"Neutrinos - experimental status and prospects: 3 flavour oscillations"

Ewa Rondio
National Centre for Nuclear Research
Warsaw, Poland

Workshop on the Standard Model and Beyond

Corfu, September 4-th , 2018

Plan for the lecture...

Experimental view on data on neutrinos oscillations

- experimental information on number of neutrinos,
- Neutrino sources and measurement techniques
- How and what we measure to get oscillation parameters
- New information from present measurements
- What we know and what is missing
- Prospects for better data (oscillations)
....... I will not talk about sterile neutrino and doule β decay searches, sorry..

Neutrino?

The most inapprechensible component of matter
F. Reines: ,....the smallest part of reality ever invented by human"

- electric charge= 0
- Very hard to observe
\rightarrow participates only in weak inter. play important role in the Standard Model (SM)

In SM was assumed, that \boldsymbol{V} mass $=\mathbf{0}$

- appear in pairs with charged leptons
- neutrino type (flavour) is defined by leptons participating with it in interaction

How Many Neutrinos?

Experimental result from LEP

$$
\begin{aligned}
& Z^{0} \rightarrow q \bar{q}(u \bar{u}, d \bar{d}, s \bar{s}, c \bar{c}, b \bar{b}) \\
& Z^{0} \rightarrow l \bar{l}\left(e^{-} e^{+}, \mu^{-} \mu^{+}, \tau^{-} \tau^{+}\right) \\
& Z^{0} \rightarrow v \bar{v}\left(\nu_{e} \bar{v}_{e}, \nu_{\mu} \bar{v}_{\mu}, \nu_{\tau} \bar{v}_{\tau}\right)
\end{aligned}
$$

Z^{0} width measured contributions from quarks and leptons calculated
total width \sim decay probability ($\sim 1 /$ lifetime) partial width ~ branching rate (channel i)

$$
\begin{aligned}
& \Gamma_{Z}=\Gamma_{h a d}+3 \Gamma_{l}+N \Gamma_{V} \\
& N_{v}=2.99 \pm 0.02
\end{aligned}
$$

Neutrino sources

Natural

Cosmic rays \rightarrow atmospheric neutrinos

Man made neutrinos

Anti-neutrinos

Registratuontecnilques

 differ depending on neutrino energies

An overview of neutrino oscillations within 3-flavour picture

Phenomenon well understood by now

- Each flavour state is a linear combination of mass states:

Having long history and involving many experiments NOW

Atmospheric neutrino ~ First evidence of v oscillation Prof. Kajita gave a talk on the "evidence for v_{u} oscillation" at Neutrino 1998. (June $5^{\text {th }}$, already 20 years ago.)

$* U_{p} / D_{\text {own }}$ st. error for μ-like
Prediction ($\binom{$ flux calculation $\ldots \ldots \ldots 1 \%}{1 \mathrm{~km}$ rock above $5 \mathrm{k} \ldots \ldots .15 \%} 1.8 \%$
Data $\left(\begin{array}{l}\text { Energy cali. for } \uparrow \downarrow \cdots \\ \text { Non } \nu \text { Background } \\ \cdots . . . \\ 0.7 \% \\ <2 \%\end{array}\right) 2.1 \%$

Summary
Evidence for ν_{μ} oscillations $\nu_{\mu} \rightarrow V_{\varepsilon} \quad 90 x_{C} . \mathrm{L}$.

- $\left\{\begin{array}{l}\sin ^{2} 2 \theta>0.8 \\ \Delta m^{2} \sim 10^{-3} \sim 10^{-2}\end{array}\right.$
(. $\nu_{\mu} \rightarrow \nu_{\tau}$ or $\left.\nu_{\mu} \rightarrow V_{s} ?\right)$

Neutrino oscillations -

 experimental status and prospects- From sources to detectors (and in between)

- Neutrino oscillation was a surprise in 90^{\prime} th,
- now it is well established phenomenon and a lot of efforts are made to determine its parameters
- In future it can be a tool for
- beyond SM effects
- CP violation mechanism
- Understanding matter-antimatter asymmetry

Neutirino oscillations - picture as of today

FLAYOR

PMNS mixing matrix
$\left(\begin{array}{l}v_{e} \\ v_{u} \\ v_{\tau}\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23}\end{array}\right)\left(\begin{array}{ccc}\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i 8} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{-i \delta} & 0 & \cos \theta_{13}\end{array}\right)\left(\begin{array}{ccc}\cos \theta_{12} & \sin \theta_{12} & 0 \\ \sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$

CHOOZ,
DayaBay,
Reno,
DblChooz,
T2K
$\theta_{12}=34^{\circ} \pm 1^{\circ}$
$\theta_{23}=40^{\circ}+5^{\circ} /-2^{\circ}$
$\theta_{13}=9.1^{\circ} \pm 0.6^{\circ}!$

Based on PDG 2012
mixing angles, squared mass differences, CP violation phase - fundamental parameters of nature

Two free parameters for the three $\Delta \mathrm{m}^{2 \prime} \mathrm{~s}$. $\left(\Delta \mathrm{m}^{2}{ }_{31}=\Delta \mathrm{m}^{2}{ }_{21}+\Delta \mathrm{m}^{2}{ }_{32}\right)$

First look at
 two neutrino case

$$
\begin{aligned}
& v_{e}=\cos \vartheta v_{1}+\sin \vartheta v_{2} \\
& v_{\mu}=-\sin \vartheta v_{1}+\cos \vartheta v_{2}
\end{aligned}
$$

$$
\sin ^{2}\left(1.27 \Delta m^{2} L / E\right)=1
$$

so when we know L and E we can estimate for which mass difference experiment will be sensitive

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sin ^{2} 2 \theta \sin ^{2}\left(\frac{1.27 \Delta m^{2} L}{E_{v}}\right)
$$

V energy - E and distance L define range of sensitivity

	$\mathrm{E}_{v}(\mathrm{MeV})$	$L(\mathrm{~m})$	Range of Δm^{2}
Supernovae	<100	$>10^{19}$	$10^{-19}-10^{-20}$
Solar	<14	10^{11}	$10^{-10} ? ? ?$
Atmospheric	>100	$10^{4}-10^{7}$	$10^{-3}-10^{-4}$
Reactor	<10	$<10^{6}$	10^{-5}
Accelerator - SB	>100	10^{3}	10^{-1}
Accelerator - LB	>100	$<10^{6}$	10^{-3}

Two mass differences and three neutrino types oscillatimg
\rightarrow full description in 3×3 oscillation matrix,
\rightarrow studies in many experiments to get full picture....

But: $\Delta m^{2}{ }_{12} \sim 10^{-5}$, not 10^{-10} and solar and reactor oscillations are described by the same Δm^{2}

 How to get it consistent?Need to consider matter effects (MSW effects): propagation in matter neutrinos are not all equal
(as thy are in the vacuum)

Additional term in the potential modifies oscillation probabiities, Δm^{2} effective is introduce for maximal effect we have condition:

$$
\Delta m_{\text {matter }}^{2}=\sqrt{\left(\Delta m^{2} \cos 2 \theta-A\right)^{2}+\left(\Delta m^{2} \sin 2 \theta\right)^{2}}
$$

Knowing electron density we can define m_{1}, m_{2} mass odrering

What we need to detect neutrino?

- Produce particle which is visible in the detector
- It happens when:

1. Neutrinos kicks off electron (or nucleon) from detector material

2. Neutrino interacts in CC mode and produces charged lepton which is visible in the detector
It can happened on electron or (with Higher probability) on nucleon (if there Is enough energy to produce more massive charged lepton and teke nucleon out of nucleus.

How to detect neutrinos
 - i.e. products of their interactions?

Typical detection techniques:

$>$ Radiochemical $n \rightarrow p$ or $p \rightarrow n$ and nucleus changes, count them is counting n inter. (no additional inform.)
>scintillators - record scintillation light of produced charged particle (electron or proton $\cdot \cdot$) - register time and energy > water (light or heavy) - record Cherenkov light - register direction, time and energy
$>$ liquid argon - record drifting electrons from ionization >iron slabs as targets and various detectors to record exiting particles, includes emulsion

- Go underground to reduce background
$>$ Make your detector big
\rightarrow use large volumes of cheap materials

measurenents in sectors

what is neasured, where and status

FLAYOR

PMNS mixing matrix
NASS

$$
\left(\begin{array}{l}
v_{e} \\
v_{\mu} \\
v_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-\sin \theta_{13} e^{-i \delta} & 0 & \cos \theta_{13}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

„atmospheric"
Sector
2-3

Sector 1-3
"solar"
sector 1-2
mixing angles, squared mass differences, CP violation phase - fundamental parameters of nature

Measurements

information needed to understand oscillations:

principle of the measurement:
\rightarrow Predict how many interactions should be seen in the detector
\rightarrow Compare with what is seen
if not consistent - take oscillation formula and modify parameters

In leading order the analysis can be done for 2X2 cases (solar and atmospheric), first results
With better precision mixing part (1-3) becomes important 3 flavour analysis is required

First approach - results leading to dicovery of neutrino oscillations \rightarrow Nobel Prize 2015 (SK and SNO)

Improving oscillation parameters what is a goal, how it is done?

- To get oscillation parameters we need to fit probability of disappearance and/or appearance as a function of L/E
- Input:
- observed number of interactions (of given neutrino flavour defined by produced charged lepton)
- predicted number of events (from oscillation probability, depends of parameters)

What needs to be done?

- Improve statistics of interactions observed "after oscillations"
\rightarrow done by larger detectors, long time, better selection
- Improve predictions \rightarrow understand source (Sun, reactor, beam..) and measure "before oscillation" and extrapolate

What we know now

from recent measurements

 about solar ($1-2$),atmospheric $(2-3)$ and sub-leading (1-3) neutrino oscillations? Start with sector 1-2

$$
\left(\begin{array}{l}
v_{e} \\
v_{\mu} \\
v_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-\sin \theta_{13} e^{-i \delta} & 0 & \cos \theta_{13}
\end{array}\right) \begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

Solar neutrino spectra

Why it is difficult?

\rightarrow Signal is low energy electron (around MeV)
\rightarrow and large backgrounds from radioactive decays all around and in the detector

Expected rate in Borexino

What are the expectations ?

MC input counting rates are quoted in $\mathrm{cpd} / 100 \mathrm{t}$

and these are the result of measurements Phase I/Phase II

	Earlier result (cpd/100t)	Actual result (cpd/100t)	Precision
pp	144さ13さ10	$134 \pm 10^{+6}{ }_{-10}$	11\%
${ }^{7} \mathrm{Be}^{(*)}$	$46.0 \pm 1.5^{+1.6}{ }_{-1.5}$	$46.3 \pm 1.1^{+0.4}{ }_{-0.7}$	4.7-2.7\%
pep	$3.1 \pm 0.6 \pm 0.3$	$\begin{gathered} (\mathrm{HZ}) \\ 2.43 \pm 0.36^{+0.15} \\ (\mathrm{LZ})_{-0.22} \\ 2.65 \pm 0.36^{+0.15} \end{gathered}$	22 \rightarrow 16\%

	Earlier result (cpd/100t)	Actual result (cpd/100t)	
pp	$144 \pm 13 \pm 10$	$134 \pm 10^{+6}{ }_{-10}$	11\%
${ }^{7} \mathrm{Be}^{(*)}$	$46.0 \pm 1.5^{+1.6}{ }_{-1.5}$	$46.3 \pm 1.1^{+0.4}{ }_{-0.7}$	$4.7 \rightarrow 2.7 \%$
pep	$3.1 \pm 0.6 \pm 0.3$	$\begin{array}{cc} (\mathrm{HZ}) & \\ 2.43 \pm 0.36^{+0.15} & -0.22 \\ (\mathrm{LZ}) & \\ 2.65 \pm 0.36^{+0.15} & \\ & -0.24 \end{array}$	$22 \rightarrow 16 \%$ NEW: 5 sigma evidence for

Detector	Depth (m)	Type	Mass (t)	Live period	Location
Super-K	~ 1000	Water	22.5k	1996-present	Japan
Borexino	~ 1400	LS	278	2007-present	Italy
SNO+	~2000	LS	800	July, 2018	Canada
JUNO	~ 700	LS	20k	Near future	China
Hyper-K	~ 600	Water	187k	Future	Japan
DUNE	~ 1500	LAr	34kt	Future	USA
Theia	?	WbLS	25k	Future	USA
Jinping	~ 2400	Slow LS	2 k	Future	China
SNO SK HIX Wat		Borexi SNO+, DUNE LS,	JUNO LAr?	Theia Jinping WLS Slow Mr nax	

Looking at the detectors....

SNO+: LS

Theia: WbLS

Future:

Total solar energy: pp chain (99\%) and CNO cycle (1\%)

Key to the Solar metallicity : CNO flux

Predictions: HZ ~5 cpd/100 t LZ ~3 cpd/100 t

Search for neutrino/antineutrino in coincidence with 2350 GRB observed during 8 years of the Borexino data taking Astropart. Phys. 86, p. 11 (2017)

Same sector (1-2) but for anti-neutrinos Kamland

70 GW (~12 \% of global nuclear power)
at $\mathrm{L} \sim(175 \pm 35) \mathrm{km}$
effective baseline : ~ $\mathbf{1 8 0} \mathbf{~ k m}$

Reactor neutrinos same energy range, also electron neutrinos

Historicaly - this is where neutrinos were discovered (Reines - Cowan experiment)

Inverse β decay (IBD)

Prompt signal from positron capture
Delayed photons from neutron capture

Observed neutrino energies (reactor) convolution of:

- Flux of anti-neutrinos from rector

Cross section for interaction

Kamland - exposure of 5780 kton-yr

Obs/exp $=0.631+/-0.014$ (stat) +/- 0.027 (syst)
Corresponding to
exclusion of non-oscillation at 10.2 o CL

- Observed events 2611
- Expected events $3564+/-145$
- Bgr 364+/-30 (accidentals 125)

Reactor neutrinos probe sector or 1-3 depending on the distance

Started with measurements in Super-Kamiokande

Now includes data from
Long Base Line experiments
Atmespheric neutrinos in traditional detectors
Neutrino telescopes
$\left(\begin{array}{l}v_{e} \\ v_{\mu} \\ v_{\tau}\end{array}\right)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23}\end{array}\left(\begin{array}{ccc}\cos \theta_{13} & 0 & \sin \theta_{13} 3^{-i \delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{-i \delta} & 0 & \cos \theta_{13}\end{array}\right)\left(\begin{array}{ccc}\cos \theta_{12} & \sin \theta_{12} & 0 \\ \sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)\right.$

Technology yery important in neutrino studies

Surie K aniokande

© Kamioka Observatory, ICRR, Univ, of Tokyo

© Science@Berkeley lab, 30 Jan. 2006

Cherenkov radiation

Charge particle moving in the media faster than light in this media emits electromagnetic radiation
\rightarrow analogy to the ultrasonic plane producing sound wave

Sensitive to CC
or NC with charge particle production
The light cone is produced
Energy emitted can be summed up from detected light Direction can be determnied from time signal reaches walls
Position wher the emmision starts (vertex) is the interaction pont where charge particle is produced

NEUTRINOS AT T2K-SK

$\nu_{\ell}+n \rightarrow \ell^{-}+p \quad \bar{\nu}+p \rightarrow \ell^{+}+n$
Signal

- Single μ /e-like ring
- Erec by energy/direction of lepton, 2-body kinematics
$\nu_{\ell}+(n / p) \rightarrow \nu_{\ell}+(n / p)+\pi^{0}$
Backgrounds
$\nu_{\ell}+(n / p) \rightarrow \ell^{-}+(n / p)+\pi$
- $\pi^{0} \rightarrow \gamma+\gamma$: ring counting, 2-ring reconstruction
- γ misidentified as e from v_{e} CCQE
- powerful rejection capabilities reduce this by $\mathrm{O}\left(10^{2}\right)$
- Ring counting, decay electron cut to reject nCCQE
- Pure v_{e} samples (S/B~10 at peak) obtained with high efficiency

Particle ID using ring shape \& opening angle

Probability that μ is mis-identified as electron is $\sim 1 \%$

How neutrino experiments turned to high precision phase?

Example from T2K
\rightarrow Artificial dedicated neutrino beams with high intensities
\rightarrow Precise information about π and K mesons production is required \rightarrow NA61 at CERN

Proton beam on target
\rightarrow Produces π and K

$$
\pi^{+} \rightarrow \mu^{+}+v_{u}
$$

$$
\begin{aligned}
& \mu^{+} \rightarrow e^{+} \bar{v}_{u} v_{e} \\
& K^{+} \rightarrow \pi^{0} e^{+} v_{e}
\end{aligned}
$$

J-PARC
Super-K
30 GeV
proton beam
target \& 3horns
decay volume
precisely tuned with

Maximal effect

- Also lower background (due to smaller number
of high energy NC.
possibly similar to $v_{e} \mathrm{CC}$)

Most precise measurement of $\Delta m_{23}, \theta_{23}$

Present status in sector 2-3:

Neutrino 2018
Results differ slightly for NH and IH

No strong preference

Sector 1-3

$\left(\begin{array}{l}v_{e} \\ v_{\mu} \\ v_{\tau}\end{array}\right)=\left(\begin{array}{cccccc}1 & 0 & 0 & \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i \delta} \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23}\end{array}\right)\left(\begin{array}{c}0 \\ -\sin \theta_{13} e^{-i \delta} \\ 0\end{array}\right)\left(\begin{array}{ccc}\cos \theta_{12} & \sin \theta_{12} & 0 \\ \sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$

Measurements of $\sin ^{2} \Theta_{13}$ in v_{e} disappearance

of reactor v

and v_{e} appearance (in muon neutrino beam)

Tests of CP violation - determination of δ_{CP}
... ways of measuring Θ_{13}

- disappearance -> reactor experiments

$$
\longrightarrow P_{\text {sur }} \approx 1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(1.267 \Delta m_{31}^{2} L / E\right)
$$

$$
\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}
$$

Energy ~ a few MeV

Distance ~ a few km

- appearance -> long-baseline experiments with v_{μ} beam

$$
\nu_{\mu} \rightarrow \nu_{e}
$$

$$
P\left(v_{\mu} \rightarrow v_{e}\right)=\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \sin ^{2}\left(1.27 \Delta m_{23}^{2} L / E\right)
$$

Second order terms depend on $\bar{\delta}$ and mass hierarchy

> Energy ~ a few GeV Distance ~ a few hundred km

Sector 1-3 Daya Bay reactor data
most precise measurements

Results with 1958 Days

far and near detectors

Oscillation Results with 1958 Days

- See a clear rate and shape distortion that fits well to the 3-neutrino hypothesis:

measurements in 1-3 sector

electron
anti-neutrino
disappearance (reactor)

Double Chooz

$\mathbf{T n C} \mathbf{M D}(\mathbf{n}-\mathbf{H} \oplus \mathbf{n}-\mathbf{C} \oplus \mathbf{n}-\mathbf{G d})$

Daya Bay

PRD 95, 072006 (2017) n-Gd PRD 93, 072011 (2016) n-H

RENO

PRL 116, 211801(2016) n-Gd
electron neutrino appearance In v_{μ} beam
\rightarrow Sensitive to CP violation

T2K

PRD 96, 092006 (2017)

$$
\Delta \mathrm{m}_{32}^{2}>0
$$

$$
\Delta \mathbf{m}_{32}^{2}<0
$$

Total Uncertainty Statistical Uncertainty $\sin ^{2}\left(2 \theta_{13}\right)=0.105 \pm 0.014$

Marginalisation ($\delta_{\mathbf{C P}}, \theta_{23}$)

Now move to this measurement

First observation of expected transition

 appearance $v_{\mu} \rightarrow v_{e}$ sector 1-3 expected background: 4.64 ± 0.53 observed (2013):
28 events

7.3σ significance for non-zero θ_{13}
How this observation was done?

Reconstructed neutrino energy

~400 collaborators 59 institutions

v_{e} CCQE

$v_{e} \mathrm{CC1m}$

In neutrino beam - observation Of 75 events with electron (CCQE) and additional 15 events with electron and pion (CC1 π)

Comparison of v and \bar{v}

tells us about CP violation

In anti-neutrino beam - observed by now 9 events, not enough to claim that appearance Is observed, need more data (expected 6.5 without oscillation)

From this data $\sin ^{2} \Theta_{13}$ and also CP violation can be estimated

DATA FIT

T2K Run 1-9c Preliminary

Oscillation fits

Also data from NOVA

- PVC extrusions + Liquid Scintillator

- Layered planes of orthogonal views with 6-cm cells. Readout via WLS fibers to APDs.
« $0.15 X_{0}$ per layer, excellent for e-identification.

Liquid scintillator segmented detector -

3D schematic of NOvA particle detector

FC Gat If ed vill ksil 5 c witsisr

NOVA EVENT TOPOLOGIES

$$
\pi^{0}+\pi+p
$$

M. Sanchez - Neutrino 2018

$>4 \sigma$ evidence of electron

antineutrino appearance

$e+p$

NC Signal or Background

Whatis next?

> Unknown

CPV
Unknown
$\delta \neq 0, \pi ?$
$m_{3} \gtrless m_{2} ?$
$\theta_{23} \gtreqless 45^{\circ} ?$

Differences in neutrino and antineutrino oscillation probabilities

Changes the contribution from matter effects (important for neutrinos travelling through dense matter e.g through Earth)

Additional source of degeneracies

Measurement strategies (for LBL):
An unknown hierarchy usually leads to a reduced ability to observe CP violation

- Looking for appearance

$$
P\left(v_{\mu} \rightarrow v_{e}\right) \text { vs. } P\left(\bar{v}_{\mu} \rightarrow \bar{v}_{e}\right)
$$

- The longer the baseline the better (matter effects!)
- Study more than one oscillation maximum to disentangle the effects

Mass hierarchy and matter effects

- In the Sun oscillations happen in dense matter
\rightarrow MSW effect - matter effect of electron density
Resonance enhancement appears at specific energies
(It depends on Δm^{2} and electron density)
\rightarrow for solar v we observe resonance around 10 MeV
- From that we know that $\mathrm{m}_{1}<\mathrm{m}_{2}$
- position of m_{3} is not known
\rightarrow open question - two options

CPV and MF

In long baseline neutrino experiments
\Rightarrow Many contributions, for precisions all need to be considered
$P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=4 C_{13}^{2} S_{13}^{2} S_{23}^{2} \cdot \sin ^{2} \Delta_{31} \quad$ leading term
CP conserving

$$
+8 C_{13}^{2} S_{12} S_{13} S_{23}\left(C_{12} C_{23} \cos \delta-S_{12} S_{13} S_{23}\right) \cdot \cos \Delta_{32} \cdot \sin \Delta_{31} \cdot \sin \Delta_{21}
$$

$-8 C_{13}^{2} C_{12} C_{23} S_{12} S_{13} S_{23} \sin \delta \cdot \sin \Delta_{32} \cdot \sin \Delta_{31} \cdot \sin \Delta_{21}$ CP violating
$+4 S_{12}^{2} C_{13}^{2}\left(C_{12}^{2} C_{23}^{2}+S_{12}^{2} S_{23}^{2} S_{13}^{2}-2 C_{12} C_{23} S_{12} S_{23} S_{13} \cos \delta\right) \cdot \sin ^{2} \Delta_{21}$
$-8 C_{13}^{2} S_{13}^{2} S_{23}^{2} \cdot \frac{a L}{4 E_{\nu}}\left(1-2 S_{13}^{2}\right) \cdot \cos \Delta_{32} \cdot \sin \Delta_{31}$
$+8 C_{13}^{2} S_{13}^{2} S_{23}^{2} \frac{a}{\Delta m_{31}^{2}}\left(1-2 S_{13}^{2}\right) \cdot \sin ^{2} \Delta_{31}$, matter effects
$C_{i j}, S_{i j}, \Delta_{i j}$
$\cos \theta_{i j}, \sin \theta_{i j}, \Delta m_{i j}^{2} L / 4 E_{\nu}$

Best information we can get...

- Combined analysis of long base line, solar, reactor, atmespheric neutrino and neutrino telescope
- oscillations in appearance and
- disappearance channels for
- neutrinos and anti-neutrinos
- gives sensitivity to all parameters
- Including CP violating phase

parameter	best fit $\pm 1 \sigma$	3σ range	
$\Delta m_{21}^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$	$7.55_{-0.16}^{+0.20}$	7.05-8.14	2.4\%
$\left\|\Delta m_{31}^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right](\mathrm{NO})$	2.50 ± 0.03	2.41-2.60	
$\left\|\Delta m_{31}^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right]$ (IO)	$2.42_{-0.04}^{+0.03}$	2.31-2.51	1.3\%
$\sin ^{2} \theta_{12} / 10^{-1}$	$3.20_{-0.16}^{+0.20}$	2.73-3.79	5.5\%
$\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{NO})$	$5.477_{-0.30}^{+0.20}$	4.45-5.99	4.7\%
$\sin ^{2} \theta_{23} / 10^{-1}$ (IO)	$5.51{ }_{-0.30}^{+0.18}$	4.53-5.98	4.4\%
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{NO})$	$2.160_{-0.069}^{+0.083}$	1.96-2.41	
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{IO})$	$2.220_{-0.076}^{+0.074}$	1.99-2.44	3.5\%
$\delta / \pi(\mathrm{NO})$	$1.32_{-0.15}^{+0.21}$	0.87-1.94	10\%
δ / π (IO)	$1.56{ }_{-0.15}^{+0.13}$	1.12-1.94	9\%

Global fit before Neutrino2018

- T2K, NOvA and Super-K prefer $\pi<\delta<2 \pi$ (as well as NO)
- The combination of LBL and Super-K enhances rejection against $\delta=\pi / 2$
- From the global analysis, $\delta=\pi / 2$ is disfavoured at 4.8σ (6.1 σ) for NO (IO)

Difference in \# of electron events:

$$
\begin{array}{rlrl}
\Delta_{e} \equiv \frac{N_{e}}{N_{e}^{0}} \cong \Delta_{1}\left(\theta_{13}\right) & & \text { Matter effect } \\
& +\Delta_{2}\left(\Delta m_{12}^{2}\right) & & \text { Solar term } \\
& +\Delta_{3}\left(\theta_{13}, \Delta m_{12}^{2}, \underline{\delta}\right. & & \text { Interference }
\end{array}
$$

- This brings sensitivity to mass hierarchy and CP violation
- this will be improved with better

neutron
detection (Ga)

Perspectives 101 iviass Firerarchy
$\mathbf{P}\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta \mathrm{~m}_{21}^{2} \frac{\mathrm{~L}}{4 \mathrm{E}}-\sin ^{2} 2 \theta_{13}\left(\cos ^{2} \theta_{12} \sin ^{2} \Delta \mathrm{~m}_{31}^{2} \frac{\mathrm{~L}}{4 \mathrm{E}}+\sin ^{2} \theta_{12} \sin ^{2} \Delta \mathrm{~m}_{32}^{2} \frac{\mathrm{~L}}{4 \mathrm{E}}\right)$
$\approx 1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta \mathrm{~m}_{21}^{2} \frac{\mathrm{~L}}{4 \mathrm{E}} \quad \sin ^{2} 2 \theta_{13} \sin ^{2} \Delta \mathrm{~m}_{e e}^{2} \frac{\mathrm{~L}}{4 \mathrm{E}} \quad$,for $\quad \Delta \mathrm{m}_{12}^{2} \ll \Delta \mathrm{~m}_{32}^{2}$

JUNO Liquid Scintillator Vacuum oscillation probability $\mathrm{P}\left(v_{f}->v_{e}\right)$

- Energy resolution 3\%/sqrt(E)
- Mass 20 kton
- Calibration <1\%
- 2021 - detector redy - data taking
- 100 k events in 6 years

Sensitivity to mass ordering in neutrino telescopes

matter induced transition appear

- For neutrinos in normal mass ordering
- For anti-neutrinos for inverted mess ordering

as fluxes and cross-sections for v and \bar{v} differ expectation for differential distribution on $\cos \Theta-\mathrm{E}_{v}$ plane allows determination of mass order
possiliblity to meaureure:
PINGU - within IceCube ORCA - within KM³-net

Long Baseline Fufure

DUNE, US
SANFORD LAB
-年
Lar-TPC

Long term
ie. after/around 2025

Hyper-Kamiothande,

liquid argon TPC technique, used first time in ICARUS at CNGS beam from CERN

Very good particle ID, energy resolution and "bubble chamber like" picture Of the interaction. Technique developing very fast and promising for large Scale detectors

Prospect for measurements after 2025

Sensitivity to CP Violation, after 300 kt-MW-yrs (3.5+3.5 yrs x 40kt @ 1.07 MW)

Dune with 40 ktons optimized beam

In both experiments more goals than oscillations

sensitivity for Hyper-Kamiokande

(Bands represent range of beam configurations)

Summary:

Precision on neutrino mixing parameters is reaching \% level, Some open questions could be sorted out soon Measurement of CP violation parameter from single experiment may need to wait for next generation experiments

PLEASE CONTINUE TO ENJOY NEUTRINO OSCILLATIONS \wedge

