

Signatures of the Type-I 2HDM at the LHC

Shoaib Munir KIAS, Seoul

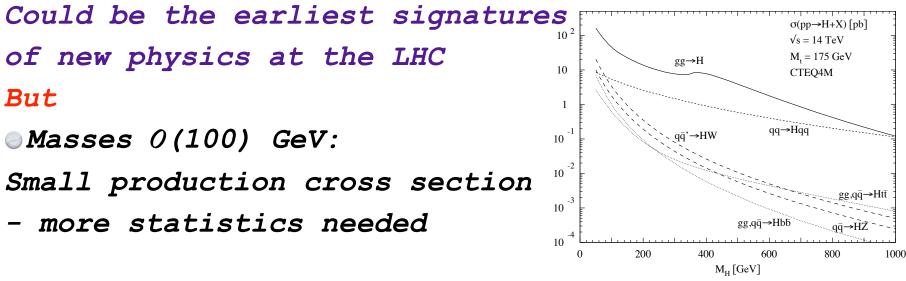
Workshop on the Standard Model and beyond, Corfu Sep. 02, 2018

@ 2-Higgs-Doublet Models

■ Type-I:

- > Electroweak production of light scalarpseudoscalar pairs
- > A (fairly) light charged Higgs boson
- > The promise of multi-photon final states
- \succ EW vs. QCD production of multiple Higgs bosons at the LHC

Conclusions

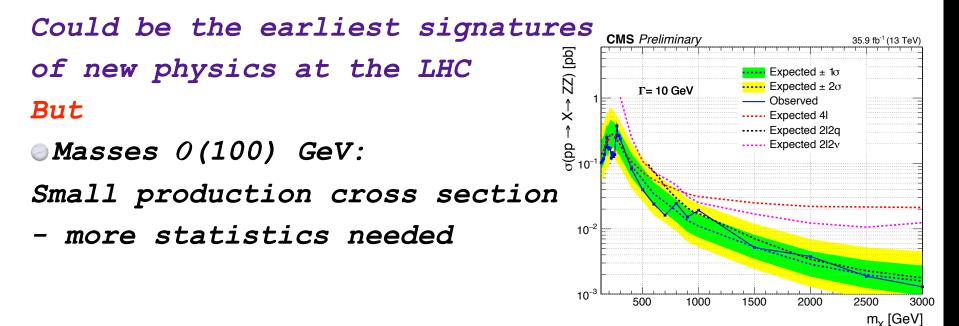


Predicted in a minimalistic new physics contender like the 2-Higgs-Doublet Model and in extended frameworks like Supersymmetry and GUTs

Could provide earliest

signatures of new physics

Predicted in a minimalistic new physics contender like the 2-Higgs-Doublet Model and in extended frameworks like Supersymmetry and GUTs


[A. Djouadi, hep-ph/0503173]

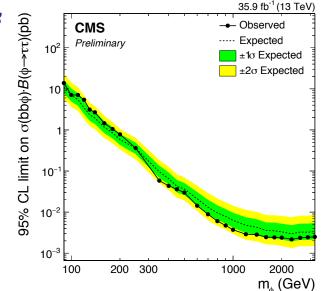
KOREA

gg,qą̃→Htī

INSTITUTE FOR

Predicted in a minimalistic new physics contender like the 2-Higgs-Doublet Model and in extended frameworks like Supersymmetry and GUTs

INSTITUTE FOR

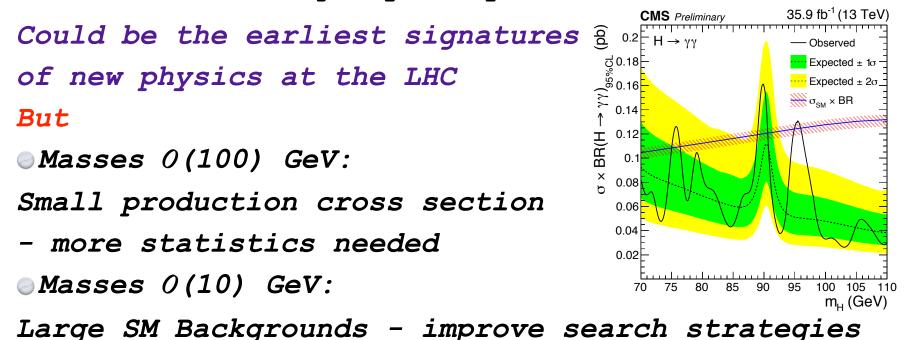

Predicted in a minimalistic new physics contender like the 2-Higgs-Doublet Model and in extended frameworks like Supersymmetry and GUTs

```
Could be the earliest signatures
of new physics at the LHC
But
```

Masses 0(100) GeV:

Small production cross section

- more statistics needed



KOREA INSTITUTE FOR ADVANCED

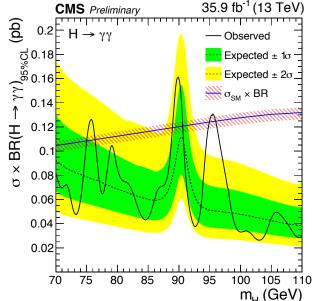
KI

Predicted in a minimalistic new physics contender like the 2-Higgs-Doublet Model and in extended frameworks like Supersymmetry and GUTs

03

KIAS S INSTITUTE FOR ADVANCED STUDY

Predicted in a minimalistic new physics contender like the 2-Higgs-Doublet Model and in extended frameworks like Supersymmetry and GUTs


Could be the earliest signatures $\widehat{e}_{H \rightarrow \gamma\gamma}$ of new physics at the LHC But

Masses 0(100) GeV:

Small production cross section

- more statistics needed

Masses 0(10) GeV:

Large SM Backgrounds - improve search strategies Also (in either case)

decay rates to SM particles may be suppressed

Exploit Higgs-Higgs and Higgs-gauge production

2HDM - SCALAR POTENTIAL

ΚI

The Yukawa Lagrangian for the neutral scalars reads $-\mathcal{L}_{Y} = \overline{Q}_{L}\widetilde{\Phi}_{1}\eta_{1}^{U}U_{R} + \overline{Q}_{L}\Phi_{1}\eta_{1}^{D}D_{R} + \overline{Q}_{L}\Phi_{1}\eta_{1}^{L}L_{R} + \overline{Q}_{L}\widetilde{\Phi}_{2}\eta_{2}^{U}U_{R} + \overline{Q}_{L}\Phi_{2}\eta_{2}^{D}D_{R} + \overline{Q}_{L}\Phi_{2}\eta_{2}^{L}L_{R}$

$$M^F = \frac{v}{\sqrt{2}} \left(\eta_1^F \cos\beta + \eta_2^F \sin\beta \right)$$

MINIMAL FLAVOUR VIOLATION

 \odot To prevent flavour-changing neutral currents, a Z_2 symmetry can be imposed (removes CP-violating $\lambda_{6,7}$)

 $= Z_2 - charge$ assignment = four Types

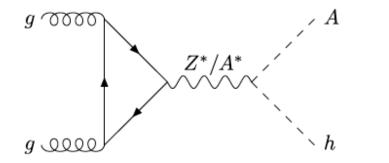
Model	u_R^i	d_R^i	e_R^i
Type I	Φ_2	Φ_2	Φ_2
Type II	Φ_2	Φ_1	Φ_1
Lepton-specific	Φ_2	Φ_2	Φ_1
Flipped	Φ_2	Φ_1	Φ_2

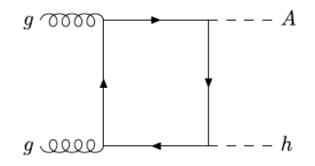
MINIMAL FLAVOUR VIOLATION

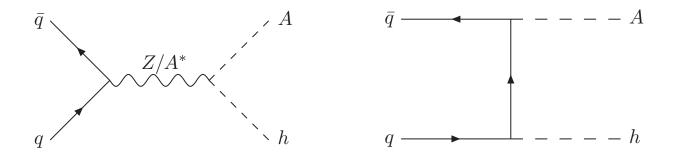
To prevent flavour-changing neutral currents, a Z_2 symmetry can be imposed (removes CP-violating $\lambda_{6,7}$)

 $\odot Z_2$ -charge assignment \blacksquare four Types

Model	u_R^i	d_R^i	e_R^i	
Type I	Φ_2	Φ_2	Φ_2	$\xi_f^h = \cos\alpha / \sin\beta$
Type II	Φ_2	Φ_1	Φ_1	$\xi_f^H = \sin \alpha / \sin \beta$
Lepton-specific	Φ_2	Φ_2	Φ_1	$\zeta_f = \sin \alpha / \sin \beta$
Flipped	Φ_2	Φ_1	Φ_2	


$$\cos \alpha = \sin \beta \sin(\beta - \alpha) + \cos \beta \cos(\beta - \alpha)$$


$$-\mathcal{L}_{\text{Yukawa}}^{\text{2HDM}} = \sum_{f=u,d,\ell} \frac{m_f}{v} \left(\xi_f^h \overline{f} fh + \xi_f^H \overline{f} fH - i\xi_f^A \overline{f} \gamma_5 fA + \left\{ \frac{\sqrt{2}V_{ud}}{v} \overline{u} \left(m_u \xi_u^A \mathbf{P}_L + m_d \xi_d^A \mathbf{P}_R \right) dH^+ + \frac{\sqrt{2}m_\ell \xi_\ell^A}{v} \overline{\nu_L} \ell_R H^+ + \text{h.c} \right\},$$


A LIGHT SCALAR-PSEUDOSCALAR PAIR KIAS S IN STITUTE FOR

Landau-Yang theorem forbids the contribution of a resonant Z boson to the QCD production of a hA pair

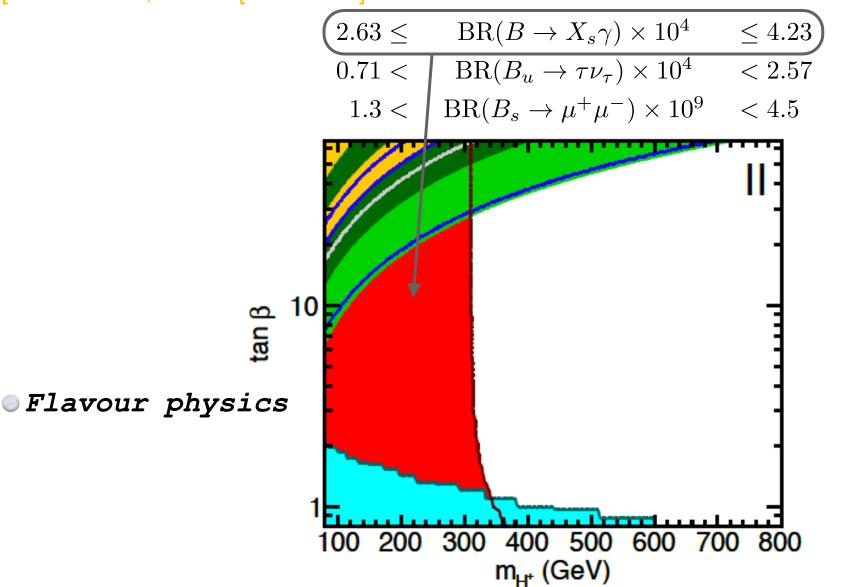
but not to EW production: enhanced cross sections?

Numerically scanning of the parameter space (trading λ_{1-5} for the physical Higgs boson masses as input parameters), with the following constraints

	$m_{_H} = 125 \text{ GeV}$
$m_h \; ({\rm GeV})$	10 - 80
$m_A \; ({\rm GeV})$	$10 - (M_Z - m_h)$
$m_{H^{\pm}} (\text{GeV})$	90 - 500
$\sin(\beta - \alpha)$	-1 - 1
$m_{12}^2 \; ({\rm GeV}^2)$	$0 - m_A^2 \sin\beta\cos\beta$
aneta	2,25

imposed: Code: 2HDMC [D. Eriksson, J. Rathsman, O. Stal, 0902.0851]

- Unitarity, perturbativity and vacuum stability
- Oblique parameters S, T and U
- Flavour physics


Superlso Manual [F. Mahmoudi, 0808.3144]

KI

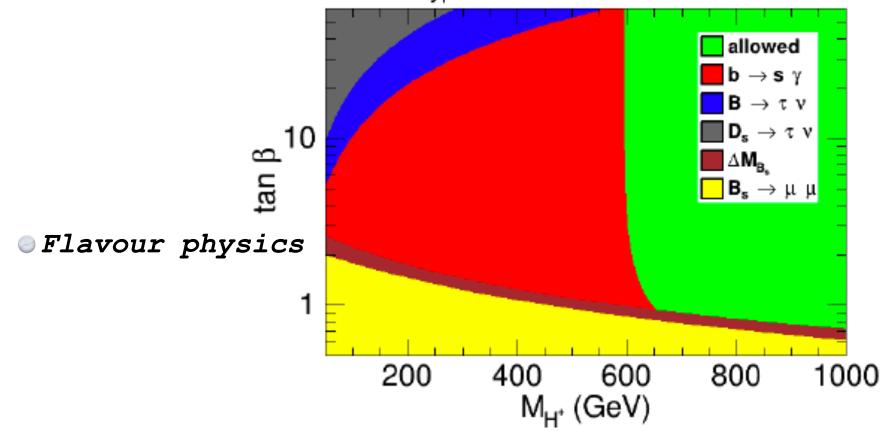
KOREA INSTITUTE FOR ADVANCED STUDY

$2.63 \leq$	${\rm BR}(B \to X_s \gamma) \times 10^4$	≤ 4.23
0.71 <	${\rm BR}(B_u \to \tau \nu_{\tau}) \times 10^4$	< 2.57
1.3 <	$BR(B_s \to \mu^+ \mu^-) \times 10^9$	< 4.5
$-1.7 \times 10^{-2} <$	$\Delta_0(B\to K^*\gamma)$	$< 8.9 \times 10^{-2}$
0.56 <	$R_{ au u_{ au}}$	< 2.70
$2.9 \times 10^{-3} <$	${ m BR}(B o D^0 au u_{ au})$	$< 14.2 \times 10^{-3}$
0.151 <	$\xi_{D\ell u}$	< 0.681
	$BR(B_d \to \mu^+ \mu^-)$	$< 1.1 \times 10^{-9}$
0.6257 <	$\frac{\mathrm{BR}(K \to \mu\nu)}{\mathrm{BR}(\pi \to \mu\nu)}$	< 0.6459
Flavour physics $0.985 < $	$R_{\ell 23}$	< 1.013
$4.7 \times 10^{-2} <$	$BR(D_s \to \tau \nu_{\tau})$	$< 6.1 \times 10^{-2}$
$4.9 \times 10^{-3} <$	$BR(D_s \to \mu \nu_\mu)$	$< 6.7 \times 10^{-3}$
$3.0 \times 10^{-4} <$	${ m BR}(D o \mu u_{\mu})$	$< 4.6 \times 10^{-4}$
$-2.4 \times 10^{-10} <$	δa_{μ}	$< 5.0 \times 10^{-9}$

[F. Mahmoudi, O. Stal [0907.1791]

KOREA INSTITUTE FOR ADVANCED

KI



[A. Arbey, F. Mahmoudi, O. Stal, T. Stefaniak, [1706.07414]

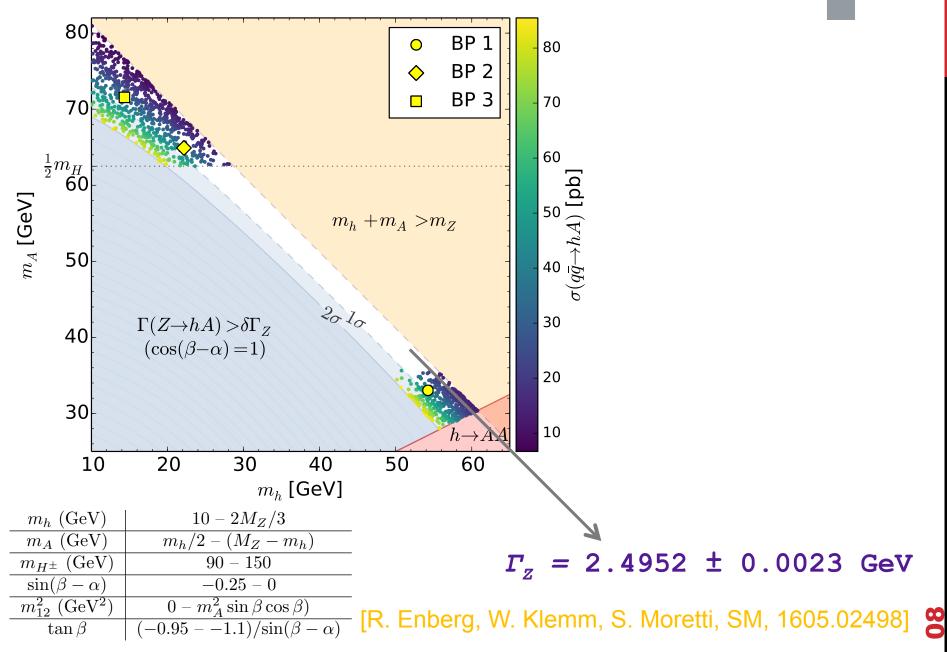
HFLAV Coll., 1612.07233] $\begin{array}{rl} 3.32 - 0.15 \leq & \mathrm{BR}(B \to X_s \gamma) \times 10^4 & \leq 3.32 + 0.15 \\ 1.06 \pm 0.19 \leq & \mathrm{BR}(B_u \to \tau^{\pm} \nu_{\tau}) \times 10^4 & \leq 1.06 + 0.19 \end{array}$

LHCb Coll., 1703.05747] $3.0 - 0.85 \le BR(B_s \to \mu^+ \mu^-) \times 10^9 \le 3.0 + 0.85$

THDM Type II - Flavour constraints

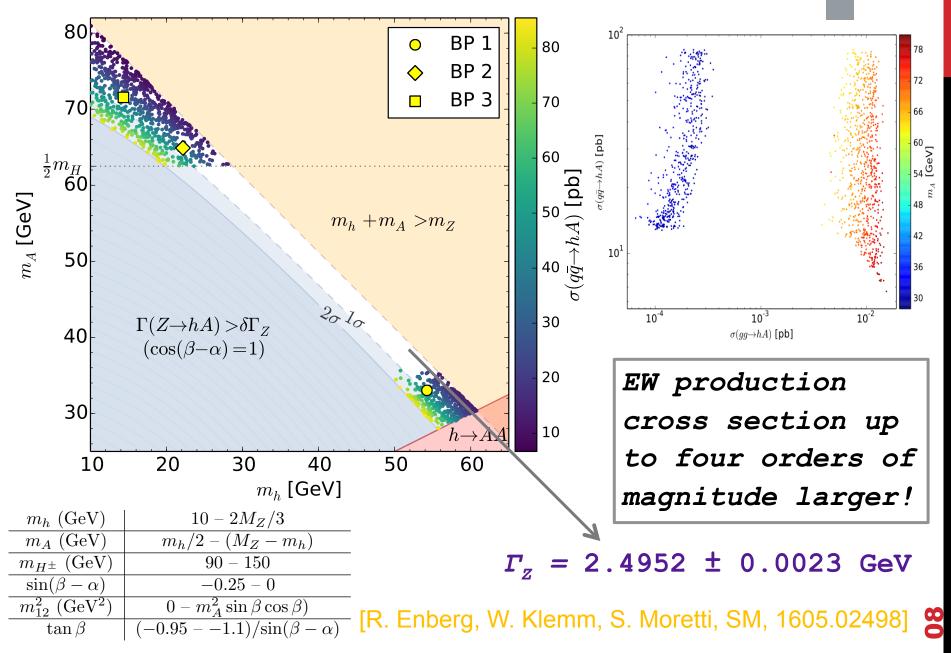
Numerically scanning of the parameter space (trading λ_{1-5} for the physical Higgs boson masses as input parameters), with the following constraints

	$m_{_H} = 125 \text{ GeV}$
$m_h \; ({\rm GeV})$	10 - 80
$m_A \; ({\rm GeV})$	$10 - (M_Z - m_h)$
$m_{H^{\pm}} (\text{GeV})$	90 - 500
$\sin(eta - lpha)$	-1 - 1
$m_{12}^2 \; ({\rm GeV^2})$	$0 - m_A^2 \sin\beta\cos\beta$
aneta	2, 25


imposed: (Code: 2HDMC [D. Eriksson, J. Rathsman, O. Stal, 0902.0851])

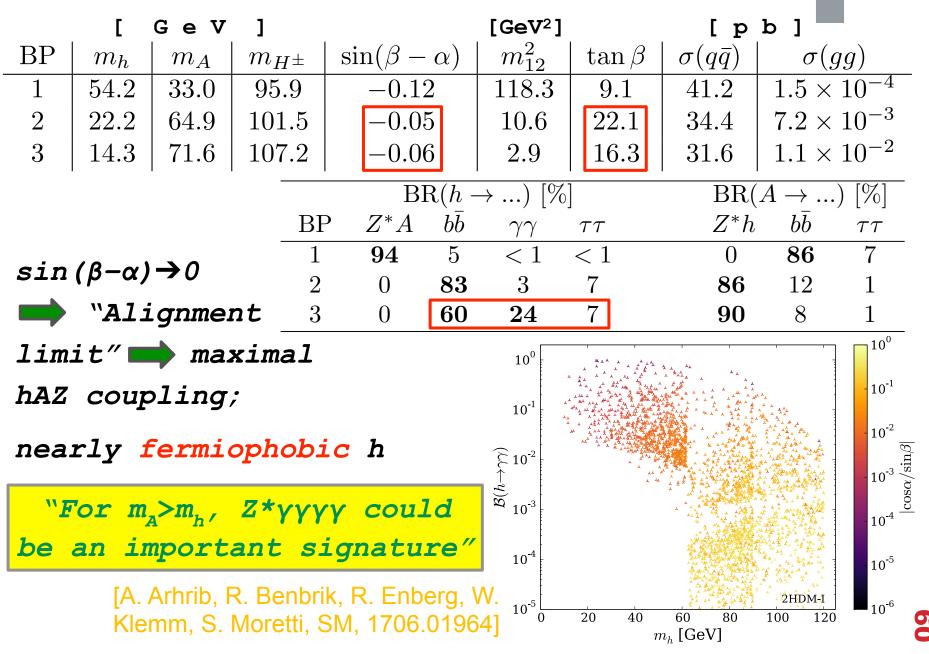
• Unitarity, perturbativity and vacuum stability

- Oblique parameters S, T and U
- Flavour physics
- LEP, TeVatron and LHC results for
 - Additional Higgs bosons (HiggsBounds)
 - Measured Higgs signal strengths (HiggsSignals)


m_h+m_A< m_Z IN TYPE-I 2HDM

KOREA INSTITUTE FOR ADVANCED

ΚI


m_h+m_A< m_z IN TYPE-I 2HDM

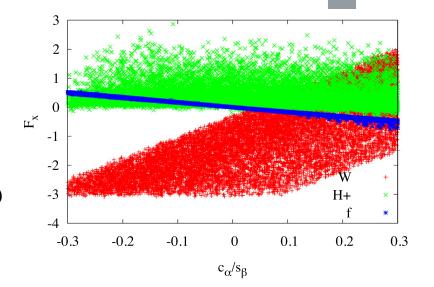
KOREA INSTITUTE FOR ADVANCED

KI

DOMINANT SEARCH CHANNELS

KI

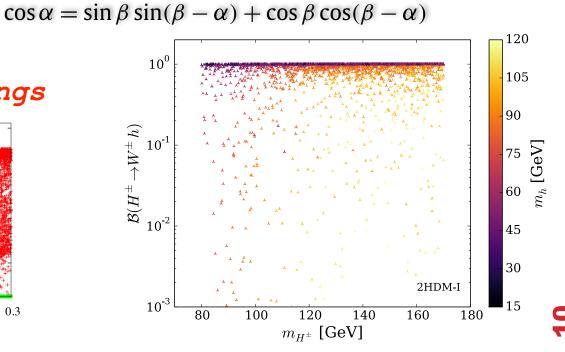
KOREA INSTITUTE FOR ADVANCED


LIGHT FERMIOPHOBIC HIGGS BOSON

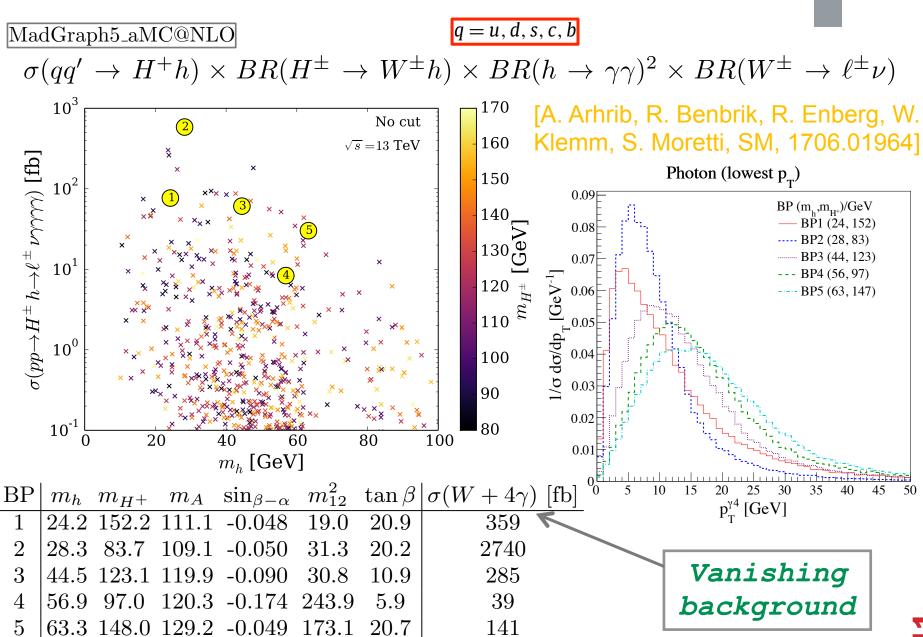
$$F_{f} = \sum_{i} \frac{-2}{\tau_{f}^{2}} N_{f} Q_{f}^{2} \xi_{f}^{h} (\tau_{f} + (\tau_{f} - 1)I(\tau_{f})),$$

 $sin(\beta-\alpha) \rightarrow 0$

"Alignment


$$F_{H^{\pm}} = \frac{g_{hH^{\pm}H^{\mp}}}{\tau_{H^{\pm}}^{2}} \frac{m_{W}^{2}}{m_{H^{\pm}}^{2}} (\tau_{H^{\pm}} - I(\tau_{H^{\pm}})),$$

$$F_{W} = \frac{\sin(\beta - \alpha)}{\tau_{W}^{2}} (2\tau_{W}^{2} + 3\tau_{W} + 3(2\tau_{W} - 1)I(\tau_{W}))$$


KOREA INSTITUTE FOR ADVANCED

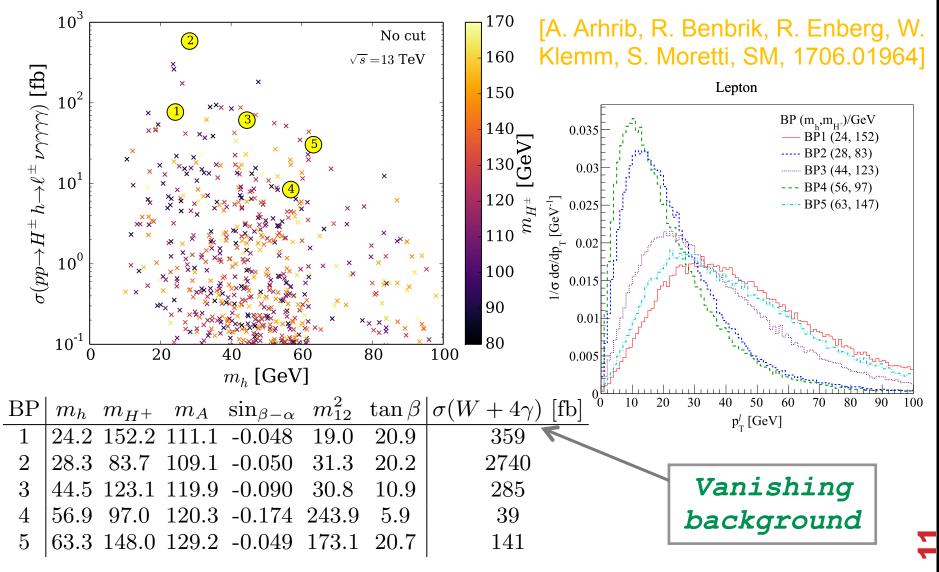
KI

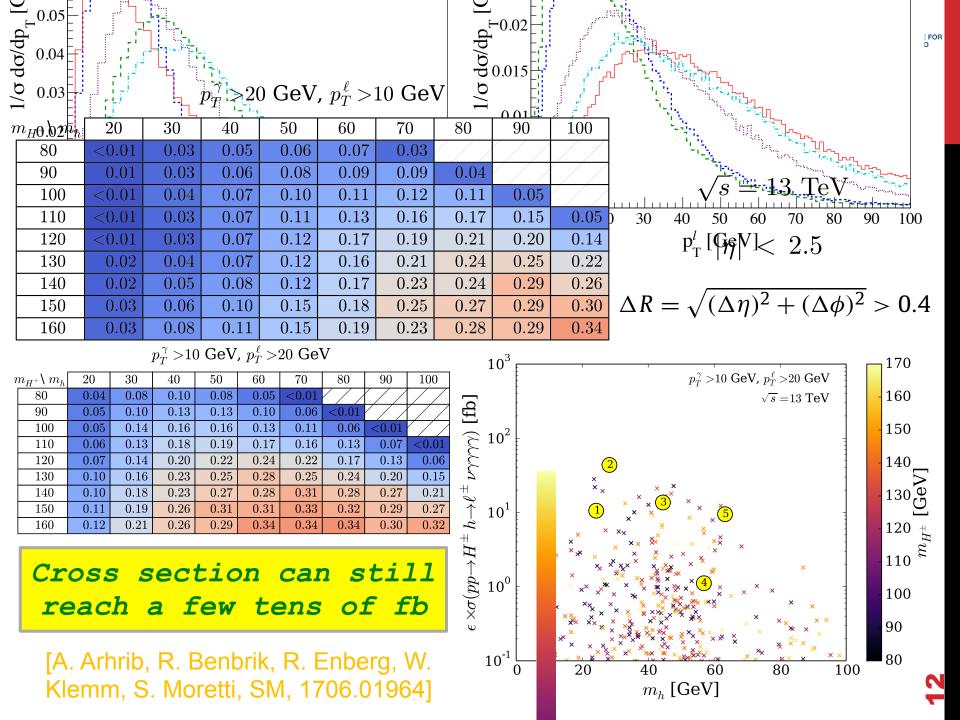
limit" 페 maximal hAZ and hH^+W^- couplings bb 0.8 $Br(h \rightarrow xx)$ 0.6 0.4 0.2 0 -0.3 0.2 -0.2 -0.1 0 0.3 0.1 c_{α}/s_{β}

DISCOVERY POTENTIAL

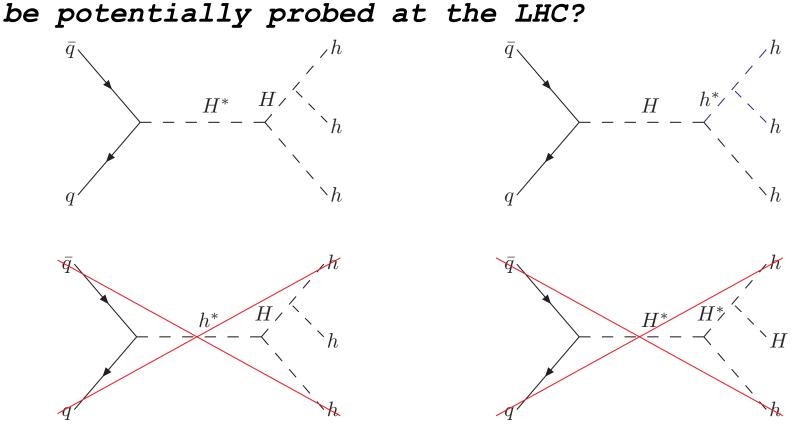
l/σ dσ/dp_m [GeV⁻¹

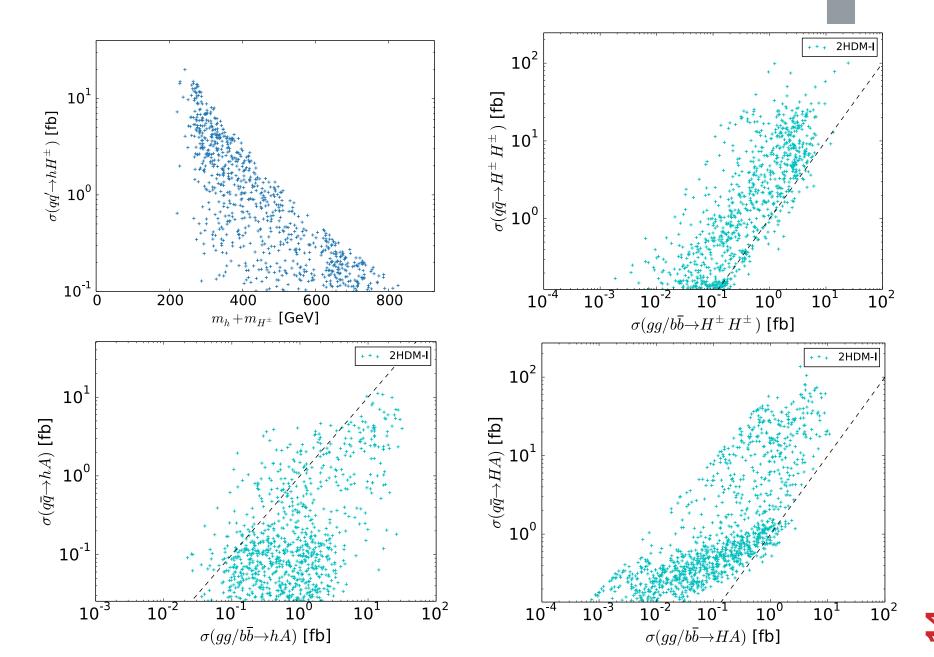
KOREA INSTITUTE FOR ADVANCED


ΚI


DISCOVERY POTENTIAL

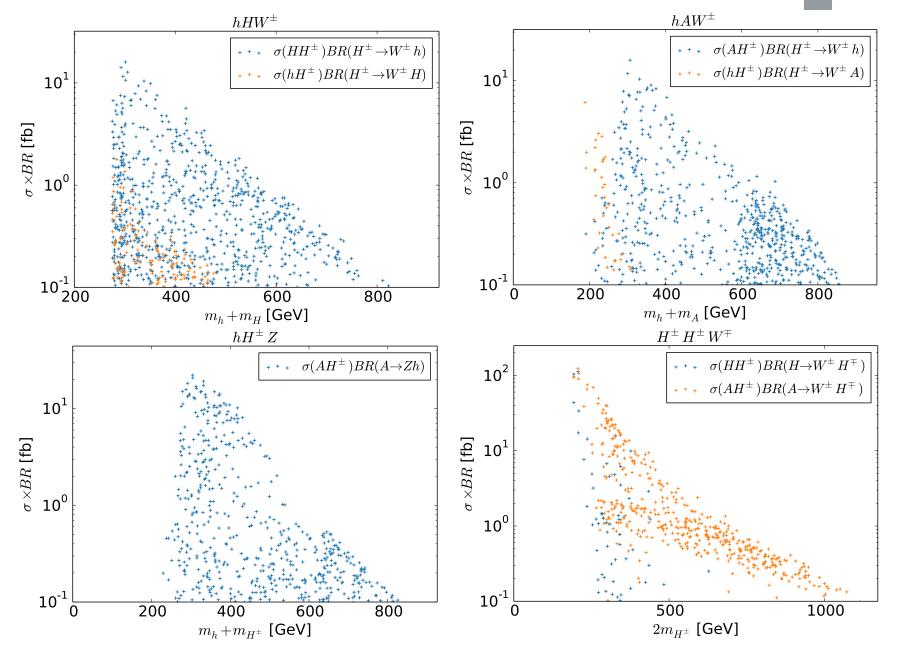
q=u,d,s,c,b


 $\sigma(qq' \to H^+h) \times BR(H^{\pm} \to W^{\pm}h) \times BR(h \to \gamma\gamma)^2 \times BR(W^{\pm} \to \ell^{\pm}\nu)$

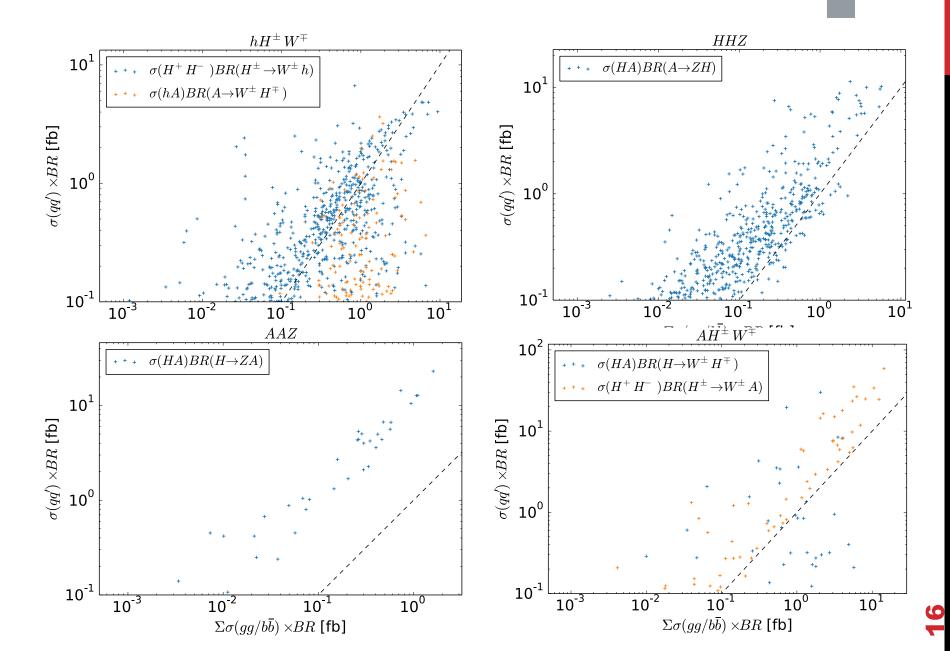


MULTI-HIGGS (EW) PRODUCTION

Electroweak production of all possible 2-body and 3-body Higgs-Higgs/gauge states in the Type-I 2HDM © Can it dominate over QCD production? © Which Higgs-Higgs and Higgs-gauge couplings can


2-BODY FINAL STATES

KI


KOREA INSTITUTE FOR ADVANCED STUDY

3-BODY FINAL STATES

3-BODY FINAL STATES - COMPARISON

KOREA INSTITUTE FOR ADVANCED STUDY

KI

HIGGS TRIPLE-COUPLINGS

KI	S KOREA INSTITUTE FOR ADVANCED STUDY
----	---

2BFS1. hh \checkmark (hhh) \checkmark 2. HH(hhH) \checkmark (3. AA(hhH) \checkmark (4. H ⁺ H ⁻ 5. hH(hhH) \checkmark (hhh)5. hH(hhH) \checkmark (hhh) \checkmark (6. hA(hhA)(7. hH [±] (hhH [±])(8. HA(hhA)(hHH (hHH) (hhH) hH ⁺ H ⁻)	d. hAA (hAA) (hAA) (hAA) (hH^+H^-) (HAA) (HAA) (AAA) (AAH^\pm) (hHA) (hHA)	e. hH^+H^- (hH^+H^-) $\checkmark (hH^+H^-)$ (HH^+H^-) (AH^+H^-) (hhH^{\pm}) $(H^+H^-H^{\pm})$	f. HHH ✓ (HHH) (hHH) (HHA)	g. HAA (HAA) \checkmark (HAA) (hAA) (hHA)	h. HH^+H^- (HH^+H^-) \checkmark (HH^+H^-) (hHH^\pm)
2. HH (hhH) \checkmark (3. AA	(hhH) $hH^+H^-)$	$\checkmark (hAA)$ (hH^+H^-) (HAA) (HAA) (AAA) (AAH^{\pm})	(hH^+H^-) (HH^+H^-) (AH^+H^-) (hhH^{\pm})	(hHH)	$\checkmark (HAA)$ (hAA) (hHA)	 ✓ (HH⁺H[−]) (hHH[±])
3. AA	(hhH) $hH^+H^-)$	(hH^+H^-) (HAA) (HAA) (AAA) (AAH^{\pm})	(HH^+H^-) (AH^+H^-) (hhH^{\pm})	(hHH)	$\checkmark (HAA)$ (hAA) (hHA)	 ✓ (HH⁺H[−]) (hHH[±])
$4. H^+H^ (hhH)$ \checkmark (hhh) \checkmark $5. hH$ (hhH) \checkmark (hhh) \checkmark $6. hA$ (hhA) \checkmark (hhA) $7. hH^{\pm}$ (hhH^{\pm}) \bullet $8. HA$ (hhA) (hhA) $9. HH^{\pm}$ (hhH^{\pm}) (hhH^{\pm}) $10. AH^{\pm}$ \bullet	$hH^+H^-)$	(hH^+H^-) (HAA) (HAA) (AAA) (AAH^{\pm})	(HH^+H^-) (AH^+H^-) (hhH^{\pm})		(hAA) (hHA)	(hHH^{\pm})
$5.hH$ (hhH) \checkmark (hhh) \checkmark $6.hA$ (hhA) (hhA) $7.hH^{\pm}$ (hhH^{\pm}) $8.HA$ (hhA) ($9.HH^{\pm}$ (hhA) ($10.AH^{\pm}$ ($hH^+H^-)$	(HAA) (HAA) (AAA) (AAH^{\pm})	(HH^+H^-) (AH^+H^-) (hhH^{\pm})		(<i>hHA</i>)	(hHH^{\pm})
$5.hH$ (hhH) \checkmark (hhh) \checkmark $6.hA$ (hhA) (hhA) (hhA) $7.hH^{\pm}$ (hhH^{\pm}) (hhH) (hhA) $8.HA$ (hhA) (hhA) (hhA) $9.HH^{\pm}$ (hhH^{\pm}) (hhH^{\pm}) $10.AH^{\pm}$ (hhH) (hhH)	$hH^+H^-)$	(hhA) (AAA) (AAH^{\pm})	(AH^+H^-) (hhH^{\pm})		(<i>hHA</i>)	
$7.hH^{\pm}$ (hhH^{\pm}) $8.HA$ (hhA) $9.HH^{\pm}$ (hhH^{\pm}) $10.AH^{\pm}$	(hHA)	 ✓ (AAA) (AAH[±]) 	(hhH^{\pm})		(<i>HHA</i>)	
8. HA (hhA)(9. HH^{\pm} (hhH^{\pm})(hhH^{\pm})10. AH^{\pm} (hhH^{\pm})(hhH^{\pm})	(hHA)			(HHA)		
9. HH^{\pm} (hhH^{\pm}) (h	(hHA)	(hHA)		(HHA)	(HHA)	
10. <i>AH</i> [±]				(11111)	$\checkmark (AAA)$	(AH^+H^-)
	(hHH^{\pm})		(hHH^{\pm})	(HHH^{\pm})	(AAH^{\pm})	$\checkmark \begin{array}{c} (HHH^{\pm}) \\ (H^{+}H^{-}H^{\pm}) \end{array}$
11.hZ (hhZ)			(hAH^{\pm})		(HAH^{\pm})	(HAH^{\pm})
		(AAZ)	(H^+H^-Z)			
$12. hW^{\pm} \qquad (hhW^{\pm})$		(AAW^{\pm})	$(H^+H^-W^\pm)$			
13. HZ (hhZ) ((hHZ)			(HHZ)	(AAZ)	(H^+H^-Z)
$14. HW^{\pm} \qquad \qquad (hhW^{\pm}) \qquad (h$	(hHW^{\pm})			(HHW^{\pm})	(AAW^{\pm})	$(H^+H^-W^\pm)$
15. AZ		(hAZ)			(HAZ)	
16. AW^{\pm}		(hAW^{\pm})			(HAW^{\pm})	
$17. H^{\pm}Z$						
$18. H^+W^-$			(hH^+W^-)			

[R. Enberg, W. Klemm, S. Moretti, SM, 1809.XXXXX]

[R. Enberg, W. Klemm, S. Moretti, SM, 1809.XXXXX]

Coupling 2BFS	$\mathrm{m.}hAZ$	n. HAZ	o. H^+H^-Z	p. hH^+W^-	q. HH^+W^-	$r. AH^+W^-$	s. hZZ	t. <i>HZZ</i>	u. hW^+W^-	v. HW^+W^-
1. <i>hh</i>	(hAZ)			(hH^+W^-)			(hZZ)		(hW^+W^-)	
2. HH		(HAZ)			(HH^+W^-)			(HZZ)		(HW^+W^-)
3.AA	(hAZ)	(HAZ)				(AH^+W^-)				
$4. H^+ H^-$			$\checkmark(H^+H^-Z)$	(hH^+W^-)	(HH^+W^-)	(AH^+W^-)				
5. hH	(HAZ)	(hAZ)		(HH^+W^-)	(hH^+W^-)		(HZZ)	(hZZ)	(HW^+W^-)	(hW^+W^-)
6. hA	$\checkmark \begin{array}{c} (hhZ) \\ (AAZ) \end{array}$	(hHZ)		(hH^+W^-) (AH^+W^-)			(AZZ)		(AW^+W^-)	
$7.hH^{\pm}$	$(AH^{\pm}Z)$			$\checkmark \frac{(hhW^{\pm})}{(H^+H^-W^{\pm})}$	(hHW^{\pm})	(hAW^{\pm})	$(H^{\pm}ZZ)$		$(H^{\pm}W^{+}W^{-})$	
8. HA	(hHZ)	$\checkmark \begin{pmatrix} HHZ \\ (AAZ \end{pmatrix}$			(HH^+W^-) (AH^+W^-)			(AZZ)		(AW^+W^-)
$9.HH^{\pm}$		$(AH^{\pm}Z)$		(hHW^{\pm})	$\checkmark \frac{(HHW^{\pm})}{(H^+H^-W^{\pm})}$	(HAW^{\pm})		$(H^{\pm}ZZ)$		$(H^{\pm}W^{+}W^{-})$
$10. AH^{\pm}$	$(hH^{\pm}Z)$	$(HH^{\pm}Z)$		(hAW^{\pm})	(HAW^{\pm})	$\checkmark \frac{(AAW^{\pm})}{(H^+H^-W^{\pm})}$				
11. hZ	$\checkmark \begin{array}{c} (hhA) \\ (AZZ) \end{array}$	(hHA)		(H^+ZW^-)			\checkmark (<i>hhZ</i>)	(hHZ)		
$12. hW^{\pm}$				(hhH^{\pm}) \checkmark (hHH^{\pm}) $(H^{\pm}W^{+}W^{-})$		(hAH^{\pm})			✓ (hhW^{\pm})	(hHW^{\pm})
13. <i>HZ</i>	(hHA)	$\checkmark \frac{(HHA)}{(AZZ)}$			(H^+ZW^-)			\checkmark (<i>HHZ</i>)		
14. <i>HW</i> [±]				(hHH^{\pm})	$\checkmark \frac{(HHH^{\pm})}{(H^{\pm}W^{+}W^{-})}$	(HAH^{\pm})			(hHW^{\pm})	\checkmark (HHW [±])
15. <i>AZ</i>	$\checkmark \begin{array}{c} (hAA) \\ (hZZ) \end{array}$	$\checkmark \begin{array}{c} (HAA) \\ (HZZ) \end{array}$				(H^+ZW^-)	(hAZ)	(HAZ)		
16. AW^{\pm}				(hAH^{\pm})	(HAH^{\pm})	$\checkmark (H^{\pm}W^{+}W^{-})$			(hAW^{\pm})	(HAW^{\pm})
$17. H^{\pm}Z$	(hAH^{\pm})	(HAH^{\pm})	√				$(hH^{\pm}Z)$	$(HH^{\pm}Z$		
$18. H^+W^-$				$\checkmark \begin{array}{c} (hH^+H^-) \\ (hW^+W^-) \end{array}$	$\checkmark \begin{array}{c} (HH^+H^-) \\ (HW^+W^-) \end{array}$	$\checkmark \begin{array}{c} (AH^+H^-) \\ (AW^+W^-) \end{array}$			(hH^+W^-)	(HH^+W^-)
			Г				Morott		1000 V	

HIGGS-GAUGE COUPLINGS

CONCLUSIONS

- KIAS S ROPEA INSTITUTE FOR ADVANCED STUDY
- Additional Higgs bosons are predicted in most new physics frameworks - can be lighter or heavier than 125 GeV
- Even when light, they are difficult to detect at the LHC in the conventional channels, owing to generally reduced couplings to the SM
- Their pair-production can provide crucial probes
- In the Type-I 2HDM, a light scalar-pseudoscalar pair as well as a light H[±] could be accessible in multi-photon final states
- EW pair-production essential when a charged Higgs boson is involved - can dominate over QCD even for certain neutral Higgs boson combinations

THANK YOU! 감사합니다!