Signatures of the Type-I 2HDM at the LHC

Shoaib Munir KIAS, Seoul

Workshop on the Standard Model and beyond, Corfu Sep. 02, 2018

2-Higgs-Doublet Models

- Type-I :
$>$ Electroweak production of light scalarpseudoscalar pairs
>A (fairly) light charged Higgs boson
$>$ The promise of multi-photon final states
$>E W$ vs. QCD production of multiple Higgs bosons at the LHC

Conclusions

ADDITIONAL HIGGS BOSONS

Predicted in a minimalistic new physics contender like the 2-Higgs-Doublet Model and in extended frameworks like Supersymmetry and GUTs

Could provide earliest
signatures of new physics

ADDITIONAL HIGGS BOSONS

Predicted in a minimalistic new physics contender like the 2-Higgs-Doublet Model and in extended frameworks like Supersymmetry and GUTs Could be the earliest signatures of new physics at the LHC But
Masses O(100) GeV:
Small production cross section

- more statistics needed

ADDITIONAL HIGGS BOSONS

Predicted in a minimalistic new physics contender like the 2-Higgs-Doublet Model and in extended frameworks like Supersymmetry and GUTs Could be the earliest signatures
of new physics at the LHC

But

Masses O(100) GeV:
Small production cross section

- more statistics needed

ADDITIONAL HIGGS BOSONS

Predicted in a minimalistic new physics contender like the 2-Higgs-Doublet Model and in extended frameworks like Supersymmetry and GUTs Could be the earliest signatures of new physics at the LHC But
Masses O(100) GeV:
Small production cross section

- more statistics needed

ADDITIONAL HIGGS BOSONS

Predicted in a minimalistic new physics contender like the 2-Higgs-Doublet Model and in extended frameworks like Supersymmetry and GUTs Could be the earliest signatures of new physics at the LHC

But

Masses O(100) GeV:
Small production cross section

- more statistics needed

Masses O(10) GeV:

Large SM Backgrounds - improve search strategies

ADDITIONAL HIGGS BOSONS

Predicted in a minimalistic new physics contender like the 2-Higgs-Doublet Model and in extended frameworks like Supersymmetry and GUTs Could be the earliest signatures of new physics at the LHC

But

Masses O(100) GeV:
Small production cross section

- more statistics needed

Masses O(10) GeV:

Large SM Backgrounds - improve search strategies Also (in either case)
decay rates to SM particles may be suppressed
Exploit Higgs-Higgs and Higgs-gauge production

2HDM - SCALAR POTENTIAL

$$
\begin{aligned}
\mathcal{V}_{2 \mathrm{HDM}} & =m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2}-\left[m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c. }\right] \\
& +\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right) \\
& +\left\{\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\left[\lambda_{6}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right] \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c. }\right\}
\end{aligned}
$$

$\Phi_{a}=\binom{\phi_{a}^{+}}{\left(v_{a}+\rho_{a}+i \eta_{a}\right) / \sqrt{2}}$
$>$ Three $\Phi_{1}=\frac{1}{\sqrt{2}}\binom{\sqrt{2}\left(G^{+} \cos \beta-H^{+} \sin \beta\right)}{v_{1}-h \sin \alpha+H \cos \alpha+\mathrm{i}(G \cos \beta-A \sin \beta)}$ neutral

$$
\begin{aligned}
\Phi_{2}= & \frac{1}{\sqrt{2}}\binom{\sqrt{2}\left(G^{+} \sin \beta+H^{+} \cos \beta\right)}{v_{2}+h \cos \alpha+H \sin \alpha+\mathrm{i}(G \sin \beta+A \cos \beta)} \\
& \left(\alpha: \text { mixing angle of neutral scalars, } \tan \beta=\mathrm{v}_{2} / \mathrm{v}_{1}\right)
\end{aligned}
$$

The Yukawa Lagrangian for the neutral scalars reads
$-\mathcal{L}_{Y}=\bar{Q}_{L} \widetilde{\Phi}_{1} \eta_{1}^{U} U_{R}+\bar{Q}_{L} \Phi_{1} \eta_{1}^{D} D_{R}+\bar{Q}_{L} \Phi_{1} \eta_{1}^{L} L_{R}+\bar{Q}_{L} \widetilde{\Phi}_{2} \eta_{2}^{U} U_{R}+\bar{Q}_{L} \Phi_{2} \eta_{2}^{D} D_{R}+\bar{Q}_{L} \Phi_{2} \eta_{2}^{L} L_{R}$

$$
\Longrightarrow \quad M^{F}=\frac{v}{\sqrt{2}}\left(\eta_{1}^{F} \cos \beta+\eta_{2}^{F} \sin \beta\right)
$$

MINIMAL FLAVOUR VIOLATION

- To prevent flavour-changing neutral currents, a Z_{2} symmetry can be imposed (removes CP-violating $\lambda_{6,7}$)
\boldsymbol{Z}_{2}-charge assignment \square four Types

Model	u_{R}^{i}	d_{R}^{i}	e_{R}^{i}
Type I	Φ_{2}	Φ_{2}	Φ_{2}
Type II	Φ_{2}	Φ_{1}	Φ_{1}
Lepton-specific	Φ_{2}	Φ_{2}	Φ_{1}
Flipped	Φ_{2}	Φ_{1}	Φ_{2}

MINIMAL FLAVOUR VIOLATION

To prevent flavour-changing neutral currents, a Z_{2} symmetry can be imposed (removes CP-violating $\lambda_{6,7}$)
Z_{2}-charge assignment \square four Types

$$
\phi_{1} \rightarrow-\phi_{1}
$$

Model	u_{R}^{i}	d_{R}^{i}	e_{R}^{i}	
Type I	Φ_{2}	Φ_{2}	Φ_{2}	$\xi_{f}^{h}=\cos \alpha / \sin \beta$
Type II	Φ_{2}	Φ_{1}	Φ_{1}	
Lepton-specific	Φ_{2}	Φ_{2}	Φ_{1}	$\xi_{f}^{H}=\sin \alpha / \sin \beta$
Flipped	Φ_{2}	Φ_{1}	Φ_{2}	

$$
\begin{aligned}
& \cos \alpha=\sin \beta \sin (\beta-\alpha)+\cos \beta \cos (\beta-\alpha) \\
&-\mathcal{L}_{\text {Yukawa }}^{2 \mathrm{HDM}}=\sum_{f=u, d, \ell} \frac{m_{f}}{v}\left(\xi_{f}^{h} \bar{f} f h+\xi_{f}^{H} \bar{f} f H-i \xi_{f}^{A} \bar{f} \gamma_{5} f A\right) \\
&+\left\{\frac{\sqrt{2} V_{u d}}{v} \bar{u}\left(m_{u} \xi_{u}^{A} \mathrm{P}_{L}+m_{d} \xi_{d}^{A} \mathrm{P}_{R}\right) d H^{+}\right. \\
&\left.+\frac{\sqrt{2} m_{\ell} \xi_{\ell}^{A}}{v} \bar{\nu}_{L} \ell_{R} H^{+}+\text {h.c }\right\}
\end{aligned}
$$

A LIGHT SCALAR-PSEUDOSCALAR PAIR

Landau-Yang theorem forbids the contribution of a resonant Z boson to the $Q C D$ production of a hA pair

but not to EW production: enhanced cross sections?

NUMERICAL ANALYSIS

Numerically scanning of the parameter space (trading λ_{1-5} for the physical Higgs boson masses as input parameters), with the following constraints

	$m_{H}=125 \mathrm{GeV}$
$m_{h}(\mathrm{GeV})$	$10-80$
$m_{A}(\mathrm{GeV})$	$10-\left(M_{Z}-m_{h}\right)$
$m_{H^{ \pm}}(\mathrm{GeV})$	$90-500$
$\sin (\beta-\alpha)$	$-1-1$
$m_{12}^{2}\left(\mathrm{GeV}^{2}\right)$	$0-m_{A}^{2} \sin \beta \cos \beta$
$\tan \beta$	2,25

Unitarity, perturbativity and vacuum stability
OOblique parameters S, T and U
-Flavour physics

NUMERICAL ANALYSIS

SuperIso Manual [F. Mahmoudi, 0808.3144]

$$
\begin{array}{rlll}
2.63 \leq & \mathrm{BR}\left(B \rightarrow X_{s} \gamma\right) \times 10^{4} & \leq 4.23 \\
0.71< & \mathrm{BR}\left(B_{u} \rightarrow \tau \nu_{\tau}\right) \times 10^{4} & <2.57 \\
1.3< & \mathrm{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \times 10^{9} & <4.5 \\
-1.7 \times 10^{-2}< & \Delta_{0}\left(B \rightarrow K^{*} \gamma\right) & <8.9 \times 10^{-2} \\
0.56< & R_{\tau \nu_{\tau}} & <2.70 \\
2.9 \times 10^{-3}< & \mathrm{BR}\left(B \rightarrow D^{0} \tau \nu_{\tau}\right) & <14.2 \times 10^{-3} \\
0.151< & \xi_{D \ell \nu} & <0.681 \\
& \operatorname{BR}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right) & <1.1 \times 10^{-9} \\
0.6257< & \frac{\operatorname{BR}(K \rightarrow \mu \nu)}{\operatorname{BR}(\pi \rightarrow \mu \nu)} & <0.6459 \\
\mathbf{i c s s} 0.985 & < & R_{\ell 23} & <1.013 \\
4.7 \times 10^{-2}< & \operatorname{BR}\left(D_{s} \rightarrow \tau \nu_{\tau}\right) & <6.1 \times 10^{-2} \\
4.9 \times 10^{-3}< & \operatorname{BR}\left(D_{s} \rightarrow \mu \nu_{\mu}\right) & <6.7 \times 10^{-3} \\
3.0 \times 10^{-4}< & \operatorname{BR}\left(D \rightarrow \mu \nu_{\mu}\right) & <4.6 \times 10^{-4} \\
-2.4 \times 10^{-10}< & \delta a_{\mu} & <5.0 \times 10^{-9}
\end{array}
$$

NUMERICAL ANALYSIS

[F. Mahmoudi, O. Stal [0907.1791]

NUMERICAL ANALYSIS

[A. Arbey, F. Mahmoudi, O. Stal, T. Stefaniak, [1706.07414]

HFLAV Coll., 1612.07233]

$$
\begin{array}{ll}
3.32-0.15 \leq \quad \operatorname{BR}\left(B \rightarrow X_{s} \gamma\right) \times 10^{4} & \leq 3.32+0.15 \\
1.06 \pm 0.19 \leq \quad \operatorname{BR}\left(B_{u} \rightarrow \tau^{ \pm} \nu_{\tau}\right) \times 10^{4} & \leq 1.06+0.19
\end{array}
$$

LHCb Coll., 1703.05747$] 3.0-0.85 \leq \operatorname{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \times 10^{9} \leq 3.0+0.85$
THDM Type II - Flavour constraints

NUMERICAL ANALYSIS

Numerically scanning of the parameter space (trading λ_{1-5} for the physical Higgs boson masses as input parameters), with the following constraints

	$m_{H}=125 \mathrm{GeV}$
$m_{h}(\mathrm{GeV})$	$10-80$
$m_{A}(\mathrm{GeV})$	$10-\left(M_{Z}-m_{h}\right)$
$m_{H^{ \pm}}(\mathrm{GeV})$	$90-500$
$\sin (\beta-\alpha)$	$-1-1$
$m_{12}^{2}\left(\mathrm{GeV}^{2}\right)$	$0-m_{A}^{2} \sin \beta \cos \beta$
$\tan \beta$	2,25

Unitarity, perturbativity and vacuum stability
Oblique parameters S, T and U

- Flavour physics

LEP, TeVatron and LHC results for

- Additional Higgs bosons (HiggsBounds)
-Measured Higgs signal strengths (HiggsSignals)

$m_{h}+m_{A}<m_{z}$ IN TYPE-I 2HDM

$m_{h}+m_{A}<m_{z}$ IN TYPE-I 2HDM

$m_{12}^{2}\left(\mathrm{GeV}^{2}\right)$	$\left.0-m_{A}^{2} \sin \beta \cos \beta\right)$
$\tan \beta$	$(-0.95--1.1) / \sin (\beta-\alpha)$
[R. Enberg, W. Klemm, S. Moretti, SM, 1605.02498]	

DOMINANT SEARCH CHANNELS

LIGHT FERMIOPHOBIC HIGGS BOSON

$$
\begin{aligned}
F_{f} & =\sum_{i} \frac{-2}{\tau_{f}^{2}} N_{f} Q_{f}^{2} \xi_{f}^{h}\left(\tau_{f}+\left(\tau_{f}-1\right) I\left(\tau_{f}\right)\right) \\
F_{H^{ \pm}} & =\frac{g_{h H^{ \pm} H^{\mp}}}{\tau_{H^{ \pm}}^{2}} \frac{m_{W}^{2}}{m_{H^{ \pm}}^{2}}\left(\tau_{H^{ \pm}}-I\left(\tau_{H^{ \pm}}\right)\right), \\
F_{W} & =\frac{\sin (\beta-\alpha)}{\tau_{W}^{2}}\left(2 \tau_{W}^{2}+3 \tau_{W}+3\left(2 \tau_{W}-1\right) I\left(\tau_{W}\right)\right)
\end{aligned}
$$

$\sin (\beta-\alpha) \rightarrow 0$

"Alignment

$$
\cos \alpha=\sin \beta \sin (\beta-\alpha)+\cos \beta \cos (\beta-\alpha)
$$

limit" \square maximal

hAZ and hH+W ${ }^{-}$couplings

DISCOVERY POTENTIAL

KOREA INSTITUTE FOR ADVANCED
STUDY

DISCOVERY POTENTIAL

KIAS

CUT EFFICIENCIES

$p_{T}^{\gamma}>20 \mathrm{GeV}, p_{T}^{\ell}>10 \mathrm{GeV}$

$m_{H^{+}} \backslash m_{h}$	20	30	40	50	60	70	80	90	100
80	<0.01	0.03	0.05	0.06	0.07	0.03			
90	0.01	0.03	0.06	0.08	0.09	0.09	0.04		
100	<0.01	0.04	0.07	0.10	0.11	0.12	0.11	0.05	
110	<0.01	0.03	0.07	0.11	0.13	0.16	0.17	0.15	0.05
120	<0.01	0.03	0.07	0.12	0.17	0.19	0.21	0.20	0.14
130	0.02	0.04	0.07	0.12	0.16	0.21	0.24	0.25	0.22
140	0.02	0.05	0.08	0.12	0.17	0.23	0.24	0.29	0.26
150	0.03	0.06	0.10	0.15	0.18	0.25	0.27	0.29	0.30
160	0.03	0.08	0.11	0.15	0.19	0.23	0.28	0.29	0.34

$$
\begin{gathered}
\sqrt{s}=13 \mathrm{TeV} \\
|\eta|<2.5 \\
\Delta R=\sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}}>0.4
\end{gathered}
$$

$$
p_{T}^{\gamma}>10 \mathrm{GeV}, p_{T}^{\ell}>20 \mathrm{GeV}
$$

$m_{H^{+}} \backslash m_{h}$	20	30	40	50	60	70	80	90	100
80	0.04	0.08	0.10	0.08	0.05	<0.01		,	
90	0.05	0.10	0.13	0.13	0.10	0.06	<0.01		
100	0.05	0.14	0.16	0.16	0.13	0.11	0.06	<0.01	
110	0.06	0.13	0.18	0.19	0.17	0.16	0.13	0.07	<0.01
120	0.07	0.14	0.20	0.22	0.24	0.22	0.17	0.13	0.06
130	0.10	0.16	0.23	0.25	0.28	0.25	0.24	0.20	0.15
140	0.10	0.18	0.23	0.27	0.28	0.31	0.28	0.27	0.21
150	0.11	0.19	0.26	0.31	0.31	0.33	0.32	0.29	0.27
160	0.12	0.21	0.26	0.29	0.34	0.34	0.34	0.30	0.32

Cross section can still reach a few tens of fb
[A. Arhrib, R. Benbrik, R. Enberg, W. Klemm, S. Moretti, SM, 1706.01964]

MULTI-HIGGS (EW) PRODUCTION

Electroweak production of all possible 2-body and 3-body Higgs-Higgs/gauge states in the Type-I 2HDM

Can it dominate over QCD production?
Which Higgs-Higgs and Higgs-gauge couplings can be potentially probed at the LHC?

3-BODY FINAL STATES

 ADVANCSTUDY

3-BODY FINAL STATES - COMPARISON

HIGGS TRIPLE-COUPLINGS

Coupling 2BFS	a. $h h h$	b. $h h H$	c. $h \mathrm{HH}$	d. $h A A$	e. $h H^{+} H^{-}$	f. HHH	g. $H A A$	h. $H H^{+} H^{-}$
1. $\mathrm{h} h$	\checkmark (hhh)	\checkmark		(hAA)	$\left(h H^{+} H^{-}\right)$			
2. $H H$		$(h h H)$	$\checkmark \quad(h H H)$			$\checkmark(H H H)$	$(H A A)$	$\left(H H^{+} H^{-}\right)$
3. $A A$				$\checkmark \quad(h A A)$			\checkmark (HAA)	
4. $H^{+} H^{-}$				$\left(h H^{+} H^{-}\right)$	$\checkmark\left(h H^{+} H^{-}\right)$			$\checkmark\left(H H^{+} H^{-}\right)$
5. hH	(hhH)	$\checkmark \quad(h h h)$	$\checkmark \begin{gathered} (h h H) \\ \left(h H^{+} H^{-}\right) \end{gathered}$	($H A A$)	$\left(H H^{+} H^{-}\right)$	(hHH)	(hAA)	
6. $\mathrm{h} A$	$(h h A)$			$\checkmark \begin{array}{ll}(h h A) \\ \checkmark & (A A A)\end{array}$	$\left(A H^{+} H^{-}\right)$		(hHA)	
7. $h H^{ \pm}$	$\left(h h H^{ \pm}\right)$			$\left(A A H^{ \pm}\right)$	$\checkmark \begin{gathered} \left(h h H^{ \pm}\right) \\ \left(H^{+} H^{-} H^{ \pm}\right) \end{gathered}$			$\left(h H H^{ \pm}\right)$
8. H A		$(h h A)$	(hHA)	(hHA)		(HHA)	$\checkmark \begin{aligned} & (H H A) \\ & (A A A)\end{aligned}$	$\left(A H^{+} H^{-}\right)$
9. $H H^{ \pm}$		(hhH ${ }^{ \pm}$)	$\left(h H H^{ \pm}\right)$		$\left(h H H^{ \pm}\right)$	$\left(H H H^{ \pm}\right)$	$\left(A A H^{ \pm}\right)$	$\checkmark \begin{gathered}\left(H H H^{ \pm}\right) \\ \\ \left(H^{+} H^{-} H^{ \pm}\right)\end{gathered}$
10. $A H^{ \pm}$					$\left(h A H^{ \pm}\right)$		$\left(H A H^{ \pm}\right)$	$\left(H A H^{ \pm}\right)$
11. $h Z$	(hhZ)			(AAZ)	$\left(H^{+} H^{-} Z\right)$			
12. $h W^{ \pm}$	$\left(h h W^{ \pm}\right)$			$\left(A A W^{ \pm}\right)$	$\left(H^{+} H^{-} W^{ \pm}\right)$			
13. HZ		($h h Z$)	(hHZ)			(HHZ)	(AAZ)	$\left(H^{+} H^{-} Z\right)$
14. $H W^{ \pm}$		$\left(h h W^{ \pm}\right)$	$\left(h H W^{ \pm}\right)$			$\left(H H W^{ \pm}\right)$	$\left(A A W^{ \pm}\right)$	$\left(H^{+} H^{-} W^{ \pm}\right)$
15. $A Z$				(hAZ)			(HAZ)	
16. $A W^{ \pm}$				$\left(h A W^{ \pm}\right)$			$\left(H A W^{ \pm}\right)$	
17. $H^{ \pm} Z$								
18. $H^{+} W^{-}$					$\left(h H^{+} W^{-}\right)$			

HIGGS-GAUGE COUPLINGS

\qquad	m. $h A Z$	n. $H A Z$	o. $H^{+} H^{-} Z$	p. $h H^{+} W^{-}$	q. $H H^{+} W^{-}$	r. $A H^{+} W^{-}$	s. $h Z Z$	t. $H Z Z$	u. $h W^{+} W^{-}$	v. $H W^{+} W^{-}$
1. $h \mathrm{~h}$	(hAZ)			$\left(h H^{+} W^{-}\right)$			(hZZ)		$\left(h W^{+} W^{-}\right)$	
2. HH		($H A Z$)			$\left(H H^{+} W^{-}\right)$			($H Z Z$)		$\left(H W^{+} W^{-}\right)$
3. AA	(hAZ)	(HAZ)				$\left(A H^{+} W^{-}\right)$				
4. $\mathrm{H}^{+} \mathrm{H}^{-}$			$\checkmark\left(H^{+} H^{-} Z\right)$	$\left(h H^{+} W^{-}\right)$	$\left(H H^{+} W^{-}\right)$	$\left(A H^{+} W^{-}\right)$				
5. hH	($H A Z$)	(hAZ)		$\left(H H^{+} W^{-}\right)$	$\left(h H^{+} W^{-}\right)$		($H Z Z$)	(hZZ)	$\left(H W^{+} W^{-}\right)$	$\left(h W^{+} W^{-}\right)$
6. $\mathrm{h} A$	$\checkmark \begin{gathered} (h h Z) \\ (A A Z) \end{gathered}$	(hHZ)		$\begin{aligned} & \left(h H^{+} W^{-}\right) \\ & \left(A H^{+} W^{-}\right) \end{aligned}$			(AZZ)		$\left(A W^{+} W^{-}\right)$	
7. $h H^{ \pm}$	$\left(A H^{ \pm} Z\right)$			$\checkmark \begin{gathered} \left(h h W^{ \pm}\right) \\ \left(H^{+} H^{-} W^{ \pm}\right) \end{gathered}$	(hHW $^{ \pm}$)	($h A W^{ \pm}$)	$\left(H^{ \pm} Z Z\right)$		$\left(H^{ \pm} W^{+} W^{-}\right)$	
8. HA	(hHZ)	$\checkmark \sqrt{(H H Z)}$			$\left(H H^{+} W^{-}\right)$ $\left(A H^{+} W^{-}\right)$			(AZZ)		$\left(A W^{+} W^{-}\right)$
9. $H H^{ \pm}$		$\left(A H^{ \pm} Z\right)$		(hHW $^{ \pm}$)	\checkmark (HHW ${ }^{\left(H^{+} H^{-} W^{ \pm}\right)}$	($H A W^{ \pm}$)		$\left(H^{ \pm} Z Z\right)$		$\left(H^{ \pm} W^{+} W^{-}\right)$
10. $A H^{ \pm}$	($h H^{ \pm} Z$)	$\left(H H^{ \pm} Z\right)$		($h A W^{ \pm}$)	($H A W^{ \pm}$)	$\checkmark \frac{\left(A A W^{ \pm}\right)}{\left(H^{+} H^{-} W^{ \pm}\right)}$				
11. $h Z$	$\checkmark \begin{gathered} (h h A) \\ (A Z Z) \end{gathered}$	($h \mathrm{HA}$)		$\left(H^{+} Z W^{-}\right)$			\checkmark (hhZ)	(hHZ)		
12. $h W^{ \pm}$				$\left(h h H^{ \pm}\right)$ \checkmark $\left(h H H^{ \pm}\right)$ $\left(H^{ \pm} W^{+} W^{-}\right)$		$\left(h A H^{ \pm}\right)$			$\checkmark \quad\left(h h W^{ \pm}\right)$	$\left(h H W^{ \pm}\right)$
13. HZ	($h \mathrm{HA} A$)	$\begin{gathered} (H H A) \\ (A Z Z) \end{gathered}$			$\left(H^{+} Z W^{-}\right)$			$\checkmark(H H Z)$		
14. $H W^{ \pm}$				$\left(h H H^{ \pm}\right)$	$\checkmark \begin{gathered} \left(H H H^{ \pm}\right) \\ \left(H^{ \pm} W^{+} W^{-}\right) \end{gathered}$	$\left(H A H^{ \pm}\right)$			$\left(h H W^{ \pm}\right)$	$\checkmark\left(H H W^{ \pm}\right)$
15. $A Z$	$\begin{aligned} & (h A A) \\ & (h Z Z) \end{aligned}$	$\begin{array}{r} (H A A) \\ \checkmark \\ (H Z Z) \end{array}$				$\left(H^{+} Z W^{-}\right)$	(hAZ)	($H A Z$)		
16. $A W^{ \pm}$				$\left(h A H^{ \pm}\right)$	$\left(H A H^{ \pm}\right)$	$\checkmark\left(H^{ \pm} W^{+} W^{-}\right)$			$\left(h A W^{ \pm}\right)$	$\left(H A W^{ \pm}\right)$
17. $H^{ \pm} Z$	$\left(h A H^{ \pm}\right)$	($H A H^{ \pm}$)	\checkmark				$\left(h H^{ \pm} Z\right)$	$\left(H H^{ \pm} Z\right.$		
18. $H^{+} W^{-}$				$\checkmark \begin{aligned} & \left(h H^{+} H^{-}\right) \\ & \left(h W^{+} W^{-}\right)\end{aligned}$	$\checkmark \begin{aligned} & \left(H H^{+} H^{-}\right) \\ & \left(H W^{+} W^{-}\right)\end{aligned}$	$\checkmark \begin{aligned} & \left(A H^{+} H^{-}\right) \\ & \left(A W^{+} W^{-}\right)\end{aligned}$			$\left(h H^{+} W^{-}\right)$	$\left(H H^{+} W^{-}\right)$

CONCLUSIONS

Additional Higgs bosons are predicted in most new physics frameworks - can be lighter or heavier than 125 GeV

- Even when light, they are difficult to detect at the LHC in the conventional channels, owing to generally reduced couplings to the SM
- Their pair-production can provide crucial probes
- In the Type-I 2HDM, a light scalar-pseudoscalar pair as well as a light $H^{ \pm}$could be accessible in multi-photon final states
- EW pair-production - essential when a charged Higgs boson is involved - can dominate over QCD even for certain neutral Higgs boson combinations

KIAS

THANK YOU! 감사합니다!

