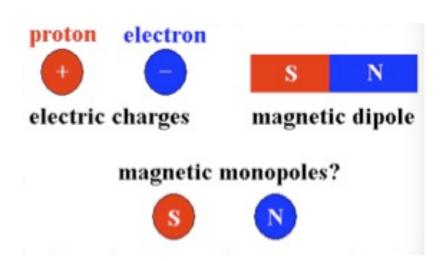


Monopole production via photon fusion at the LHC

Vasiliki A. Mitsou

In collaboration with Stephanie Baines, Nick E. Mavromatos, James L. Pinfold and Arka Santra

Based on arXiv:1808.08942 [hep-ph]



GENERALITAT VALENCIANA

Fundación **BBVA**

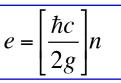
Outline

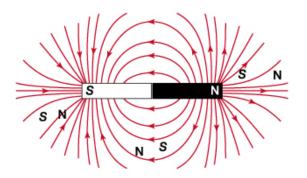
- Introduction to magnetic monopoles
- Cross-section calculations for colliders
 - photon fusion and Drell-Yan processes
 - novel features
 - boost-dependent photon-monopole coupling
 - magnetic-monopole parameter к
- MadGraph implementation
 - UFO models
- Phenomenology at the LHC
 kinematic distributions
- Conclusions & outlook

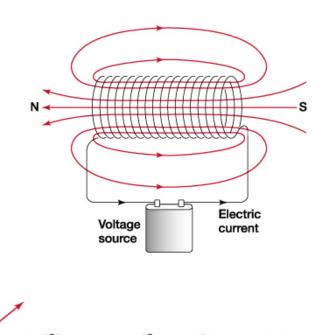
Magnetic monopoles: symmetrising Maxwell

- As no magnetic monopole had ever been seen Maxwell cut isolated magnetic charges from his equations – making them *asymmetric*
- A magnetic monopole restores the symmetry to Maxwell's equations

Name	Without Magnetic Monopoles	With Magnetic Monopoles		
Gauss's law:	$\vec{\nabla} \cdot \vec{E} = 4\pi \rho_e$	$\vec{\nabla} \cdot \vec{E} = 4\pi \rho_e$		
Gauss' law for magnetism:	$\vec{ abla} \cdot \vec{B} = 0$	$\vec{\nabla} \cdot \vec{B} = 4\pi \rho_m$		
Faraday's law of induction:	$-\vec{\nabla}\times\vec{E}=\frac{\partial\vec{B}}{\partial t}$	$-\vec{\nabla}\times\vec{E}=\frac{\partial\vec{B}}{\partial t}-4\pi\vec{J}_m$		
Ampère's law (with Maxwell's extension):	$\vec{\nabla} \times \vec{B} = \frac{\partial \vec{E}}{\partial t} + 4\pi \vec{J}_e$	$\vec{\nabla} \times \vec{B} = \frac{\partial \vec{E}}{\partial t} + 4\pi \vec{J}_e$		


- Symmetrised Maxwell's equations invariant under rotations in (E, B) plane of the electric and magnetic field


Dirac's Monopole

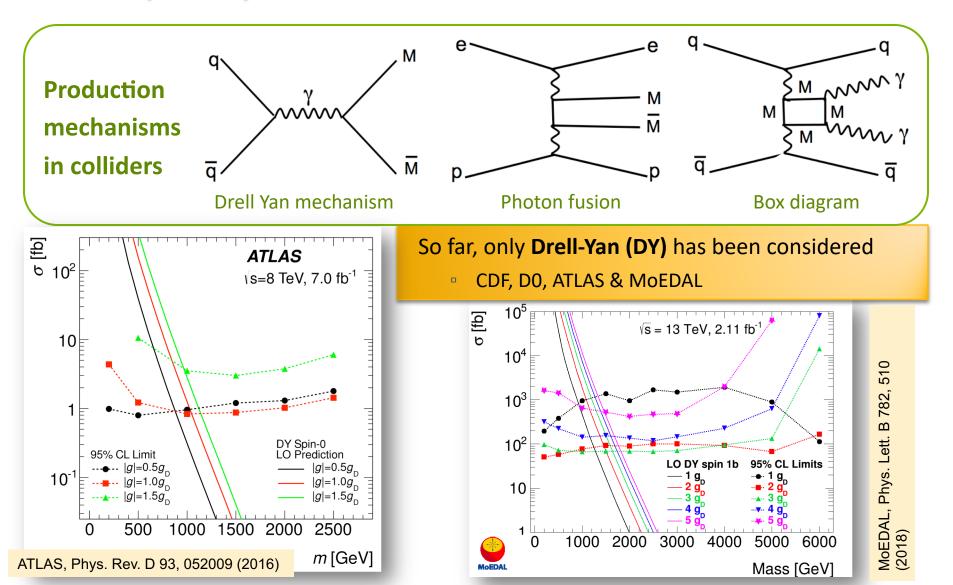

- Paul Dirac in 1931 hypothesised that the magnetic monopole exists
- In his conception the monopole was the end of an infinitely long and infinitely thin solenoid
- Dirac's quantisation condition:

$$ge = \left[\frac{\hbar c}{2}\right]n \quad OR \quad g = \frac{n}{2\alpha}e \quad (from \quad \frac{4\pi eg}{\hbar c} = 2\pi n \quad n = 1, 2, 3..)$$

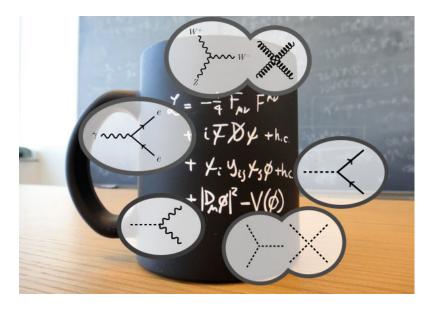
- where g is the "magnetic charge" and α is the fine structure constant 1/137
- This means that g = 68.5e (when n=1)!
- If magnetic monopole exists then charge is quantised: [to]

Dirac String

Imau


Magnetic monopole properties in a nutshell

- Single magnetic charge (Dirac charge): g_D = 68.5e
 - if carries electric charge as well, is called Dyon
- Large coupling constant: g/Ћc ~ 34
- Monopoles would accelerate along field lines and not curve as electrical charges in a magnetic field - according to the Lorentz equation


$$\vec{F} = g\left(\vec{B} - \vec{v} \times \vec{E}\right)$$

- Energy acquired in a magnetic field: 2.06 MeV/gauss.m
 - monopoles accelerated to ~2 TeV with a 10 m × 10 T magnet!
- Dirac monopole is a point-like particle; GUT monopoles are extended objects
- Monopole spin is not determined by theory
- Monopole mass not predicted within Dirac's theory; other theories predict masses from $\mathcal{O}(\text{TeV})$ (electroweak) to $\gtrsim 10^{17}$ GeV (GUT)

Monopole production at colliders

Cross-section calculations

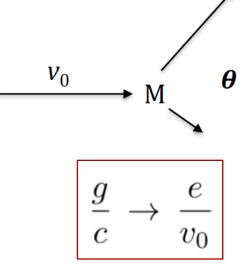
Monopole field theory

 Electric-magnetic duality: The monopole enters the field as a matter field in a U(1) gauge theory

$$\mathcal{L}(\mathcal{A}_{\mu}, \phi_{(i,\mu)}) \quad (e, m_e, S = \frac{1}{2})$$

Standard QED

M(g(eta), M, S =?)Monopole Field


Theory by Analogy

- In a nutshell:
 - S = 0 : Scalar Quantum Electrodynamics
 - S = ½ : Dirac Quantum Electrodynamics
 - S = 1: Lee-Yang Field Theory

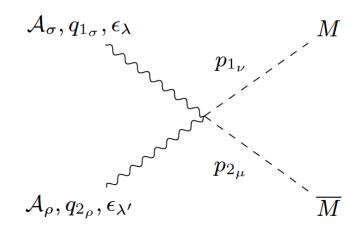
β-dependent coupling

Rutherford (classical) scattering

- It suggests some effective coupling, when monopoles interact with SM matter fields
- Monopole boost expressed by $\beta = \sqrt{1 \frac{4M^2}{s}}$
- Calculations hold in both the β-dependent (gβ) and β-independent (g) cases

e

New magnetic-moment parameter κ


- Spin ½: In SM, such a term appears through spin interactions in minimally e[±]-γ QED coupling
 - SM case: $\tilde{\kappa} = 0$ ($\tilde{\kappa}$ dimensionless parameter)
 - unitary
 - renormalisable
- Spin 1: In SM, such a term appears naturally through the coupling of physical W[±] bosons in rotated SU(2)×U_γ(1)/U_{em}(1)
 - SM case: $\kappa = 1$
 - unitary
 - renormalisable
 - no ghosts or gauge fixing
- Impact on observables
 - total cross sections increases with к
 - kinematic distributions change with κ (at $\gamma\gamma$ or $q\overline{q}$ scattering)

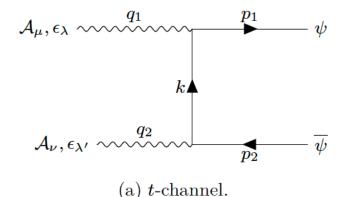
 $\kappa = \frac{\tilde{\kappa}}{M}$

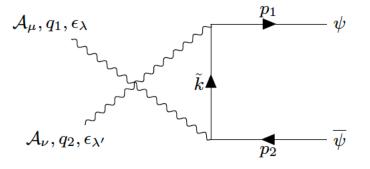
Scalar monopole

1

- S = 0: Scalar Quantum Electrodynamics
 - monopole as a scalar field obeying a
 U(1)-gauged Klein Gordon equation

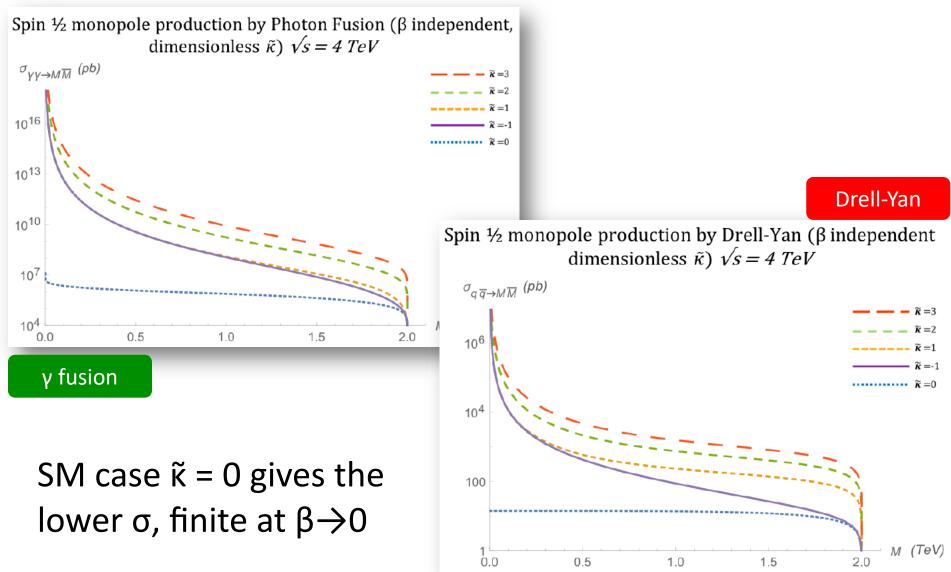

```
(c) Four-vertex diagram.
```


$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + (D^{\mu}\phi)^{\dagger} (D_{\mu}\phi) - M^{2}\phi^{\dagger}\phi,$$


Spinor mopopole

• S = ¹/₂ : Dirac Quantum Electrodynamics

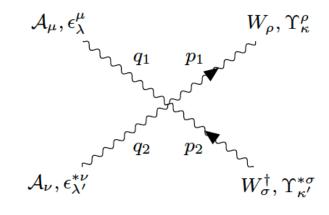
- monopole as a spinor field obeying a U(1)-gauged Dirac equation
- magnetic-moment к
 - $\kappa = 0 \rightarrow \text{SM case}$ • $\tilde{\kappa}$ dimensionless $\kappa = \frac{\tilde{\kappa}}{M}$


$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \overline{\psi} (i D - m) \psi - i \frac{1}{4} g(\beta) \kappa F_{\mu\nu} \overline{\psi} [\gamma^{\mu}, \gamma^{\nu}] \psi,$$

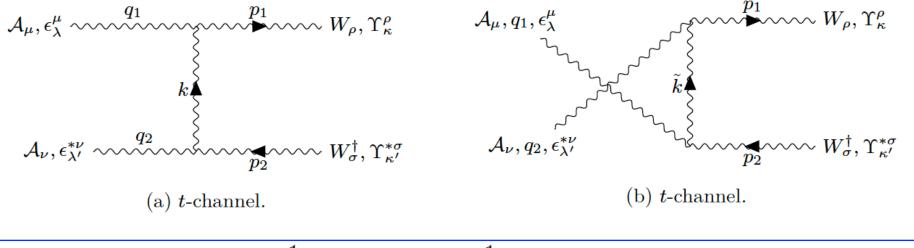
(b) *u*-channel.

Spin ¹/₂ – total cross section

Spin ½ – differential cross section

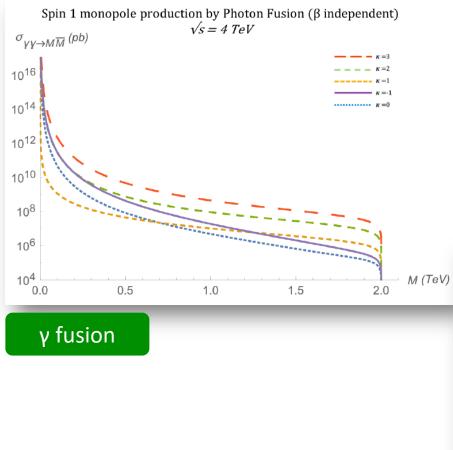

Distributions quite distinct from the ones for scalar monopoles

Spin $\frac{1}{2}$ monopole production by Photon Fusion (β independent, dimensionless $\tilde{\kappa}$) $M^2 \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}_{\gamma\gamma \to M\overline{M}}$ Monopole mass M = 1.5 TeV $d\eta v v \rightarrow M\overline{M}$ Photon energy $E_{\nu} = 6M$ $\tilde{\kappa} = 3$ $\tilde{\kappa} = 2$ 10^{5} $\tilde{\kappa} = -1$ 10^{6} $\widetilde{\kappa} = 0$ 1000 10^{4} 10 0.100 100 2.5 3.0 0.5 1.0 1.5 2.0 -5 5


γ fusion

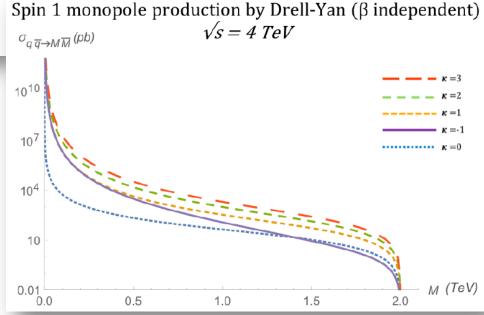
Vector monopole

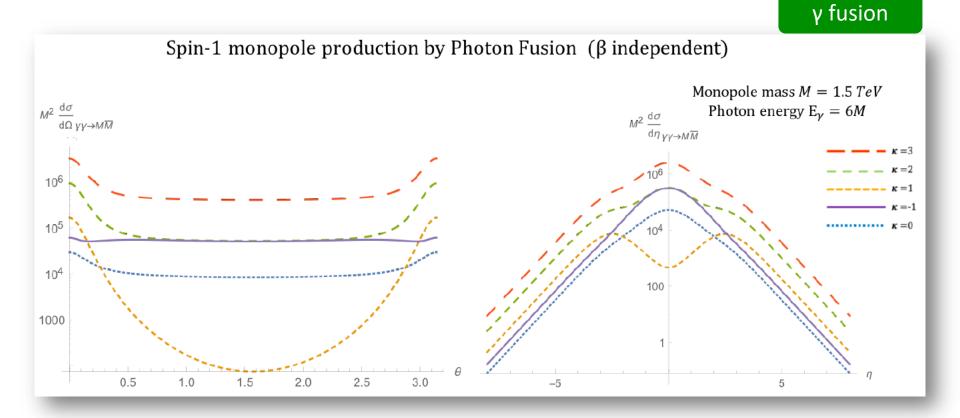
- S = 1: Lee-Yang Field Theory
 - monopole as a vector field obeying a U(1)gauged Klein Gordon equation with a gauge fixing parameter and ghosts
 - magnetic-moment к
 - $\kappa = 1 \rightarrow SM$ case



(c) Four-vertex diagram.

 $\mathcal{L} = -\xi(\partial_{\mu}W^{\dagger\mu})(\partial_{\nu}W^{\nu}) - \frac{1}{2}(\partial_{\mu}\mathcal{A}_{\nu})(\partial^{\nu}\mathcal{A}_{\mu}) - \frac{1}{2}G^{\dagger}_{\mu\nu}G^{\mu\nu} - M^{2}W^{\dagger}_{\mu}W^{\mu} - ig(\beta)\kappa F^{\mu\nu}W^{\dagger}_{\mu}W_{\nu}$


Spin 1 – total cross section


Distinct cross-section evolution

- γγ: SM case κ = 1
- DY: κ = 0

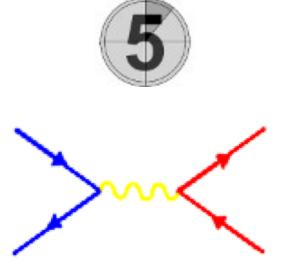
Drell-Yan

Spin 1 – differential cross section SM case κ = 1 gives a distinct angular distribution w.r.t. non-SM cases

Perturbativity issues

- Both photon fusion and Drell-Yan processes suffer from a large photon-monopole coupling that makes perturbative calculations problematic
- This situation may be resolved if
 - very slow monopoles, $\beta \rightarrow 0$
 - parameter κ becomes very large, $\kappa \rightarrow \infty$
 - condition for perturbative coupling:

$$g\kappa'^{\beta^2} < 1$$


$$\kappa' = \begin{cases} \tilde{\kappa}, & \text{spin } \frac{1}{2} \\ \kappa, & \text{spin } 1 \end{cases}$$

 Cross section remains finite at this limit for photon fusion while it vanishes for DY

MadGraph implementation

- UFO models
- Validation

MADGRAPH

Photon fusion (& DY) in MG5

- Drell-Yan was implemented in MADGRAPH5 (MG5) using FORTRAN-code setup
 - only three-particle vertex
 - used in ATLAS & MoEDAL analyses
- We implemented at modeling photon fusion process in MG5
- HOW?
- Fortran models inadequate to describe four-particle vertex as required in bosonic monopole production through photon fusion
- Future MG5 models will be usable only through PYTHON, hence old models need to be transferred to PYTHON
- Solution: implement photon fusion as a UFO model written in PYTHON

Bonus: also transfer old FORTRAN models for DY to new scheme

UFO models

- UFO: Universal FEYN RULES Output
 - FEYNRULES: MATHEMATICA package for describing Feynman rules.
 - Based on PYTHON objects
 - Requires the model Lagrangian as an input in MATHEMATICA format
 - Model parameters (mass, spin, coupling, magnetic charge) are kept in a text file
- For β-dependent coupling, β is introduced as a FORTRAN form factor

• definition:
$$\beta = \sqrt{1 - \frac{4M^2}{\hat{s}}}$$
 with $\hat{s} = 2P_1 \cdot P_2$ where P_i are the 4-momenta of colliding particles

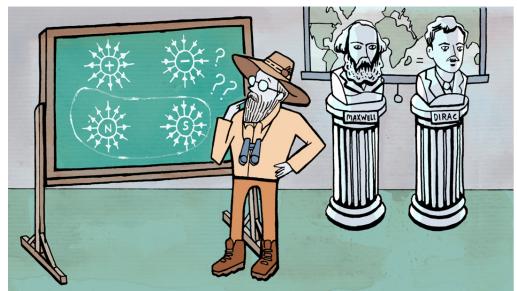
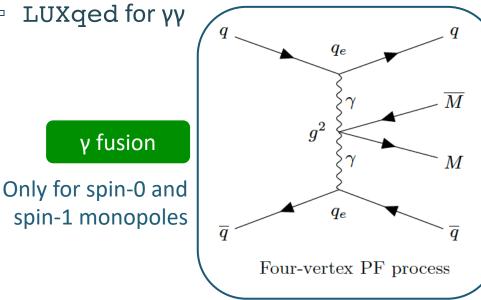
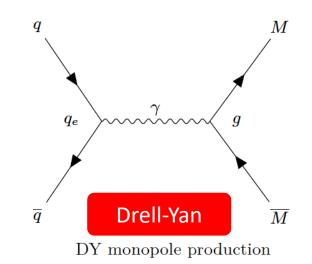
MadGraph validation

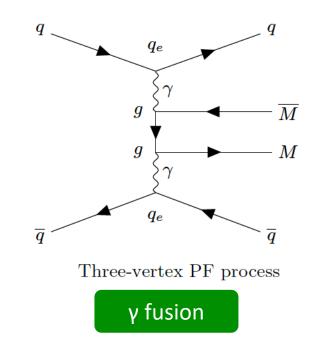
• **Total cross section**: For all considered spins, processes and range of masses, very good agreement between MG5 simulations and theoretical calculations

Mass	Spin 0		Spin $1/2$		Spin 1					
(GeV)	$\gamma\gamma ightarrow MN$	$I, \sigma (\mathrm{pb})$	Ratio	$\gamma\gamma ightarrow Mar{M}$, σ (pb)	Ratio	$\gamma\gamma ightarrow Mar{M}$	$\sigma (\mathrm{pb})$	Ratio	
	UFO model	Theory	UFO/th.	UFO model	Theory	UFO/th.	UFO model	Theory	UFO/th.	
1000	1.4493×10^4	1.4336×10^{4}	0.99	1.364×10^{5}	1.358×10^{5}	1.004	1.078×10^{7} 1	1.0781×10^{7}	0.999	fton
2000	9.851×10^{3}	9.791×10^3	1.006	8.341×10^4 8	3.2551×10^{4}	1.010	2.277×10^{6} 2	2.2520×10^{6}	1.011	γ fusion
3000	5.685×10^3	5.640×10^3	1.007	4.803×10^4 4	1.7554×10^4	1.010	7.214×10^5 7	7.1290×10^{5}	1.012	
4000	2847	2810.5	1.013	2.251×10^4 2	2.2156×10^4	1.012	2.275×10^5 2	2.2523×10^5	1.010	
5000	1094	1087	1.006	6362	6331	1.005	5.256×10^4 5	5.1833×10^{4}	1.014	
6000	117.8	116.53	1.011	370	365.5	1.012	3.034×10^{3}	3.014×10^{3}	1.007	
								1		
Mass	Spin 0			Spin ¹ /2		Spin 1				
(GeV)	$q\bar{q} \rightarrow MM$	$I, \sigma (pb)$	Ratio	$q\bar{q} \rightarrow MM$, σ (pb)	Ratio	$q\bar{q} \rightarrow MM$, σ (pb)	Ratio	
	UFO mod	el Theory	UFO/th.	UFO mode	l Theory	UFO/th.	UFO mode	l Theory	UFO/th.	
1000	0.4223	0.4184	1.009	1.747	1.735	1.007	3362	3343.05	1.006	
2000	0.3484	0.3465	1.005	1.614	1.603	1.007	230.6	228.872	1.007	Drell-Yan
3000	0.2463	0.2441	1.009	1.373	1.373	1.000	45.43	45.173	1.006	
4000	0.1361	0.1352	1.007	1.039	1.0352	1.004	11.38	11.3162	1.006	
5000	0.04724	0.0473	0.999	0.6029	0.601	1.003	2.299	2.282	1.007	
6000	0.003745	0.00373	1.004	0.1454	0.1442	1.008	0.1206	0.1196	1.008	

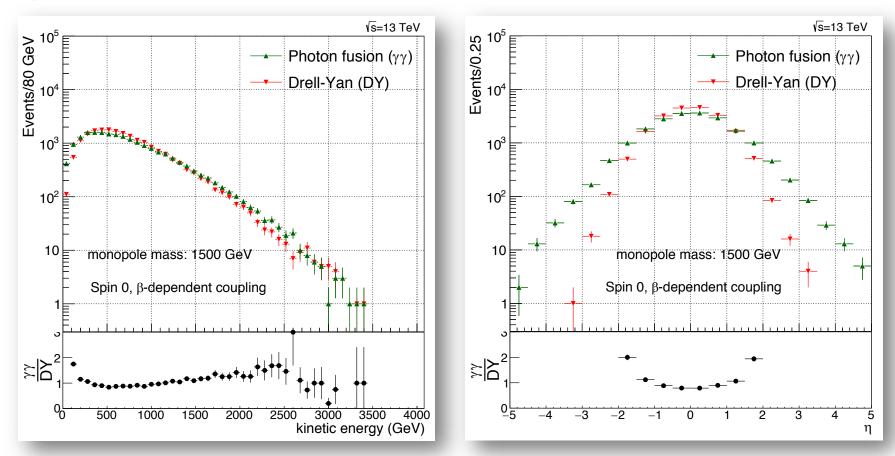
 Kinematic distributions: Good agreement also observed with MG5-simulated events without PDF (no-PDF option), i.e. direct γγ and qq scattering

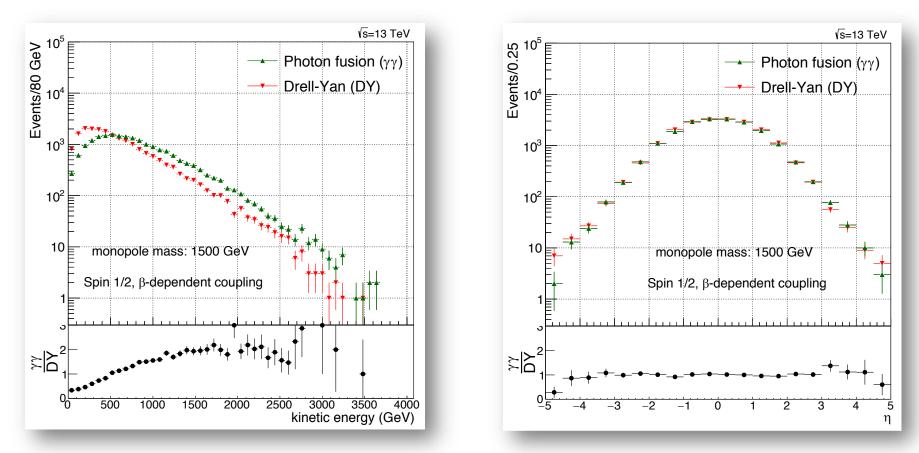
LHC phenomenology

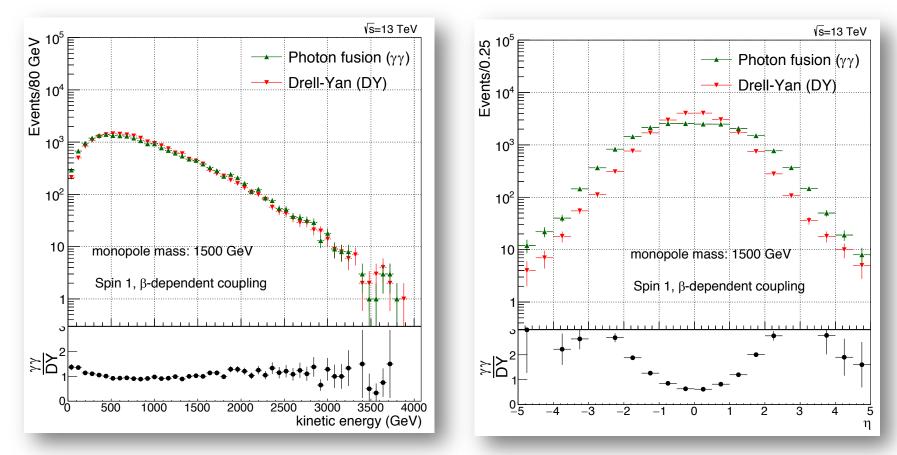

Illustration by Sandbox Studio, Chicago with Corinne Mucha

Simulation setup


- Proton-to-proton collisions at **vs = 13 TeV**
- Monopole mass M=1.5 TeV
- All three spin cases considered
- Magnetic charge set to minimum: $\mathbf{1} \mathbf{g}_{\mathbf{D}}$
- Parton distribution functions (PDFs)
 - NNPDF23 at LO for $q\overline{q}$ (Drell Yan)
 - LUXged for yy

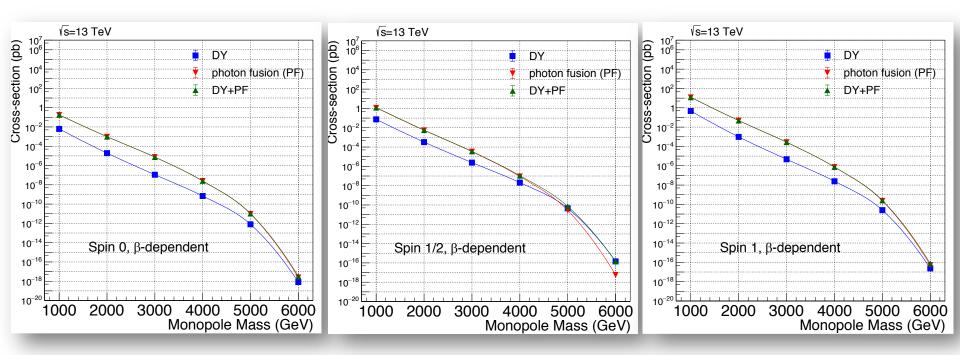


Spin 0: kinematic distributions


 DY events are characterised be a slightly "harder" spectrum and are more centrally produced than PF

Spin ½: kinematic distributions

- DY events have a significantly "softer" spectrum than PF
- Angular distributions are similar


Spin 1: kinematic distributions

- DY events are characterised be a slightly "harder" spectrum and are more centrally produced than PF
- PF-DY comparison similar to scalar monopoles

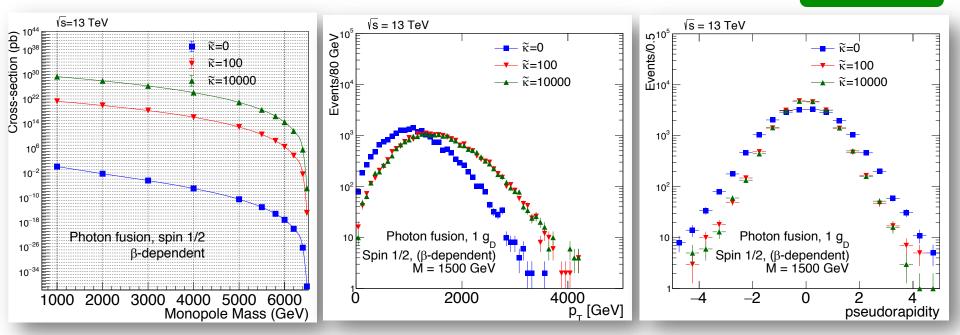
Cross section comparison

- Photon fusion most abundant than DY for almost the whole mass range at LHC energies
 - important to be included in future interpretations of searches at colliders

Testing perturbativity criterion – spin ½

- Cross sections for γγ direct scattering

	1							
Monopole	β	$\gamma\gamma ightarrow Mar{M}, ~~\sigma~({ m pb})$						
mass (GeV)		$ ilde{\kappa}=0$	$\tilde{\kappa} = 10$	$\tilde{\kappa} = 100$	$\tilde{\kappa} = 10,000$			
1000	0.9881	$1.37 \times 10^5 \pm 4.6 \times 10^2$	$1.639 \times 10^{24} \pm 3.3 \times 10^{21}$	$1.639 \times 10^{28} \pm 3.3 \times 10^{25}$	$1.639 \times 10^{36} \pm 3.3 \times 10^{33}$			
2000	0.9515	$8.303 \times 10^{4} \pm 4.5 \times 10^{2}$	$1.61 \times 10^{24} \pm 3.1 \times 10^{21}$	$1.61 \times 10^{28} \pm 3.1 \times 10^{25}$	$1.61 \times 10^{36} \pm 3.1 \times 10^{33}$			
3000	0.8871	$4.78 \times 10^4 \pm 3.5 \times 10^2$	$1.356 \times 10^{24} \pm 2.5 \times 10^{21}$	$1.356 \times 10^{28} \pm 2.5 \times 10^{25}$	$1.356 \times 10^{36} \pm 2.5 \times 10^{33}$			
4000	0.7882	$2.237\times10^4\pm1.9\times10^2$	$8.612 \times 10^{23} \pm 2.1 \times 10^{21}$	$8.613 \times 10^{27} \pm 2.1 \times 10^{25}$	$8.613 \times 10^{35} \pm 2.1 \times 10^{33}$			
5000	0.639	6396 ± 61	$3.154 \times 10^{23} \pm 1.1 \times 10^{21}$	$3.154 \times 10^{27} \pm 1.1 \times 10^{25}$	$3.154 \times 10^{35} \pm 1.1 \times 10^{33}$			
5500	0.5329	2256 ± 22	$1.247 \times 10^{23} \pm 4.5 \times 10^{20}$	$1.247 \times 10^{27} \pm 4.5 \times 10^{24}$	$1.247 \times 10^{35} \pm 4.5 \times 10^{32}$			
5800	0.4514	886.5 ± 7.8	$5.28 \times 10^{22} \pm 2.5 \times 10^{20}$	$5.28 \times 10^{26} \pm 2.5 \times 10^{24}$	$5.28 \times 10^{34} \pm 2.5 \times 10^{32}$			
6000	0.3846	367.2 ± 3	$2.294 \times 10^{22} \pm 7.6 \times 10^{19}$	$2.294 \times 10^{26} \pm 7.6 \times 10^{23}$	$2.294 \times 10^{34} \pm 7.6 \times 10^{31}$			
6200	0.3003	97.19 ± 0.77	$6.43 \times 10^{21} \pm 3.3 \times 10^{19}$	$6.43 \times 10^{25} \pm 3.3 \times 10^{23}$	$6.43 \times 10^{33} \pm 3.3 \times 10^{31}$			
6400	0.1747	5.846 ± 0.025	$4.065 \times 10^{20} \pm 1.5 \times 10^{18}$	$4.065 \times 10^{24} \pm 1.5 \times 10^{22}$	$4.065 \times 10^{32} \pm 1.5 \times 10^{30}$			
6490	0.0554	$0.017 \pm 2.27 \times 10^{-5}$	$1.27\times 10^{18}\pm 8.74\times 10^{14}$	$1.27 \times 10^{22} \pm 8.74 \times 10^{18}$	$1.27\times 10^{30}\pm 8.74\times 10^{26}$			


29

y fusion

Perturbativity limit – spin 1/2

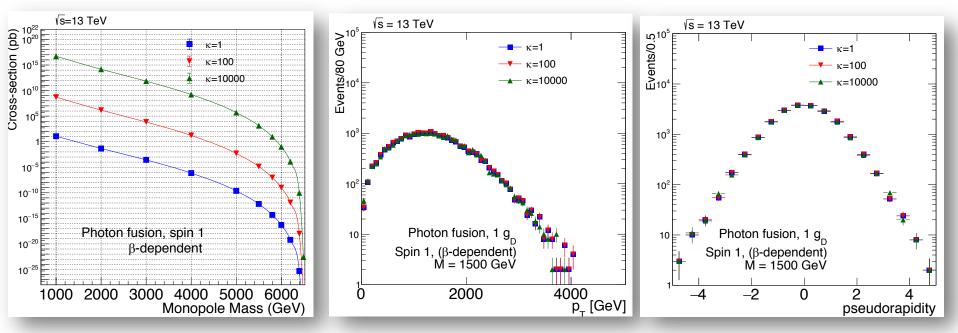
- Kinematic distributions different between SM case ($\tilde{\kappa} = 0$) and large $\tilde{\kappa}$
- Slow-monopole condition may be satisfied if experiment is sensitive to such monopoles
 - MoEDAL nuclear track detectors can inherently detect highly-ionising particles, such as magnetic monopoles, only if the are slow moving

γ fusion

Testing perturbativity criterion – spin 1

- For spin 1 at small monopole velocities and large κ cross section remains finite
- Just as for spin ½ monopoles

γ fusion


 $\kappa \rightarrow \infty$

Monopole	β	$\gamma \gamma \to M \bar{M}, \ \sigma \ (\text{pb})$					
mass (GeV)	,	$\kappa = 1$	$\kappa = 100$	$\kappa = 10,000$			
1000	0.9881	$1.086 \times 10^7 \pm 1.4 \times 10^5$	$4.939 \times 10^{15} \pm 1 \times 10^{13}$	$5.033 \times 10^{23} \pm 2.1 \times 10^{21}$			
2000	0.9515	$2.275 \times 10^6 \pm 1.6 \times 10^4$	$2.844 \times 10^{14} \pm 4.9 \times 10^{11}$	$2.879 \times 10^{22} \pm 9.8 \times 10^{19}$			
3000	0.8871	$7.198 \times 10^5 \pm 6.6 \times 10^3$	$4.518 \times 10^{13} \pm 1.5 \times 10^{11}$	$4.536 \times 10^{21} \pm 1.2 \times 10^{19}$			
4000	0.7882	$2.273 \times 10^5 \pm 2.2 \times 10^3$	$9.079 \times 10^{12} \pm 2.7 \times 10^{10}$	$9.002 \times 10^{20} \pm 3.2 \times 10^{18}$			
5000	0.639	$5.232 \times 10^4 \pm 4.9 \times 10^2$	$1.513 \times 10^{12} \pm 9.2 \times 10^{9}$	$1.5\times 10^{20}\pm 9.3\times 10^{17}$			
5500	0.5329	$1.785 \times 10^4 \pm 1.6 \times 10^2$	$4.49 \times 10^{11} \pm 1.7 \times 10^{9}$	$4.466 \times 10^{19} \pm 2.9 \times 10^{17}$			
5800	0.4514	7118 ± 62	$1.658 \times 10^{11} \pm 1.1 \times 10^{9}$	$1.624 \times 10^{19} \pm 8.4 \times 10^{16}$			
6000	0.3846	3025 ± 24	$6.72 \times 10^{10} \pm 2.5 \times 10^{8}$	$6.627 \times 10^{18} \pm 3.7 \times 10^{16}$			
6200	0.3003	836.9 ± 6.3	$1.764 \times 10^{10} \pm 1 \times 10^{8}$	$1.733 \times 10^{18} \pm 1 \times 10^{16}$			
6400	0.1747	53.42 ± 0.23	$1.066 \times 10^9 \pm 3.9 \times 10^6$	$1.05 \times 10^{17} \pm 3.8 \times 10^{14}$			
6490	0.0554	0.1694 ± 0.00065	$3.293 \times 10^6 \pm 5.6 \times 10^3$	$3.244 \times 10^{14} \pm 5.6 \times 10^{11}$			

Perturbativity limit – spin 1

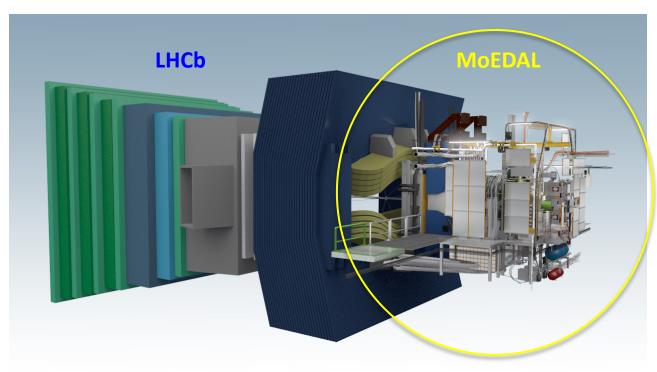
- Kinematic distributions same between SM case ($\kappa = 0$) and large κ (unlike spin $\frac{1}{2}$)
- Similar distributions for large κ makes again "perturbatively friendly" case easy to test at colliders
- Slow-monopole condition may be satisfied if experiment is sensitive to such monopoles
 - MoEDAL nuclear track detectors can inherently detect highly-ionising particles, such as magnetic monopoles, only if the are slow moving

γ fusion

Conclusions & outlook

- Cross-section calculations for colliders have been performed
 - photon fusion and Drell-Yan processes
 - γ fusion least studied and used in searches
 - γ fusion more abundant at LHC than DY
 - novel features
 - boost-dependent photon-monopole coupling
 - magnetic-monopole parameter к
- MadGraph implementation performed for the first time for photon fusion
- Perturbativity: the photon-fusion cross section remains finite and the coupling is perturbative at the formal limits $\beta \rightarrow 0$ and $\kappa \rightarrow \infty$
- Possibility to interpret the cross-section bounds set in collider experiments in a proper way, thus yielding sensible monopole-mass limits

Thank you for your attention!


Project supported by a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation

Corfu2018 V.A. Mitsou

MoEDAL detector

MoEDAL is unlike any other LHC experiment:

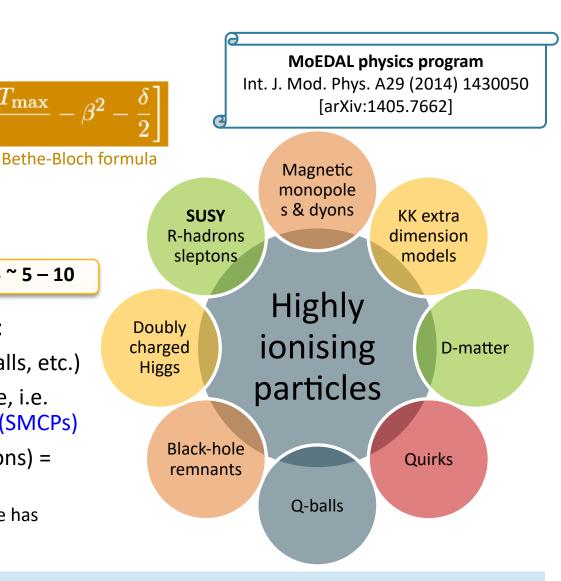
- DETECTOR SYSTEMS
- Low-threshold NTD (LT-NTD) array
 - $z/\beta > ~5 10$
- 2 Very High Charge Catcher NTD (HCC-NTD) array
 z/β > ~50
- 3 TimePix radiation background monitor
- (4) Monopole Trapping detector (MMT)

- mostly passive detectors; no trigger; no readout
- the largest deployment of passive Nuclear Track Detectors (NTDs) at an accelerator
- the 1st time **trapping detectors** are deployed as a detector

 $2m_ec^2\beta^2\gamma^2 T_{\max}$

Physics program

dE


dx

charge

velocity: β = v/c = z/βMoEDAL detectors have a threshold of $z/β \sim 5 - 10$

High ionisation (HI) possible when:

- multiple electric charge (H⁺⁺, Q-balls, etc.)
- very low velocity & electric charge, i.e.
 Stable Massive Charged Particles (SMCPs)
- magnetic charge (monopoles, dyons) = ng_D = n × 68.5 × e
 - a singly charged relativistic monopole has ionisation ~4700 times MIP!

Particles must be massive, long-lived & highly ionising to be detected at MoEDAL