Axions as Hot Relics

The QCE Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The H₀ tension

Observable windows for Axions as Hot Relics

Alessio Notari¹

Universitat de Barcelona

talk @ Workshop on the Standard Model and Beyond, Corfu 2018.

¹In collaboration with Ricardo Z. Ferreira, F. D'Eramo, J.L. Bernal

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The H_0 tension

The QCD Axion (a) is a very light particle that

• Solves the "Strong CP problem" via coupling to gluons

$$\mathcal{L}_{a} = \frac{\alpha_{s}}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

(日)

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension The QCD Axion (a) is a very light particle that

• Solves the "Strong CP problem" via coupling to gluons

$$\mathcal{L}_{a} = \frac{\alpha_{s}}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

(日)

• Integrating by parts: $\mathcal{L}_a = \frac{\alpha_s}{8\pi} \frac{\partial_{\mu} a}{f} K^{\mu}$,

 \implies continuous shift symmetry $a \rightarrow a + c$

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension The QCD Axion (a) is a very light particle that

• Solves the "Strong CP problem" via coupling to gluons

$$\mathcal{L}_{a} = \frac{\alpha_{s}}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

(日) (日) (日) (日) (日) (日) (日)

- Integrating by parts: $\mathcal{L}_a = \frac{\alpha_s}{8\pi} \frac{\partial_{\mu}a}{f} K^{\mu}$,
 - \implies continuous shift symmetry $a \rightarrow a + c$

But: boundary term sensitive to QCD Instantons,

- breaks to discrete $\frac{a}{f} \rightarrow \frac{a}{f} + 2\pi$.
- 2 Induces a mass $m_a \approx \frac{\Lambda_{QCD}^2}{f}$

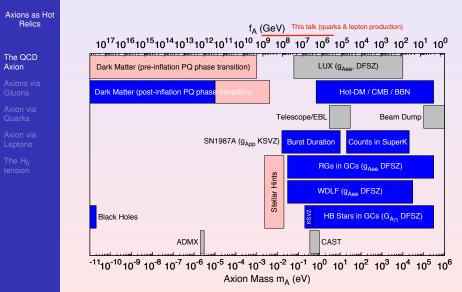
Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons


The *H*₀ tension The QCD Axion (a) is a very light particle that

• Solves the "Strong CP problem" via coupling to gluons

$$\mathcal{L}_{a} = \frac{\alpha_{s}}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

- Integrating by parts: $\mathcal{L}_{a} = \frac{\alpha_{s}}{8\pi} \frac{\partial_{\mu} a}{f} K^{\mu}$,
 - \implies continuous shift symmetry $a \rightarrow a + c$
- But: boundary term sensitive to QCD Instantons,
 - breaks to discrete $\frac{a}{f} \rightarrow \frac{a}{f} + 2\pi$.
 - 2 Induces a mass $m_a \approx \frac{\Lambda_{QCD}^2}{f}$
- Present bounds on $f \implies m_a \ll 0.1 eV$ (or even less)

Axion: constraints

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ⊙ < ⊙

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

• Axions:

couple with continuous shift symmetry with all SM

(日)

Only breaking: Instanton-induced (tiny) mass

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*0 tension

• Axions:

couple with continuous shift symmetry with all SM
 Only breaking: Instanton-induced (tiny) mass

(日)

• Terminology:

• If it couples to $G\tilde{G} \implies$ "QCD Axion"

2 If not: \implies Axion-Like Particle ("ALP")

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

The H₀ tension • Due to $\frac{\alpha_s}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$ QCD Axions can be produced by gluon scatterings in the Early Universe

(日)

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

- Due to $\frac{\alpha_s}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$ QCD Axions can be produced by gluon scatterings in the Early Universe
- Can be produced at high *T* and decouples at $T \lesssim T_{DEC}$ \rightarrow hot relic (dark radiation)

(日) (日) (日) (日) (日) (日) (日)

(M.Turner, 1987; Masso, F. Rota, and G. Zsembinszki, 2003, Salvio, Strumia, Xue, 2014)

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension • Due to $\frac{\alpha_s}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$ QCD Axions can be produced by gluon scatterings in the Early Universe

• Can be produced at high *T* and decouples at $T \lesssim T_{DEC}$ \rightarrow hot relic (dark radiation)

(M.Turner, 1987; Masso, F. Rota, and G. Zsembinszki, 2003, Salvio, Strumia, Xue, 2014)

Scattering rate (via gluons) vs. Hubble

(日) (日) (日) (日) (日) (日) (日)

Figure: (Massò et al. Phys.Rev. D66 (2002).).

 $\Gamma_{s} \equiv \langle \sigma v \rangle \cdot n_{g}^{EQ} = \left(\frac{\alpha_{s}}{2\pi f}
ight)^{2} g_{s}^{2} \cdot T^{3}$

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension • Due to $\frac{\alpha_s}{8\pi} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu}$ QCD Axions can be produced by gluon scatterings in the Early Universe

• Can be produced at high *T* and decouples at $T \lesssim T_{DEC}$ \rightarrow hot relic (dark radiation)

(M.Turner, 1987; Masso, F. Rota, and G. Zsembinszki, 2003, Salvio, Strumia, Xue, 2014)

Scattering rate (via gluons) vs. Hubble

Figure: (Massò et al. Phys.Rev. D66 (2002).).

 $\Gamma_s \equiv \langle \sigma v \rangle \cdot n_g^{EQ} = \left(\frac{\alpha_s}{2\pi f}\right)^2 g_s^2 \cdot T^3 \text{ vs. } H \approx \frac{T^2}{M_{Pl}}.$

QCD Axion thermalization and decoupling

Axions as Hot Relics

The QCD Axion


Axions via Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

• Scattering rate (via gluons) vs. Hubble

(日)

Figure: (Massò et al. Phys.Rev. D66 (2002).).

$$\Gamma_s = \left(rac{lpha_s}{2\pi f}
ight)^2 g_s^2 T^3$$
 vs. $H pprox rac{T^2}{M_{Pl}}$.

QCD Axion thermalization and decoupling

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

• Scattering rate (via gluons) vs. Hubble

Figure: (Massò et al. Phys.Rev. D66 (2002).).

 $\Gamma_s = \left(rac{lpha_s}{2\pi f}
ight)^2 g_s^2 T^3$ vs. $H pprox rac{T^2}{M_{Pl}}$.

• At $T > T_{DEC} \equiv$ thermal equilibrium

QCD Axion thermalization and decoupling

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension • Scattering rate (via gluons) vs. Hubble

Figure: (Massò et al. Phys.Rev. D66 (2002).).

- $\Gamma_s = \left(rac{lpha_s}{2\pi f}
 ight)^2 g_s^2 T^3$ vs. $H pprox rac{T^2}{M_{Pl}}$.
- At $T > T_{DEC} \equiv$ thermal equilibrium
- Example: • $f = 10^9 GeV \implies T_{DEC} \approx 10 TeV$ • $f = 10^{10} GeV \implies T_{DEC} \approx 10^4 TeV$

Axions as Hot Relics

- If a particle:
 - Was in equilibrium at $T > T_{DEC}$
 - 2 Decouples at some $T \lesssim T_{DEC}$
 - Has negligible mass

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < @

- Axions via Gluons
- Axion via Quarks
- Axion via Leptons
- The H_0 tension

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

- If a particle:
 - Was in equilibrium at $T > T_{DEC}$
 - 2 Decouples at some $T \lesssim T_{DEC}$
 - Has negligible mass
- After decoupling $n_a \propto a^{-3}$ and $\rho_a \propto a^{-4}$, acts as a hot relic (like neutrinos)
- Affects Matter-Radiation equality (if *m* ≪ *O*(0.1 ~ 1*eV*))
 ⇒ Observable by CMB (and BBN)

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension If a particle:

- Was in equilibrium at $T > T_{DEC}$
- 2 Decouples at some $T \lesssim T_{DEC}$
- Has negligible mass
- After decoupling $n_a \propto a^{-3}$ and $\rho_a \propto a^{-4}$, acts as a hot relic (like neutrinos)
- Affects Matter-Radiation equality (if *m* ≪ *O*(0.1 ~ 1*eV*))
 ⇒ Observable by CMB (and BBN)
- Traditionally parameterized by effective neutrino number

• $N_{\rm eff} = 3.046 + \Delta N_{eff}$

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension If a particle:

- Was in equilibrium at $T > T_{DEC}$
- 2 Decouples at some $T \lesssim T_{DEC}$
- Has negligible mass
- After decoupling $n_a \propto a^{-3}$ and $\rho_a \propto a^{-4}$, acts as a hot relic (like neutrinos)
- Affects Matter-Radiation equality (if *m* ≪ *O*(0.1 ~ 1*eV*))
 ⇒ Observable by CMB (and BBN)
- Traditionally parameterized by effective neutrino number

(日) (日) (日) (日) (日) (日) (日)

•
$$N_{
m eff} = 3.046 + \Delta N_{
m eff}$$

•
$$\Delta N_{eff} pprox rac{13.6}{g_{*,DEC}^{4/3}}$$

Axions as Hot Relics

Axions via Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

$$\Delta N_{eff} \approx \frac{13.6}{g_{*,DEC}^{4/3}}$$

• If $T_{DEC} \gg 100 \, GeV$ we only know $g_{*,DEC} \ge g_{*,DEC}^{SM} = 106.75$

(日)

Axions as Hot Relics

Axions via Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

$$\Delta N_{eff} \approx \frac{13.6}{g_{*,DEC}^{4/3}}$$

• If $T_{DEC} \gg 100 GeV$ we only know $g_{*,DEC} \ge g_{*,DEC}^{SM} = 106.75$

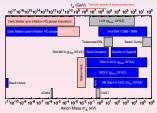
• $\implies \Delta N_{eff} \lesssim 0.027$ (only upper bound!)

(日)

Axions as Hot Relics

Axions via Gluons

Axion via Quarks


Axion via Leptons

The *H*₀ tension

$$\Delta N_{eff} \approx \frac{13.6}{g_{*,DEC}^{4/3}}$$

• If $T_{DEC} \gg 100 GeV$ we only know $g_{*,DEC} \ge g_{*,DEC}^{SM} = 106.75$

• $\implies \Delta N_{eff} \lesssim 0.027$ (only upper bound!)

Let's study f ≤ 10⁹ GeV
 ⇒ T_{DEC} ≤ Electroweak scale

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

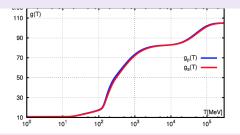
Axion via Leptons

The *H*₀ tension

 Below EW scale (f < 10⁹ GeV) dominant channels are via quarks & leptons (A.N. & R.Z.Ferreira, PRL 2018)

(日)

Axions as Hot Relics


- The QCD Axion
- Axions via Gluons

Axion via Quarks

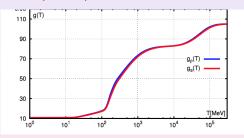
Axion via Leptons

The *H*₀ tension

 Below EW scale (f < 10⁹ GeV) dominant channels are via quarks & leptons (A.N. & R.Z.Ferreira, PRL 2018)

(日)

Axions as Hot Relics


The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension Below EW scale (f < 10⁹ GeV) dominant channels are via quarks & leptons (A.N. & R.Z.Ferreira, PRL 2018)

ADVANTAGES:

- 2 Here we are confident on $g_*^{SM} \implies$ Precise predictions

A D > 4 目 > 4 目 > 4 目 > 10 の (の)

Solution State State

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The H_0 tension

• If *a* is directly coupled to heavy quarks (*c*, *b*, *t*):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} rac{c_{i}}{2f} ar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} \,,$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < @

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

• If *a* is directly coupled to heavy quarks (*c*, *b*, *t*):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} rac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} \,,$$

• Scattering rate (via quarks, *e.g.* $qg \leftrightarrow qa$) vs. Hubble

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

• If a is directly coupled to heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} rac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} \,,$$

• Scattering rate (via quarks, *e.g.* $qg \leftrightarrow qa$) vs. Hubble

• If $m_q = 0 \implies$ the vertex vanishes

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

• If a is directly coupled to heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} rac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} \,,$$

• Scattering rate (via quarks, e.g. $qg \leftrightarrow qa$) vs. Hubble

- If $m_q = 0 \implies$ the vertex vanishes
- In fact:
 - This coupling can be rotated away $q \rightarrow e^{j \frac{C_{f}a}{T} \gamma^{5}} q$
 - But it reappears in the mass term $m_q \bar{q} q$

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

• If *a* is directly coupled to heavy quarks (*c*, *b*, *t*):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} rac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} \,,$$

• Scattering rate (via quarks, e.g. $qg \leftrightarrow qa$) vs. Hubble

• If $m_q = 0 \implies$ the vertex vanishes

- In fact:
 - This coupling can be rotated away $q
 ightarrow e^{j \frac{C_{f}a}{T} \gamma^{5}} q$
 - But it reappears in the mass term $m_q \bar{q} q$

 $\Gamma_{s} = \left(\frac{c_{i}}{f}\right)^{2} g_{s}^{2} m_{q}^{2} T$

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The H₀ tension

• If *a* is directly coupled to heavy quarks (*c*, *b*, *t*):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} \frac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} \,,$$

• Scattering rate (via quarks, e.g. $qg \leftrightarrow qa$) vs. Hubble

- If $m_q = 0 \implies$ the vertex vanishes
- In fact:
 - This coupling can be rotated away $q \rightarrow e^{j \frac{C/a}{T} \gamma^5} q$

• But it reappears in the mass term $m_q \bar{q} q$

$$\Gamma_{s} = \left(\frac{c_{i}}{f}\right)^{2} g_{s}^{2} m_{q}^{2} T \cdot e^{-\frac{m_{0}}{T}}$$

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The H_0 tension

• If a is directly coupled to heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu}a \sum_{i} \frac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i},$$

²R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

• If *a* is directly coupled to heavy quarks (*c*, *b*, *t*):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} rac{c_{i}}{2f} ar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} \,,$$

• Scattering rate (via quarks, *e.g.* $qg \leftrightarrow qa$) vs. Hubble • $\Gamma_s = \left(\frac{c_i}{f}\right)^2 g_s^2 m_q^2 T \cdot e^{-\frac{m_q}{T}}$ vs. $H \approx \frac{T^2}{M_{Pl}}$.

²R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension • If a is directly coupled to heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu} a \sum_{i} rac{c_{i}}{2f} ar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i} \,,$$

• Scattering rate (via quarks, *e.g.* $qg \leftrightarrow qa$) vs. Hubble • $\Gamma_s = \left(\frac{c_i}{f}\right)^2 g_s^2 m_q^2 T \cdot e^{-\frac{m_q}{T}}$ vs. $H \approx \frac{T^2}{M_{\text{Pl}}}$.

• Ratio peaks at $T \approx m_q$

²R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension • If a is directly coupled to heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu}a \sum_{i} \frac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i},$$

• Scattering rate (via quarks, *e.g.* $qg \leftrightarrow qa$) vs. Hubble • $\Gamma_s = \left(\frac{c_i}{f}\right)^2 g_s^2 m_q^2 T \cdot e^{-\frac{m_q}{T}}$ vs. $H \approx \frac{T^2}{M_{Pl}}$.

• Ratio peaks at $T \approx m_q$

• Axions produced dominantly via quarks

 $1~{\rm GeV} \lesssim T \lesssim 100 {\rm GeV}$

(for $10^7 {
m GeV} \lesssim f/c_i \lesssim 10^9 {
m GeV})^2$

²R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension • If a is directly coupled to heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu}a \sum_{i} \frac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i},$$

• Scattering rate (via quarks, *e.g.* $qg \leftrightarrow qa$) vs. Hubble • $\Gamma_s = \left(\frac{c_i}{f}\right)^2 g_s^2 m_q^2 T \cdot e^{-\frac{m_q}{T}}$ vs. $H \approx \frac{T^2}{M_{Pl}}$.

• Ratio peaks at $T \approx m_q$

• Axions produced dominantly via quarks

 $1~{\rm GeV} \lesssim T \lesssim 100 {\rm GeV}$

(for $10^7 {
m GeV} \lesssim f/c_i \lesssim 10^9 {
m GeV})^2$

• Range interesting for direct detection (*e.g.* IAXO), $m_a \approx 10^{-2} \sim 10^{-3} eV$,

²R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

QCD Axion through $N_{\rm eff}$

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension • If a is directly coupled to heavy quarks (c, b, t):

$$\mathcal{L}_{a-q} = \partial_{\mu}a \sum_{i} \frac{c_{i}}{2f} \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{i},$$

• Scattering rate (via quarks, *e.g.* $qg \leftrightarrow qa$) vs. Hubble • $\Gamma_s = \left(\frac{c_i}{f}\right)^2 g_s^2 m_q^2 T \cdot e^{-\frac{m_q}{T}}$ vs. $H \approx \frac{T^2}{M_{Pl}}$.

• Ratio peaks at $T \approx m_q$

• Axions produced dominantly via quarks

 $1~{\rm GeV} \lesssim T \lesssim 100 {\rm GeV}$

(for $10^7 {
m GeV} \lesssim f/c_i \lesssim 10^9 {
m GeV})^2$

• Range interesting for direct detection (*e.g.* IAXO), $m_a \approx 10^{-2} \sim 10^{-3} eV$, (+ Hints from stellar cooling)

²R.Ferreira & A.N., PRL 2018. See also Turner PRL 1987, Brust et al. JHEP 2013, Baumann et al. PRL 2016.

QCD Axion through $N_{\rm eff}$

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

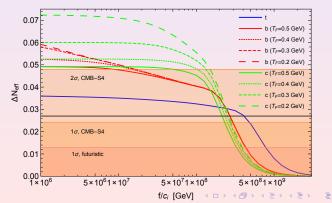
The *H*₀ tension • $g_{*,DEC}$ is smaller at $\left| 1 \; {
m GeV} \lesssim {\it T} \lesssim 100 {
m GeV}
ight|$

(日)

 Prediction: larger N_{eff} ≤ 0.05 - 0.06 (*Not just upper bound!*)

QCD Axion through $N_{\rm eff}$

Axions as Hot Relics


- The QCD Axion
- Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

- $g_{*,DEC}$ is smaller at $1 \text{ GeV} \lesssim T \lesssim 100 \text{GeV}$
- Prediction: larger N_{eff} ≤ 0.05 0.06 (*Not just upper bound!*)
- Solving Boltzmann equations for *n_a*:

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The H₀ tension

- The same can be done with leptons (μ and τ) ³
- a-electron uninteresting (strongly constrained)

³arxiv:, F.D'Eramo, A.N.,R.Z.Ferreira, J.L.Bernal 🔿 🗸 🗈 🖈 📱 🔊 🤇 🤭

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

- The same can be done with leptons (μ and τ) ³
- a-electron uninteresting (strongly constrained)
- Direct coupling to heavy leptons (μ, τ) :

$$\mathcal{L}_{a-\ell} = \partial_{\mu}a \sum_{i} \frac{c_{i}}{2f} \bar{\ell}_{i} \gamma^{\mu} \gamma^{5} \ell_{i},$$

³arxiv:, F.D'Eramo, A.N.,R.Z.Ferreira, J.L.Bernal 🖉 🕨 🚛 👘 🚛 🔊 🧠

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

- The same can be done with leptons (μ and τ) ³
- a-electron uninteresting (strongly constrained)
- Direct coupling to heavy leptons (μ, τ) :

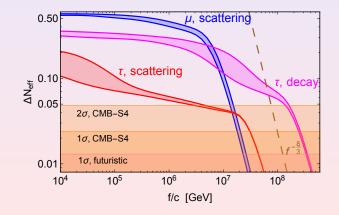
$$\mathcal{L}_{a-\ell} = \partial_{\mu}a \sum_{i} \frac{c_{i}}{2f} \bar{\ell}_{i} \gamma^{\mu} \gamma^{5} \ell_{i},$$

- Slightly smaller f/c_{ℓ}
- Ratio peaks at $T \approx m_{\ell} \implies$ Larger N_{eff}

³arxiv:, F.D'Eramo, A.N.,R.Z.Ferreira, J.L.Bernal 🔿 😽 🖘 🖘 💿 👁

Axions as Hot Relics
The QCD Axion
Axion via Quarks
Axion via Leptons

Axions as Hot Relics


- The QCD Axion
- Axions vi Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

- Smaller $f/c_i \lesssim \text{few} \cdot 10^7 \text{ GeV}$
- Ratio peaks at $T \approx m_{\ell} \implies$ Larger N_{eff}

Hot Axions via lepton Decays

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks

Axion via Leptons

The H_0 tension

• $a - \ell$ interaction can be flavor non-diagonal

$$\mathcal{L}_{a-\ell} = \partial_{\mu}a \sum_{\ell \neq \ell'} \bar{\ell'} \gamma^{\mu} \left(\mathcal{V}_{\ell'\ell} + \mathcal{A}_{\ell'\ell} \gamma^5 \right) \ell + \mathrm{h.c.} \; ,$$

(日)

• Decays $\tau \rightarrow \mu + a, \tau \rightarrow e + a$

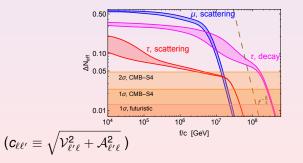
Hot Axions via lepton Decays

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks


Axion via Leptons

The H₀ tension

• $a - \ell$ interaction can be flavor non-diagonal

$$\mathcal{L}_{a-\ell} = \partial_{\mu}a \sum_{\ell \neq \ell'} \bar{\ell'} \gamma^{\mu} \left(\mathcal{V}_{\ell'\ell} + \mathcal{A}_{\ell'\ell} \gamma^5 \right) \ell + \mathrm{h.c.} \; ,$$

• Decays $au o \mu + a, au o e + a$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

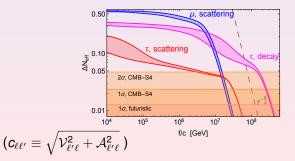
Hot Axions via lepton Decays

Axions as Hot Relics

The QCD Axion

Axions vi Gluons

Axion via Quarks


Axion via Leptons

The H_0 tension

• $a - \ell$ interaction can be flavor non-diagonal

$$\mathcal{L}_{a-\ell} = \partial_{\mu}a \sum_{\ell \neq \ell'} \bar{\ell'} \gamma^{\mu} \left(\mathcal{V}_{\ell'\ell} + \mathcal{A}_{\ell'\ell} \gamma^5 \right) \ell + \mathrm{h.c.} \; ,$$

• Decays $au o \mu + a, au o e + a$

• More efficient than scatterings (larger f/c)

H_0 tension

Axions as Hot Relics

- The QCD Axion
- Axions vi Gluons
- Axion via Quarks
- Axion via Leptons
- The *H*₀ tension

- Planck CMB data (2015 and recent 2018)
- Measured H₀ in tension with direct local measurements from SN

(日)

H_0 tension

Axions as Hot Relics

- The QCD Axion
- Axions vi Gluons
- Axion via Quarks
- Axion via Leptons
- The *H*₀ tension

- Planck CMB data (2015 and recent 2018)
- Measured H₀ in tension with direct local measurements from SN

(日)

• $H_0 = 67.27 \pm 0.60 \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ (CMB)}$ • $H_0 = 73.52 \pm 1.62 \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ (SN)}$

• Tension at 3.6σ (3.46σ including BAO)

H₀ vs N_{eff}

Axions as Hot Relics

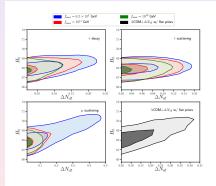
- The QCD Axion
- Axions via Gluons
- Axion via Quarks
- Axion via Leptons
- The H_0 tension

 It is known that ΔN_{eff} > 0 correlates with a higher Hubble constant H₀ from CMB

H₀ vs N_{eff}

Axions as Hot Relics

The QCD Axion


Axions via Gluons

Axion via Quarks

Axion via Leptons

The H_0 tension

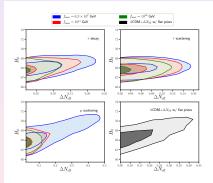
It is known that ΔN_{eff} > 0 correlates with a higher Hubble constant H₀ from CMB

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < @

H₀ vs N_{eff}

Axions as Hot Relics

The QCD Axion


Axions via Gluons

Axion via Quarks

Axion via Leptons

The H₀ tension

It is known that ΔN_{eff} > 0 correlates with a higher Hubble constant H₀ from CMB

Flat prior on log(f/c_i) ⇒ some prior dependence
 μ production can significantly increase H₀

Hot axions and H_0 tension

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

The *H*₀ tension

• Tension remains, but can be alleviated to 3σ level

Model	Coupling	Prior $(f/c)_{max}$ [GeV]	$H_0 [{\rm km s^{-1} Mpc^{-1}}]$	Tension (σ)
	μ scattering	3×10^7	$68.0^{+0.8}_{-0.7}(^{+2.3}_{-1.1})$	3.06 (2.75*)
		10 ¹¹	$67.8^{+0.6}_{-0.5}(^{+1.4}_{-1.1})$	3.36
		10 ¹⁸	$67.7^{+0.5}_{-0.4}(^{+1.2}_{-1.0})$	3.38
$\Lambda CDM + \Delta N_{eff}$	au decay	$6.3 imes 10^7$ GeV	$68.1^{+0.6}_{-0.5}(^{+1.2}_{-1.0})$	3.18
		10 ¹¹	$67.8^{+0.6}_{-0.5}(^{+1.2}_{-0.9})$	3.35
		10 ¹⁸	$67.7^{+0.5}_{-0.4}(^{+1.1}_{-0.9})$	3.39
	au scattering	5×10^8	$68.0^{+0.5}_{-0.5}(^{+1.0}_{-1.0})$	3.25
		10 ¹¹	$67.8^{+0.5}_{-0.5}(^{+1.1}_{-1.0})$	3.33
		10 ¹⁸	$67.7^{+0.5}_{-0.5}(^{+1.1}_{-0.9})$	3.39
	Flat prior on N _{eff}	-	$68.3^{+0.8}_{-0.7}(^{+1.8}_{-1.2})$	2.93
ACDM	No coupling	-	$67.7^{+0.5}_{-0.4}(^{+0.9}_{-0.9})$	3.46

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Axions as Hot Relics

The QCD Axion

Axions via Gluons

Axion via Quarks

Axion via Leptons

The H_0 tension

 If f ≤ O(10⁹) GeV, coupling with quarks and leptons (with c_i = O(1)) dominates over ^{αs}/_{8π} ^a/_f GG̃

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ □ ● のへで

• Efficiency peaks at $T \approx m_f$

Axions as Hot Relics

- The QCD Axion
- Axions vi Gluons
- Axion via Quarks
- Axion via Leptons

The *H*₀ tension

- If f ≤ O(10⁹) GeV, coupling with quarks and leptons (with c_i = O(1)) dominates over ^{αs}/_{8π} ^d/_f GG̃
- Efficiency peaks at $T \approx m_f$
- For quarks $(t, b, c) \implies N_{eff} \lesssim 0.05 0.07$ (measurable at 2σ by CMB S4)
- For leptons $(\mu, \tau) \implies N_{eff} \lesssim 0.6 0.15$ (measurable by CMB S4)
- Non-diagonal couplings ⇒ production via Decays at slightly higher *f*/*c_i*

Axions as Hot Relics

- The QCD Axion
- Axions vi Gluons
- Axion via Quarks
- Axion via Leptons
- The *H*₀ tension

- If f ≤ O(10⁹) GeV, coupling with quarks and leptons (with c_i = O(1)) dominates over ^{αs}/_{8π} ^d/_f GG̃
- Efficiency peaks at $T \approx m_f$
- For quarks $(t, b, c) \implies N_{eff} \lesssim 0.05 0.07$ (measurable at 2σ by CMB S4)
- For leptons $(\mu, \tau) \implies N_{eff} \lesssim 0.6 0.15$ (measurable by CMB S4)
- Non-diagonal couplings ⇒ production via Decays at slightly higher *f*/*c_i*

(日)

• μ production can alleviate H_0 tension to 3σ level

Axions as Hot Relics

- The QCD Axion
- Axions vi Gluons
- Axion via Quarks
- Axion via Leptons

The *H*₀ tension

- If f ≤ O(10⁹) GeV, coupling with quarks and leptons (with c_i = O(1)) dominates over ^{αs}/_{8π} ^a/_f GG̃
- Efficiency peaks at $T \approx m_f$
- For quarks $(t, b, c) \implies N_{eff} \lesssim 0.05 0.07$ (measurable at 2σ by CMB S4)
- For leptons $(\mu, \tau) \implies N_{eff} \lesssim 0.6 0.15$ (measurable by CMB S4)
- Non-diagonal couplings ⇒ production via Decays at slightly higher f/c_i
- μ production can alleviate H_0 tension to 3σ level
- Future CMB experiments will tell in a few years about the Axion (and H₀)