Anomaly-free dark matter evading

Collab. with
Alberto Casas
J Quilis
R. Ruiz de Austri
arXiv:1807.07921
ift
S Caron

In the last years we have moved from

"WIMP miracle"

$$
m_{X} \sim 100 \mathrm{GeV}, g_{X} \sim 0.6 \rightarrow \Omega_{X} \sim 0.1
$$

In the last years we have moved from

"WIMP miracle"
$\Omega_{X} \propto \frac{1}{\langle\sigma v\rangle} \sim \frac{m_{X}^{2}}{g_{X}^{4}}$

$m_{X} \sim 100 \mathrm{GeV}, g_{X} \sim 0.6 \rightarrow \Omega_{X} \sim 0.1$

"Trouble with WIMPs"

Somehow resembles the "LHC tsunami" for BSM physics:

ATLAS SUSY Searches* - 95\% CL Lower Limits

However, although a substantial annihilation rate in the early universe is necessary to get the correct relic abundance

This does not necessarily mean that the DD cross section is large

There are mechanisms that suppress DD cross section

There are mechanisms that suppress DD cross section

(see A. Belyaev's talk)

- Spin-dependent DD cross section
- Velocity-suppressed DD
- Annihilation through funnels
- Co-annihilation

So, perhaps the DD tsunami is not that scary

Essentially, everything depends on the content of the blob

Obvious possibilities

Higgs-portal

Both are in trouble with DD

Higgs-portal

Both are in trouble with DD

Higgs-portal

Z-portal (vect. coupling)

However, this scheme is probably oversimplified

Dark sector may contain extra stuff

There may be other mediators

E.g. for singlet-scalar Higgs-portal

E.g. for singlet-scalar Higgs-portal

With extended dark sector $S \rightarrow\left\{S_{1}, S_{2}\right\}$

Let us focus now on new mediators, in particular on new gauge bosons (Z^{\prime}), arising from extra $U(1)$ factors in the symmetry group.

This case has been often considered, typically in the context of Simplified DM models (SDMM):

However, SDMM are usually inconsistent, as they do not fulfill:

O Gauge invariance (which e.g. requires an extra scalar field, S)

Kahlhoefer et al. 2016

- Anomaly cancellation (which requires to extend the dark fermionic sector)

Ellis et al. 2017
Fileviez et al.

Two of the strongest constraints on these models come from:

- DD limits
- Di-lepton production at LHC

Two of the strongest constraints on these models come from:

- DD limits $\begin{aligned} & \text { (greatly alleviated if the } \\ & \text { coupling of } Z^{\prime} \text { to } D M \text { is axial) }\end{aligned}$
- Di-lepton production at LHC

> (greatly alleviated if Z is leptophobic)

Let us start by considering Leptophobia:

$$
Y_{L_{i}}^{\prime}=Y_{e_{i}}^{\prime}=0
$$

- From the lepton Yukawas $y_{i}^{e} \bar{L}_{i} H e_{i}: \quad Y_{H}^{\prime}=0$
- From the quark Yukawas $y_{i}^{u} \bar{Q}_{i} \bar{H} u_{i} \quad y_{i}^{d} \bar{Q}_{i} H d_{i}$:

$$
Y_{Q_{i}}^{\prime}=Y_{u_{i}}^{\prime}=Y_{d_{i}}^{\prime}
$$

- Same Y^{\prime} for the three generations: $U(1)^{\prime} \equiv U(1)_{B}$

$$
Y_{Q_{i}}^{\prime}=Y_{u_{i}}^{\prime}=Y_{d_{i}}^{\prime}=1 / 3
$$

New symmetry group $S U(3)_{C} \times S U(2)_{W} \times U(1)_{Y} \times U(1)^{\prime}$

Anomaly equations

$$
\begin{aligned}
& S U(3)_{C}^{2} \times U(1)^{\prime} \text { anomaly } \longrightarrow \operatorname{Tr}\left[\left\{\mathcal{T}_{i}, \mathcal{T}_{j}\right\} Y^{\prime}\right]=0 \\
& S U(3)_{C}^{2} \times U(1)_{Y} \text { anomaly } \longrightarrow \operatorname{Tr}\left[\left\{T_{i}, T_{j}\right\} Y\right]=0 \\
& S U(2)_{W}^{2} \times U(1)^{\prime} \text { anomaly } \longrightarrow \operatorname{Tr}\left[\left\{T_{i}, T_{j}\right\} Y^{\prime}\right]=0 \\
& S U(2)_{W}^{2} \times U(1)_{Y} \text { anomaly } \longrightarrow \operatorname{Tr}\left[\left\{T_{i}, T_{j}\right\} Y\right]=0 \\
& U(1)_{Y}^{2} \times U(1)^{\prime} \text { anomaly } \longrightarrow \operatorname{Tr}\left[Y^{2} Y^{\prime}\right]=0 \\
& U(1)_{Y} \times U(1)^{\prime 2} \text { anomaly } \longrightarrow \operatorname{Tr}\left[Y Y^{\prime 2}\right]=0 \\
& U(1)^{\prime 3} \text { anomaly } \longrightarrow \operatorname{Tr}\left[Y^{\prime 3}\right]=0 \\
& U(1)_{Y}^{3} \text { anomaly } \longrightarrow \operatorname{Tr}\left[Y^{3}\right]=0
\end{aligned}
$$

Gauge gravity $\longrightarrow \operatorname{Tr}[Y]=\operatorname{Tr}\left[Y^{\prime}\right]=0$

Initially, dark sector contains a singlet fermion $\chi \equiv\left(\chi_{L}, \chi_{R}\right)$ with vanishing $\mathrm{Y}^{\prime} . \quad \chi \equiv D M$

However
$S U(2)^{2} \times U(1)_{Y^{\prime}}$
$U(1)_{Y}^{2} \times U(1)_{Y^{\prime}}$
requires extra particles transforming non-trivially under SU(2).
Simplest choice: extra doublet

$$
\psi \equiv\left(\psi_{L}, \psi_{R}\right)
$$

requires extra particles transforming non-trivially under $U(1)^{\prime}$ '

Simplest choice: extra singlet

$$
\eta \equiv\left(\eta_{L}, \eta_{R}\right)
$$

Minimal dark sector: $\quad\left\{\chi_{L, R}, \psi_{L, R}, \eta_{L, R}\right\}$

In addition, one extra scalar, S, is required to break $\mathrm{U}(1) \mathrm{Y}^{\prime}$ and give mass to the dark fermions

We have completely classified the anomaly-free leptophobic solutions ($\equiv \mathrm{U}(1)_{\mathrm{B}}$ extensions) with minimal dark sector.

For any choice of Y_{ψ}, Y_{η} there is a continuum of possible choices of the other Y^{\prime} charges

Requiring, in addition, that the coupling of Z^{\prime} to DM is Axial, i.e.

$$
Y_{\chi_{L}}^{\prime}=-Y_{\chi_{R}}^{\prime}
$$

There are still infinite solutions. However, only in two of them the Y^{\prime} charges are rational:

$$
\begin{aligned}
\left\{Y_{\psi}, Y_{\eta}\right\} & =\left\{ \pm \frac{1}{2}, \pm 1\right\},\left\{ \pm \frac{7}{2}, \pm 5\right\} \\
\left\{Y_{\psi_{L}}^{\prime}, Y_{\psi_{R}}^{\prime}, Y_{\eta_{L}}^{\prime}, Y_{\eta_{R}}^{\prime}, Y_{\chi_{L}}^{\prime}, Y_{\chi_{R}}^{\prime}\right\} & =\left\{-\frac{3}{2}, \frac{3}{2}, \frac{3}{2},-\frac{3}{2}, \frac{3}{2},-\frac{3}{2}\right\}
\end{aligned}
$$

Requiring, in addition, that the coupling of Z^{\prime} to DM is Axial, i.e.

$$
Y_{\chi_{L}}^{\prime}=-Y_{\chi_{R}}^{\prime}
$$

There are still infinite solutions. However, only in two of them the Y^{\prime} charges are rational:

$$
\begin{array}{r}
\left.\left\{Y_{\psi}, Y_{\eta}\right\}=\left\{ \pm \frac{1}{2}, \pm 1\right\}\right\}\left\{ \pm \frac{7}{2}, \pm 5\right\} \\
\left\{Y_{\psi_{L}}^{\prime}, Y_{\psi_{R}}^{\prime}, Y_{\eta_{L}}^{\prime}, Y_{\eta_{R}}^{\prime}, Y_{\chi_{L}}^{\prime}, Y_{\chi_{R}}^{\prime}\right\}=\left\{-\frac{3}{2}, \frac{3}{2}, \frac{3}{2},-\frac{3}{2}, \frac{3}{2},-\frac{3}{2}\right\}
\end{array}
$$

Minimal dark scalar-sector

Note: vectorial Z' couplings to quarks \& axial coupling to DM

DD effective operator is spindependent and velocitysuppressed

Minimal (leptophobic \& axial) model

Fermionic content

$$
\begin{array}{cccccc}
\mathrm{SU}(2) & Y & Y^{\prime} & & \\
\downarrow & \downarrow & \downarrow \\
\psi_{L}(2, & -\frac{1}{2}, & \left.-\frac{3}{2}\right) & \eta_{L}(1, & -1, & \left.-\frac{3}{2}\right) \\
\psi_{R}(2, & -\frac{1}{2}, & \left.\frac{3}{2}\right) & \eta_{R}(1, & -1, & \left.\frac{3}{2}\right)
\end{array}
$$

+ 1 complex scalar

$$
S(1, \quad 0, \quad-3)
$$

which takes a VEV, giving mass to the new boson Z^{\prime} and the dark fermions

Lagrangian

$$
\mathcal{L}=\mathcal{L}_{\text {kin }}+\mathcal{L}_{\text {fer }}+\mathcal{L}_{\text {scal }}
$$

Lagrangian

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{\text {kin }}+\mathcal{L}_{\text {fer }}+\mathcal{L}_{\text {scal }} \\
\mathcal{L}_{\text {kin }} \supset-\frac{1}{2} \epsilon F_{\mu \nu}^{Y} F^{Y^{\prime} \mu \nu}
\end{gathered}
$$

Even if initially $\epsilon=0$ (at some scale Λ^{\prime}), it is radiatively generated:

$$
\epsilon=\frac{e g_{q}}{2 \pi^{2} \cos \theta_{W}} \operatorname{lo} \frac{\Lambda^{\prime}}{\mu} \simeq 0.02 g_{q} \log \frac{\Lambda^{\prime}}{\mu}
$$

$\epsilon \neq 0 \quad$ has important phenomenological implications:

- Z and Z^{\prime} mix with $\quad \theta^{\prime} \simeq \epsilon \sin \theta_{w} \frac{m_{Z}^{2}}{m_{Z^{\prime}}^{2}-m_{Z}^{2}}$
- This induces corrections to S and T parameters (EWPO)
- And di-lepton production at LHC (since it enables $Z^{\prime} \rightarrow \ell \ell$)

$$
\begin{aligned}
& \mathcal{L}_{\text {fer }} \supset-y_{1} \bar{\psi}_{L} H \eta_{R}-y_{2} \bar{\psi}_{L} \bar{H} \chi_{R}-y_{3} \bar{\psi}_{R} H \eta_{L}-y_{4} \bar{\psi}_{R} \bar{H} \chi_{L} \\
& \quad-\lambda_{\psi} \bar{\psi}_{L} \psi_{R} S-\lambda_{\eta} \bar{\eta}_{R} \eta_{L} S-\lambda_{\chi} \bar{\chi}_{R} \chi_{L} S-\lambda_{L} \chi_{L} \chi_{L} S-\lambda_{R} \chi_{R} \chi_{R} S^{\dagger} \\
& \quad+\text { (h.c.). }
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}_{\text {fer }} \supset-y_{1} \bar{\psi}_{L} H \eta_{R}-y_{2} \bar{\psi}_{L} \bar{H} \chi_{R}-y_{3} \bar{\psi}_{R} H \eta_{L}-y_{4} \bar{\psi}_{R} \bar{H} \chi_{L} \\
& \quad-\lambda_{\psi} \bar{\psi}_{L} \psi_{R} S-\lambda_{\eta} \bar{\eta}_{R} \eta_{L} S-\lambda_{\chi} \bar{\chi}_{R} \chi_{L} S \text { 童 } \lambda_{L} \chi_{L} \chi_{L} S-\lambda_{R} \chi_{R} \chi_{R} S^{\dagger} \\
& \quad+\text { (h.c.). }
\end{aligned}
$$

λ_{L}, λ_{R} lead to the split of the two degrees of freedom of χ, thus spoiling the axial coupling of DM

Fortunately $\lambda_{L}=\lambda_{R}=0$ is protected by a global $U(1)$ symmetry (\sim 'dark leptonic number')
$\mathcal{L}_{\text {fer }} \supset-y_{1} \bar{\psi}_{L} H \eta_{R}-y_{2} \bar{\psi}_{L} \bar{H} \chi_{R}-y_{3} \bar{\psi}_{R} H \eta_{L}-y_{4} \bar{\psi}_{R} \bar{H} \chi_{L}$
$-\lambda_{\psi} \bar{\psi}_{L} \psi_{R} S-\lambda_{\eta} \bar{\eta}_{R} \eta_{L} S-\lambda_{\chi} \bar{\chi}_{R} \chi_{L} S$

+ (h.c.).

$$
\begin{aligned}
& \mathcal{L}_{\text {fer }} \supset-y_{1} \bar{\psi}_{L} H \eta_{R}-y_{2} \bar{\psi}_{L} \bar{H} \chi_{R}-y_{3} \bar{\psi}_{R} H \eta_{L}-y_{4} \bar{\psi}_{R} \bar{H} \chi_{L} \\
& \quad-\lambda_{\psi} \bar{\psi}_{L} \psi_{R} S-\lambda_{\eta} \bar{\eta}_{R} \eta_{L} S-\lambda_{\chi} \bar{\chi}_{R} \chi_{L} S \\
& \quad+\text { (h.c.). }
\end{aligned}
$$

The extra fermionic fields, ψ, η, can have an interesting phenomenology in colliders and a relevant role in the thermal production of DM (e.g. through co-annihilation effects)

For the moment we are interested in the simplest scenario, so we will assume their masses are large enough to integrate them out.

$$
\begin{aligned}
& \mathcal{L}_{\text {fer }} \supset-y_{1} \bar{\psi}_{L} H \eta_{R}-y_{2} \bar{\psi}_{L} \bar{H} \chi_{R}-y_{3} \bar{\psi}_{R} H \eta_{L}-y_{4} \bar{\psi}_{R} \bar{H} \chi_{L} \\
& \quad-\lambda_{\psi} \bar{\psi}_{L} \psi_{R} S-\lambda_{\eta} \bar{\eta}_{R} \eta_{L} S-\lambda_{\chi} \bar{\chi}_{R} \chi_{L} S \\
& \quad+\text { (h.c.). }
\end{aligned}
$$

The extra fermionic fields, ψ, η, can have an interesting phenomenology in colliders and a relevant role in the thermal production of DM (e.g. through co-annihilation effects)

For the moment we are interested in the simplest scenario, so we will assume their masses are large enough to integrate them out.

$$
\begin{aligned}
\mathcal{L}_{\text {eff }}^{\mathrm{DM}}= & \mathcal{L}_{\text {kin }}-\lambda_{\chi} \bar{\chi}_{R} \chi_{L} S+\frac{1}{\Lambda} \bar{\chi}_{R} \chi_{L}|H|^{2}+\cdots+\text { (h.c.) } \\
& \text { with } \frac{1}{\Lambda}=\frac{y_{2} y_{4}}{m_{\psi}}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {eff }}^{\mathrm{DM}}= & \mathcal{L}_{\text {kin }}-\lambda_{\chi} \bar{\chi}_{R} \chi_{L} S+\frac{1}{\Lambda} \bar{\chi}_{R} \chi_{L}|H|^{2}+\cdots+\text { (h.c.) } \\
& \text { with } \frac{1}{\Lambda}=\frac{y_{2} y_{4}}{m_{\psi}}
\end{aligned}
$$

3 annihilation channels: Z '-portal, s-portal and H-portal

$$
\begin{aligned}
\mathcal{L}_{\text {eff }}^{\mathrm{DM}}= & \left.\mathcal{L}_{\text {kin }}-\lambda_{\chi} \bar{\chi}_{R} \chi_{L} S+\frac{1}{\Lambda} \bar{\chi}_{R} \chi_{L}|H|^{2}+\cdots+\text { (h.c. }\right) \\
& \text { with } \frac{1}{\Lambda}=\frac{y_{2} y_{4}}{m_{\psi}}
\end{aligned}
$$

3 annihilation channels: Z '-portal, s-portal and $\underline{H \text {-portal }}$

$$
\begin{aligned}
\mathcal{L}_{\text {eff }}^{\mathrm{DM}}= & \mathcal{L}_{\text {kin }}-\lambda_{\chi} \bar{\chi}_{R} \chi_{L} S+\frac{1}{\Lambda} \bar{\chi}_{R} \chi_{L}|H|^{2}+\cdots+\text { (h.c.) } \\
& \text { with } \frac{1}{\Lambda}=\frac{y_{2} y_{4}}{m_{\psi}}
\end{aligned}
$$

3 annihilation channels: Z'-portal, s-portal and $\underline{H \text {-portal }}$

Excluded except at the resonance

We will assume it is negligible

Finally

$$
\mathcal{L}_{\text {scal }} \supset-m_{S}^{2}|S|^{2}-\lambda_{S}^{2}|S|^{4}-\lambda_{H S}^{2}|H|^{2}|S|^{2}
$$

We will take $\lambda_{\text {HS }} \sim 0$ to avoid constraints from H-s mixing

Relic density

Annihilation through Z ' and s :

$$
\left.\mathcal{L}_{\mathrm{eff}}^{\mathrm{DM}}=\mathcal{L}_{\mathrm{kin}}-\lambda_{\chi} \bar{\chi}_{R} \chi_{L} S+\frac{1}{\Lambda} \bar{\chi}_{R} \chi_{L}|H|^{2}+\cdots+\text { (h.c. }\right)
$$

Relic density

Annihilation through Z ' and s :

$$
\mathcal{L}_{\text {eff }}^{\mathrm{DM}}=\mathcal{L}_{\text {kin }}-\lambda_{\chi} \bar{\chi}_{R} \chi_{L} S+\frac{1}{\Lambda} \bar{\chi}_{R} \chi_{L}|H|^{2}+\cdots+(\text { h.c. })
$$

Relic density

Annihilation through Z ' and s :

$$
\left.\mathcal{L}_{\text {eff }}^{\mathrm{DM}}=\mathcal{L} \text { kin }-\lambda_{\chi} \bar{\chi}_{R} \chi_{L} S+\frac{1}{\Lambda} \bar{\chi}_{R} \chi_{L}|H|^{2}+\cdots+\text { (h.c. }\right)
$$

Two regimes: $m_{s} \gg m_{Z^{\prime}}, m_{\chi}$ and $m_{s}=2 \mathrm{TeV}$

Note that the DM annihilation rate (and thus Ω^{DM}) depends on three parameters:

$$
\left\{g_{B}, m_{Z^{\prime}}, m_{\chi}\right\}
$$

(plus m_{S} if the s-field is relevant)

Thus the model is more predictive than a SDMM

$$
g_{q}=\frac{1}{3} g_{B}, g_{\mathrm{DM}}=\frac{3}{2} g_{B}
$$

Notice that $g_{q}^{2} \simeq \frac{1}{20} g_{\mathrm{DM}}^{2}$, which is good for the phen. consistency

For each value of $\left\{m_{Z^{\prime}}, m_{\chi}, m_{s}\right\}$ there is a (unique) value of g_{B} that reproduces $\Omega_{\mathrm{DM}}^{\mathrm{obs}}$

$$
\Omega_{\mathrm{DM}}=\Omega_{\mathrm{DM}}^{\mathrm{obs}}
$$

g_{B} is in the perturbative regime in most of the parameter space

Constraints

DD (spin-dependent \& velocity-suppressed) cross section is very small

ID is velocity-suppressed as well

Main constraints come from colliders and EWPO
S and T parameters
Di-lepton production at the LHC

Di-jet production

Mono-jets
$\log \left(\Lambda^{\prime} / m_{Z^{\prime}}\right)=1$

$\log \left(\Lambda^{\prime} / m_{Z^{\prime}}\right)=1$

$\log \left(\Lambda^{\prime} / m_{Z^{\prime}}\right)=\log \left(100 m_{Z^{\prime}} / m_{Z^{\prime}}\right)=4.6$

$\log \left(\Lambda^{\prime} / m_{Z^{\prime}}\right)=\log \left(100 m_{Z^{\prime}} / m_{Z^{\prime}}\right)=4.6$

Conclusions

-

WIMP models are still an attractive scenario for DM, with much space and possibilities to explore

Simplified DM models may be too simple. Typically, the dark sector can (must) be extended. There can be additional mediators.

Conclusions

-

Z'-portal models are in good shape if the Z^{\prime} is leptophobic, with axial DM couplings (evading DD).

- Anomaly-cancellation requires to extend the dark sector, almost in a unique way (with minimal content). The Z' couplings to quarks and DM become fixed.

Interesting prospects for detection at LHC

