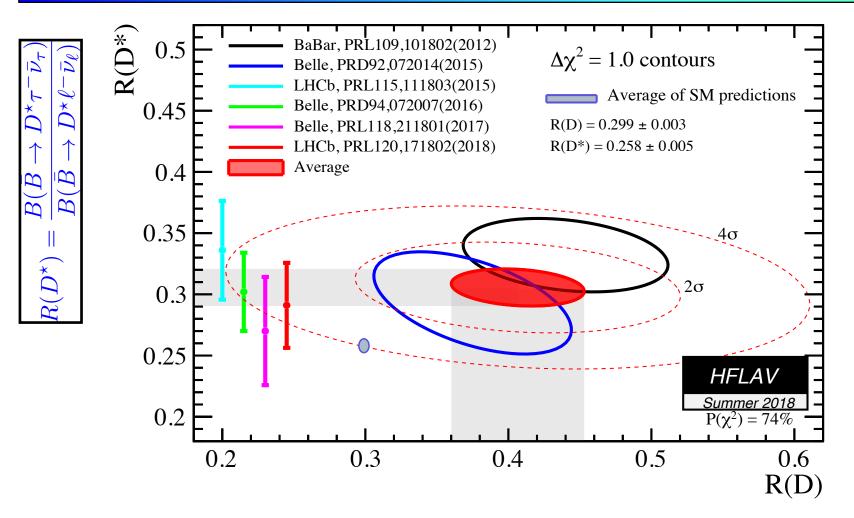


# Additional neutrinos and the B anomalies

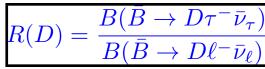
Corfu Summer Institute: Workshop on the Standard Model and Beyond

**German Valencia** 

based on: Xiao-Gang He, G. V. PRD87 (2013) no.1, 014014 PLB779 (2018), 52 arXiv:1706.07570







#### one that works

# problems with lepton universality in B decay to $\tau$ ?

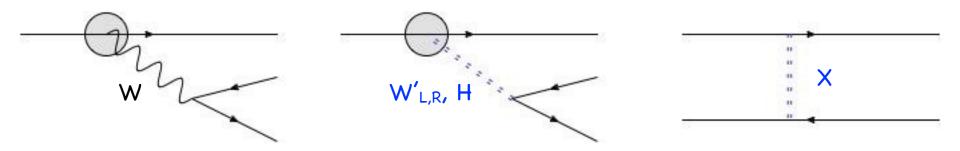
## Semileptonic B decay to $\boldsymbol{\tau}$



about  $4\sigma$  away from SM



# **Lepton Universality**


- lepton couplings to gauge bosons in the SM are all the same
- very well tested, PDB averages:



$$\frac{B(W^+ \to \mu^+ \nu)}{B(W^+ \to e^+ \nu)} = 0.991 \pm 0.018 \qquad \frac{B(Z \to \mu^+ \mu^-)}{B(Z \to e^+ e^-)} = 1.0009 \pm 0.0028 \\
\frac{B(W^+ \to \tau^+ \nu)}{B(W^+ \to \mu^+ \nu)} = 1.043 \pm 0.024 \qquad \frac{B(Z \to \tau^+ \tau^-)}{B(Z \to e^+ e^-)} = 1.0019 \pm 0.0032 \\
\frac{B(W^+ \to \tau^+ \nu)}{B(W^+ \to \mu^+ \nu)} = 1.070 \pm 0.026 \qquad .9977 \text{ (SM)}$$

#### first surprise in b $\rightarrow$ c $\tau$ v

- apparently the  $\tau$  has a stronger coupling
- at tree level, several possible other couplings



- -new W gauge boson with non-universal couplings
- -leptoquark need very specific flavour structure
- charged Higgs, seems a natural explanation but the simple models do not work

# Nothing seen in other meson decay

|                                                                       | Exp. (PDB)                     | SM                                                     |
|-----------------------------------------------------------------------|--------------------------------|--------------------------------------------------------|
| $\frac{B(K^+ \to \pi^0 \mu^+ \nu)}{B(K^+ \to \pi^0 e^+ \nu)}$         | 0.6608±0.0029                  | 0.6631±0.0042<br>(Cirigliano et al)                    |
| $\frac{B(K^+ \to e^+ \nu)}{B(K^+ \to \mu^+ \nu)}$                     | 2.488±0.009(10 <sup>-5</sup> ) | 2.477±0.001 (10 <sup>-5</sup> )<br>(Cirigliano et al)  |
| $\frac{B(\pi^+ \to e^+ \nu(\gamma))}{B(\pi^+ \to \mu^+ \nu(\gamma))}$ | 1.2327±0.0023(10-4)            | 1.2352±0.0005(10 <sup>-4</sup> )<br>(Marciano, Sirlin) |

- no simple models
- $\bullet$  need to arrange the flavour structure to single out third family: b,  $\tau$

# proposal

- add a new light neutrino
- needs to be sterile with respect to SM to satisfy light neutrino counts
- needs to mostly appear with a tau lepton to satisfy observed patterns of LF universality

 one such neutrino already appears in models that single out the third generation

> Phys.Rev. D66 (2002) 013004, Phys.Rev. D68 (2003) 033011 Xiao-Gang He, G. V.

# Model: $SU(3)_{c} \times SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L}$

- the third generation has an additional  $SU(2)_R$
- fermion content

$$\begin{split} Q_L^{1,2} &: (3,2,1)(1/3) , \quad U_R^{1,2} :: (3,1,1)(4/3) , \quad D_R^{1,2} :: (3,1,1)(-2/3) , \\ L_L^{1,2} &: (1,2,1)(-1) , \quad E_R^{1,2} :: (1,1,1)(-2) . \\ Q_L^3 &: (3,2,1)(1/3) , \quad Q_R^3 :: (3,1,2)(1/3) , \\ L_L^3 &: (1,2,1)(-1) , \quad L_R^3 :: (1,1,2)(-1) . \end{split}$$

- one additional light neutrino compared to SM  $\nu_{R3}$ 
  - -light to address anomalies
  - can have other heavy neutrinos but these will not play a role here.

## Model: $SU(3)_{c} \times SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L}$

- scalar content:
  - $-H_R(1,1,2)(-1)$  breaks SU(2)<sub>R,</sub>
  - -H<sub>L</sub> (1,2,1)(-1) or  $\phi$  (1,2,2)(0) breaks SU(2) to SM
  - both  $H_L$  and  $\phi$  needed to give all fermions mass
  - additional scalars with (small) vevs to generate neutrino masses
  - it is possible to have a scalar sector that gives an acceptable neutrino mass spectrum and mixing

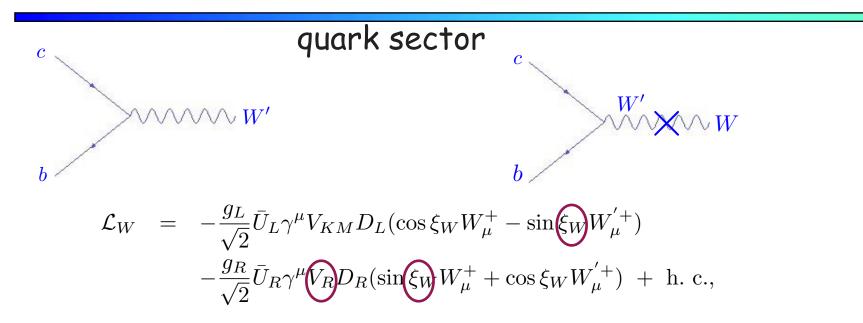
• W and W' mix

 $W_L = \cos \xi_W W - \sin \xi_W W',$  $W_R = \sin \xi_W W + \cos \xi_W W'.$ 

# charged weak interaction

$$\mathcal{L}_{W} = -\frac{g_{L}}{\sqrt{2}} (\bar{\nu}_{L} \gamma^{\mu} U^{\ell \dagger} \ell_{L} + \bar{\nu}_{R3}^{c} \gamma^{\mu} U_{RLj3}^{\ell *} \ell_{Lj}) (\cos \xi_{W} W_{\mu}^{+}) - \sin \xi_{W} W_{\mu}^{\prime +}) - \frac{g_{R}}{\sqrt{2}} (\bar{\nu}_{Li}^{c} \gamma^{\mu} U_{LRij}^{\ell} \ell_{Rj} + \bar{\nu}_{R3} \gamma^{\mu} U_{R3j}^{\ell} \ell_{Rj}) \times (\sin \xi_{W} W_{\mu}^{+} + \cos \xi_{W} W_{\mu}^{\prime +}) + \text{h. c.}, \qquad (8)$$

$$\mathcal{L}_{W} = -\frac{g_{L}}{\sqrt{2}} \bar{U}_{L} \gamma^{\mu} V_{KM} D_{L} (\cos \xi_{W} W_{\mu}^{+} - \sin \xi_{W} W_{\mu}^{\prime +}) -\frac{g_{R}}{\sqrt{2}} \bar{U}_{R} \gamma^{\mu} V_{R} D_{R} (\sin \xi_{W} W_{\mu}^{+} + \cos \xi_{W} W_{\mu}^{\prime +}) + \text{h. c.,} \quad (6)$$

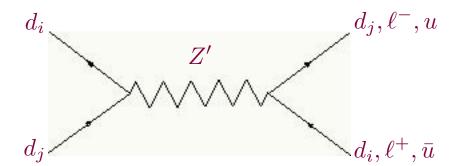

#### Single out tau-lepton - and b-quark

- enhance third generation with  $g_R > g_L$ 
  - perturbative unitarity:  $g_R \approx 10 g_L$
- can accommodate A<sub>FB</sub><sup>b</sup>
  - From LEP:  $g_R M_W \leq g_L M_{W'}$

$$\left|\frac{g_R}{g_L}\xi_Z\right| \lesssim 3 \times 10^{-3}$$

- Z' and W' can be much lighter than in other models because they evade searches that do not use third generation fermions
- can be made to satisfy all FCNC constraints, with room to accommodate deviations of EW strength in processes that involve a transition between a third generation fermion and a lighter one.

#### W'and semileptonic B decay to tau

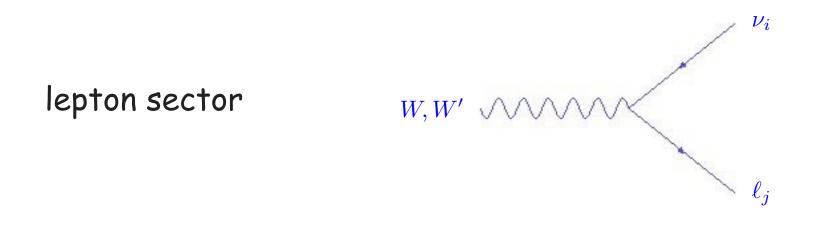



- two (sets) of parameters come into play
- mixing between W and W'
- right handed analog of CKM matrix

#### previously worked out constraints

\*HFAG-2012

\*From b  $\rightarrow$  s  $\gamma$  = (3.55±0.25) × 10-4  $-0.0013 \le \frac{g_R}{g_L} \xi_W \le 0.0027$ 




strongest constraints from meson mixing

FCNC constraints can be summarised by  $V^d_{Rbi} \sim \delta_{bi}$ 

with  $V_L^{u,d} = V_R^{u,d}, V_L^{u\dagger} V_L^d = V_{CKM}$  this allows us to predict  $V_R = (V_{Rij}) = (V_{Rti}^{u*} V_{Rbj}^d) \quad V_R \sim \begin{pmatrix} 0 & 0 & A\lambda^3 \\ 0 & 0 & A\lambda^2 \\ 0 & \lambda^4 & 1 \end{pmatrix}$  $V_{Rtc}^u \sim V_{cb}, V_{Rtu}^u \sim V_{ub}$ 

#### W'and semileptonic B decay to tau



no interference if neutrino mass << charged lepton mass

$$\sum_{i} |M_{\text{lepton}}|^2 \propto \begin{cases} 1 & \text{for } \ell_L \\ |V_{R3j}^{\ell}|^2 & \text{for } \ell_R. \end{cases} \sim 1 \text{ for } \mathbf{j} = \tau$$

rotates RH charged lepton to mass eigenstate

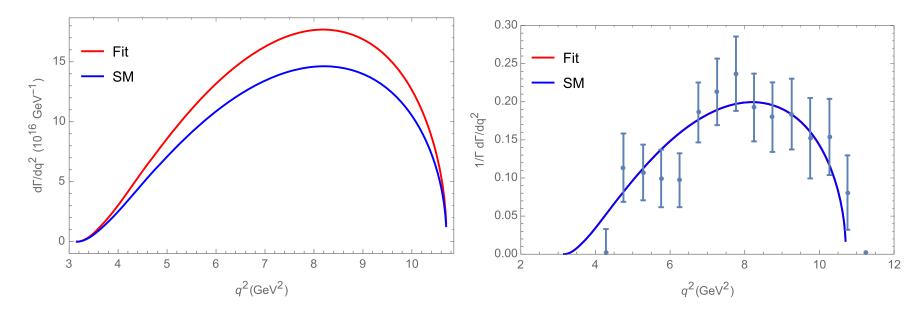
#### Predictions for b to c $\tau$

#### In terms of the parameter combinations

$$F_{W'}^{q} = \left(1 + \left(\frac{g_{R}M_{W}}{g_{L}M_{W'}}\right)^{4} \frac{|V_{R3\ell}^{\ell}|^{2}|V_{Rqb}|^{2}}{|V_{qb}|^{2}}\right)$$

$$F_{\text{Mix}}^{q} = \xi_{W}\frac{g_{R}}{g_{L}}\frac{\operatorname{Re}\left(V_{qb}^{\star}V_{Rqb}\right)}{|V_{qb}|^{2}} \left(1 - \left(\frac{M_{W}}{M_{W'}}\right)^{2}\right) \left(1 + \left(\frac{g_{R}M_{W}}{g_{L}M_{W'}}\right)^{2}|V_{R3\ell}^{\ell}|^{2}\right)$$

$$\frac{R(D)}{R(D)_{SM}} = F_{W'}^c + 2 F_{Mix}^c$$


$$\frac{R(D^*)}{R(D^*)_{SM}} = F_{W'}^c - 1.77 F_{Mix}^c$$

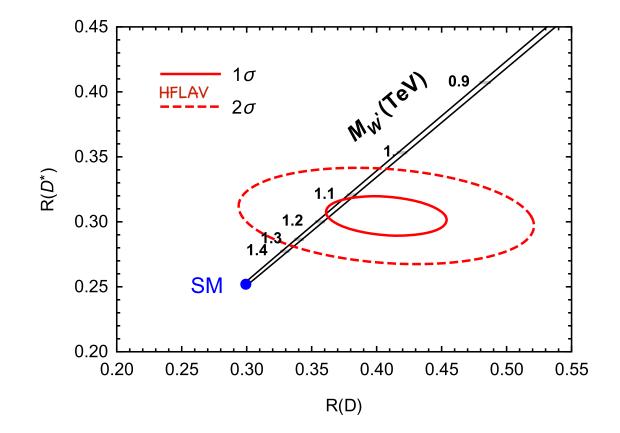
$$\frac{R(J/\psi)}{R(J/\psi)_{SM}} = F_{W'}^c - 1.94 F_{Mix}^c$$

$$\frac{\Gamma(b \to c\tau^- \nu)}{\Gamma(b \to c\tau^- \nu)_{SM}} = F_{W'}^c - 2 F_{Mix}^c$$

$$\frac{\Gamma(B_c^- \to \tau^- \nu)}{\Gamma(B_c^- \to \tau^- \nu_{\tau})_{SM}} = F_{W'}^c - 2 F_{Mix}^c$$
note this is ok!

In principle all different, after  $b \rightarrow s \gamma$  all are very similar




**Fig. 2.** Differential decay distribution  $d\Gamma/dq^2$  in the SM and the fit with the NP contributions as in Eq. (23) for  $B \rightarrow D^* \tau \nu$  (left panel). Normalized distributions compared to the BaBar data [2] (right panel). Note how the model prediction for the shape of the distribution (red) is indistinguishable from the SM (blue) in the right panel because the mixing contribution is very small. (The red curve on the left panel is above the blue curve. In the right panel the red and blues curves are almost indistinguishable.)

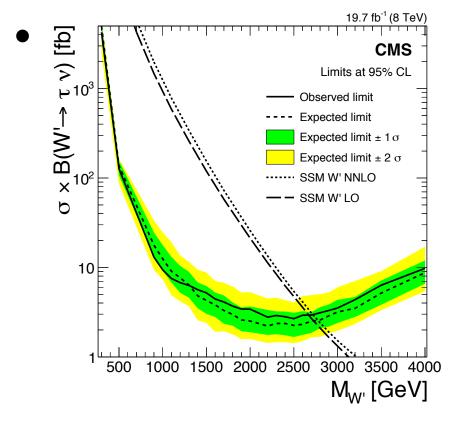
- q<sup>2</sup> distributions do not differentiate the models
- fit R(D), R(D<sup>\*</sup>)  $F_{W'}^c = 1.28, F_{Mix}^c = 0.04$
- predict  $R(J/\psi) = 0.34$  vs LHCb

$$R(J/\psi) = \frac{B(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{B(B_c^+ \to J/\psi \mu^+ \nu_{\mu})} = 0.71 \pm 0.17 \pm 0.18 .$$

imposing b  $\rightarrow$  S  $\gamma$   $-2.1 \times 10^{-3} \lesssim F_{\text{mix}}^{bc} \lesssim 2.7 \times 10^{-3}$ .

X.-G. He, G. Valencia / Physic



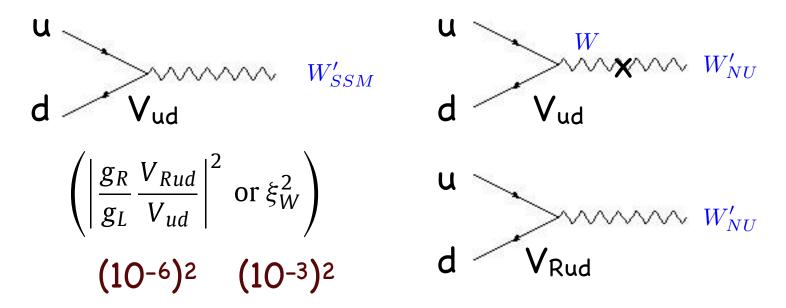

also predict in this case

56

$$\frac{R(D)}{R(D)_{SM}} \approx \frac{R(D^{\star})}{R(D^{\star})_{SM}} \approx \frac{R(J/\psi)}{R(J/\psi)_{SM}}.$$

# The W'

- for the model to address these asymmetries it needs a W' with mass near one TeV
- CMS, Phys. Lett. B 755 (2016) 196 search for W' decaying to tau-lepton, 8TeV, 19.7 fb<sup>-1</sup>,




 $M_{W'}(SSM) \gtrsim 2.7 \text{ TeV}$  $\sigma B(W' \to \tau \nu) \lesssim 3 \text{ fb}^{-1}$ 

- NUGIM benchmark
- M<sub>W</sub>' > (2-2.7 TeV)

# adapting the bound

- at TeV masses the tb channel is open  $B(W' \rightarrow \tau \nu)_{SSM} \sim 8.5\%$
- in non-universal case  $B(W' \rightarrow \tau \nu)_{NU} \sim 25\%$
- production cross section is very suppressed



NUGIM production cross section similar to SSM

# Number of light neutrinos

- there is one light right handed neutrino! why not seen at LEP?
- basically it has to couple through mixing with Z'

$$\Gamma(Z \to \nu_{R3}\bar{\nu}_{R3}) = \frac{1}{24} \frac{\alpha}{\cos^2 \theta_W} \frac{g_R^2}{g_L^2} \xi_Z^2 M_{Z'}$$
sults at LEP we find
$$\left| \frac{g_R}{g_L} \xi_Z \right| \lesssim 2 \times 10^{-3}$$

• from Z  $\tau\tau$  results at LEP we find

- and this makes  $\Gamma(Z \rightarrow \nu_{R3}\bar{\nu}_{R3}) < 3 \times 10^{-4} MeV$ 

the limit on new invisible Z decay

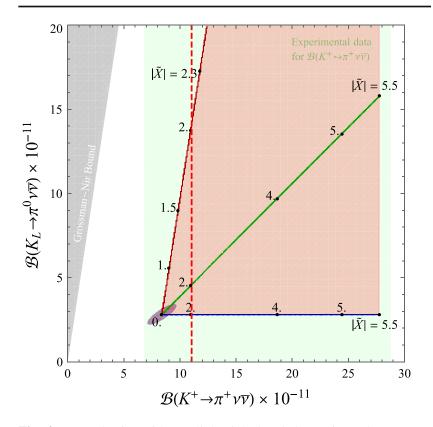
-LEP standard result  $n = 2.9840 \pm 0.0082$ 

• assumes Lepton universality and no new particles

-direct limit  $n = 3.00 \pm 0.08$ 

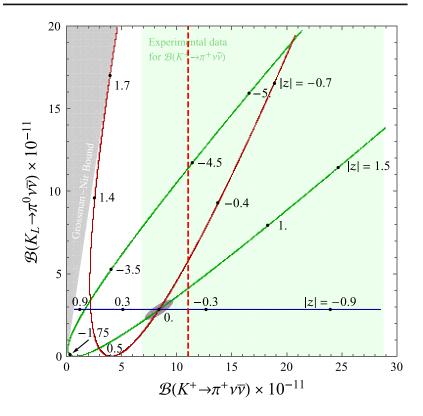
- implies there is 13.3 MeV error in this measurement so our right handed neutrino is unobservable by LEP

# number of light neutrinos: cosmology?


- it is known that  $\Delta N_{eff} < \begin{cases} 0.28 & \text{for } H_0 = 68.7^{+0.6}_{-0.7} \text{ km/s/Mpc} \\ 0.77 & \text{for } H_0 = 71.3^{+1.9}_{-2.2} \text{ km/s/Mpc}. \end{cases}$
- to explain the anomalies we use an interaction is not much weaker than weak
- $\bullet$  The W' can scatter with the new light neutrino and bring it to thermal eq. with SM particles that could give  $\Delta N_{eff} \sim 1$
- our model only lets them scatter with tau so the decoupling temperature is  $m_{\tau}$  whereas  $T_{BBN}$  is of order 1 MeV, so there is a suppression factor at least 0.1

$$r = \left(\frac{g_*(T_{BBN})}{g_*(T_R)}\right)^{4/3}$$

• safe!


#### $K \rightarrow \pi \nu \nu$ on the other hand

Eur. Phys. J. C (2018) 78:472



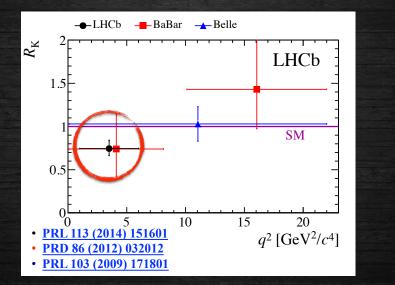
**Fig. 2** New physics with one light right-handed neutrino. The green line illustrates the case  $\tilde{X}$  real and the pink region illustrates the case  $|\tilde{X}| \leq 5.5$ . The purple marks the SM 1 $\sigma$  region and the green marks the 90% c.l. from BNL-787 combined with BNL-949. The red and blue lines on the boundary of the pink region correspond to a new physics phase given by  $\phi + \phi_{\lambda_t} = (\pi/2 \text{ or } 3\pi/2)$  and  $\phi + \phi_{\lambda_t} = (0 \text{ or } \pi)$ respectively. Finally the vertical dashed red line marks a possible future limit for  $\mathcal{B}_{K^+}$  at 1.3 times the SM

Eur. Phys. J. C (2018) 78:472



**Fig. 1** New physics with lepton flavour conserving left-handed neutrinos. The green line illustrates the case  $X_N$  real, the red line corresponds to  $X_N$  having a phase equal to that of the  $\lambda_t$  (central value) and the blue line to  $X_N$  having a phase equal to minus that of the  $\lambda_t$ . For comparison the purple marks the SM 1 $\sigma$  region and the green marks the 90% c.l. from BNL-787 combined with BNL-949. Finally the vertical dashed red line marks a possible future limit for  $\mathcal{B}_{K^+}$  at 1.3 times the SM

#### and one that doesn't quite work


#### problems with $\mu$ in B decay?



## Once upon a time ....

> LHCb tested Lepton Universality using  $B^+ \rightarrow K^+II$  decays and observed a tension with the SM at 2.6 $\sigma$ 

$$\mathcal{R}_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi (\to \mu^{+} \mu^{-}))} \bigg/ \frac{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi (\to e^{+} e^{-}))}$$

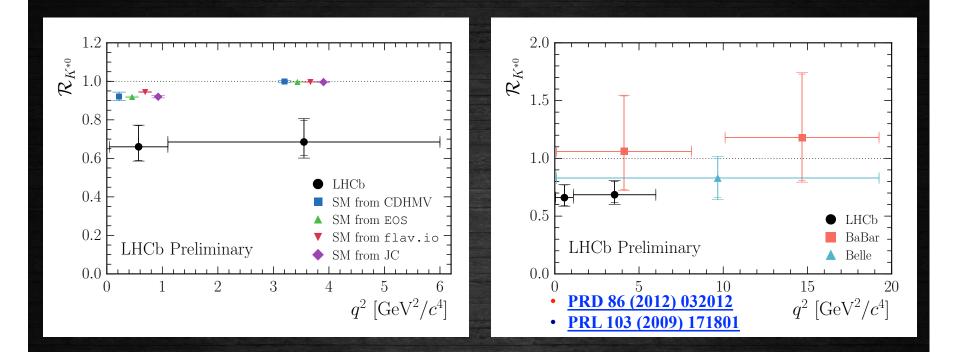


> Consistent with observed BR( $B^+ \rightarrow K^+ \mu \mu$ ) if NP does not couple to electrons

> Observation of LFU violations would be a clear sign of NP

Simone Bifani

#### **CERN Seminar**


$$R_{K} = \frac{\text{BR}(B \to K\mu^{+}\mu^{-})}{\text{BR}(B \to Ke^{+}e^{-})} = 0.745^{+0.090}_{-0.074} \pm 0.036$$
  
vs 1.00 ± 0.01 in SM

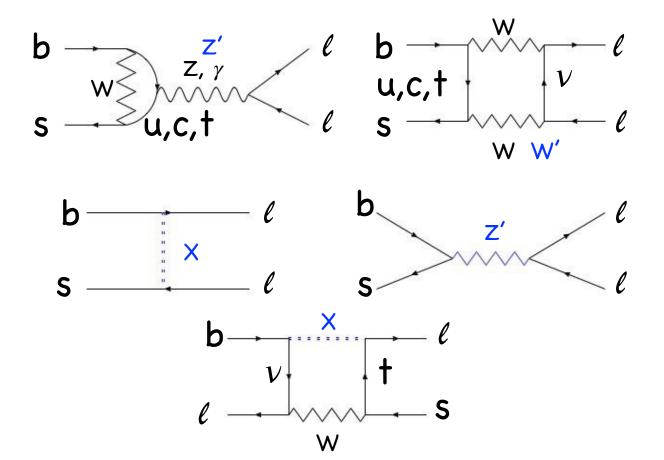
8



Results – II






> The compatibility of the result in the low-q<sup>2</sup> with respect to the SM prediction(s) is of 2.2-2.4 standard deviations

> The compatibility of the result in the central-q<sup>2</sup> with respect to the SM prediction(s) is of 2.4-2.5 standard deviations

**CERN Seminar** 

#### second surprise in $b \rightarrow s \mu \mu$

- apparently the  $\mu$  has a weaker coupling that the electron
- at tree and loop level, many possible other NP couplings



### effective hamiltonian

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i O_i$$

$$possible NP + \dots$$

$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b (\bar{s}\sigma_{\mu\nu} P_R b) F^{\mu\nu},$$

$$\mathcal{O}_9 = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \ell),$$

$$\mathcal{O}_{10} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell),$$

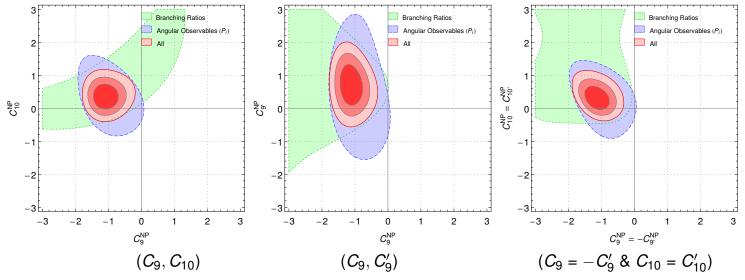
$$\mathcal{O}_{10'} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_R b) (\bar{\ell}\gamma^\mu \gamma_5 \ell),$$

- assume matrix elements ok, new physics encoded in the Wilson coefficients, the C<sub>i</sub>
- perform a global fit to the  $C_i$
- C<sub>i</sub> can be different for different leptons to break universality

## **Global fits**

• from J. Matias, Moriond EW 2017:

#### Global analysis of $m{b} ightarrow m{s} \mu \mu$ anomalies

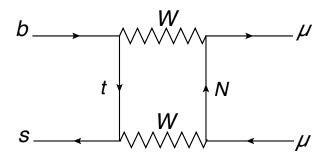

[Descotes, Hofer, JM, Virto]

96 observables in total (LHCb for exclusive, no CP-violating obs)

- $B \rightarrow K^* \mu \mu$  ( $P_{1,2}, P'_{4,5,6,8}, F_L$  in 5 large-recoil bins + 1 low-recoil bin)+available electronic observables.
- $B_s \rightarrow \phi \mu \mu$  ( $P_1, P'_{4.6}, F_L$  in 3 large-recoil bins + 1 low-recoil bin)
- $B^+ \rightarrow K^+ \mu \mu$ ,  $B^0 \rightarrow K^0 \ell \ell$  (BR) ( $\ell = e, \mu$ )
- $B \to X_s \gamma, B \to X_s \mu \mu, B_s \to \mu \mu$  (BR),  $B \to K^* \gamma$  ( $A_I$  and  $S_{K^* \gamma}$ )

Beyond 1D several favoured scenarios

Allowing for more than one Wilson coefficient to vary different scenarios with pull-SM beyond  $4\sigma$  pop-up:

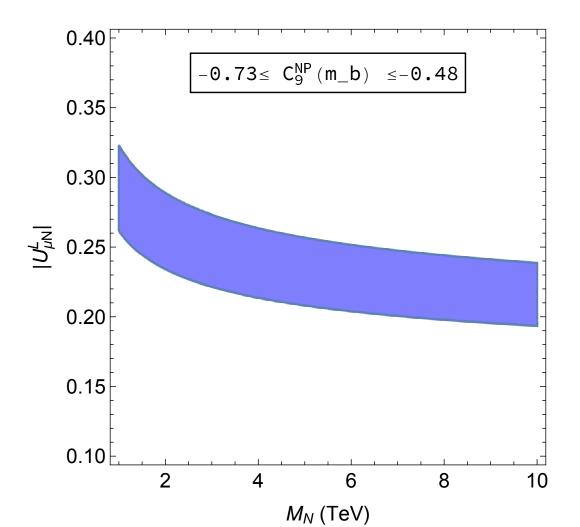



• BR and angular observables both favour  $C_9^{\rm NP} \simeq -1$  in all 'good scenarios'.

#### benchmark

$$C_{9\mu}^{NP} = -C_{10\mu}^{NP} \in (-0.73, -0.48)$$
 at  $1\sigma$ 

• notice that if we have heavy neutrinos N then




• produces the right pattern in C<sub>9,10</sub>, resulting in

$$C_9^{NP}(M_W) = -C_{10}^{NP}(M_W) = -\frac{1}{4s_W^2} \sum_N U_{\mu N}^{L\star} U_{\mu N}^L E(\lambda_t, \lambda_N).$$

#### numerics

• to get into the  $1\sigma$  range one needs



# in conflict with global fits

10.1007/JHEP08(2016)033, Enrique Fernandez-Martinez, Josu Hernandez-Garcia, Jacobo Lopez-Pavon

- for example conclude that this mixing angle is a few % at most from LFC constraints
  - -basic vertices like W  $\rightarrow \mu \nu$  pick up the same angles
  - constrained from  $G_F$  ...
- simplest see-saw model doesn't work
- there are other models that introduce additional particles into the box-diagram (heavy vector like quarks) <u>Francisco J. Botella</u>, <u>Gustavo C. Branco</u>, <u>Miguel</u> <u>Nebot</u>, <u>arXiv:1712.04470</u> which may work.