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What has been achieved for the LHC?
difficulty

pert. order
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NNNLO

2

~all LHC 
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Les Houches wish-list

Process State of the Art Desired
H d‡ @ NNLO QCD (expansion in 1/mt) d‡ @ NNNLO QCD (infinite-mt limit)

full mt/mb dependence @ NLO QCD full mt/mb dependence @ NNLO QCD
and @ NLO EW and @ NNLO QCD+EW
NNLO+PS, in the mt æ Œ limit NNLO+PS with finite top quark mass e�ects

H + j d‡ @ NNLO QCD (g only) d‡ @ NNLO QCD (infinite-mt limit)
and finite-quark-mass e�ects and finite-quark-mass e�ects
@ LO QCD and LO EW @ NLO QCD and NLO EW

H + 2j ‡tot(VBF) @ NNLO(DIS) QCD d‡(VBF) @ NNLO QCD + NLO EW
d‡(VBF) @ NLO EW
d‡(gg) @ NLO QCD (infinite-mt limit) d‡(gg) @ NNLO QCD (infinite-mt limit)
and finite-quark-mass e�ects @ LO QCD and finite-quark-mass e�ects

@ NLO QCD and NLO EW
H + V d‡ @ NNLO QCD with H æ bb̄ @ same accuracy

d‡ @ NLO EW d‡(gg) @ NLO QCD
‡tot(gg) @ NLO QCD (infinite-mt limit) with full mt/mb dependence

tH and d‡(stable top) @ LO QCD d‡(top decays)
t̄H @ NLO QCD and NLO EW
tt̄H d‡(stable tops) @ NLO QCD d‡(top decays)

@ NLO QCD and NLO EW
gg æ HH d‡ @ NLO QCD (leading mt dependence) d‡ @ NLO QCD

d‡ @ NNLO QCD (infinite-mt limit) with full mt/mb dependence

Table 1: Wishlist part 1 – Higgs (V = W, Z)

In the context of Higgs-boson observables, this issue is discussed in some detail in Refs. [39,
40] (see also references therein); general considerations about this issue can also be found in
Section 2.8.

1.1.1 Final states involving the Higgs Boson
Now that the Higgs boson has been discovered, the next key step is the detailed measurement of
its properties and couplings. Already much has been accomplished during the 2011–2012 running
at the LHC, but di�erential measurements, for example, are still in their infancy, due to the lack
of statistics. Given its importance, a great deal of theoretical attention has already been given to
calculations of the Higgs-boson production sub-processes for each of the production modes [38–
40] including a concise summary of the predictions available for each channel.2 Nevertheless, as
indicated in Table 1.1, more precise calculations are needed.

H: The current situation is well summarized in Refs. [38–40]: we know the production cross
section for the gg fusion subprocess to NNLO QCD in the infinite-mt limit and including
finite-quark-mass e�ects at NLO QCD and NLO EW. The current experimental uncer-
tainties associated with probing the gg æ H process cross section are of the order of
20–40%, depending on the amount of model-dependent assumptions. Theoretically, the
uncertainty is of the order of 15%, with the uncertainties due to PDF+–s and higher-order
corrections, as estimated through scale variations, both being on the order of 7–8%. The
accuracy of the experimental cross section is statistically limited, with the total error ex-
pected to decrease to the order of 10% with 300 fb≠1 in Run 2, running at an energy close

2For more references, see also Ref. [41].
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Process State of the Art Desired
tt̄ ‡tot(stable tops) @ NNLO QCD d‡(top decays)

d‡(top decays) @ NLO QCD @ NNLO QCD + NLO EW
d‡(stable tops) @ NLO EW

tt̄ + j(j) d‡(NWA top decays) @ NLO QCD d‡(NWA top decays)
@ NNLO QCD + NLO EW

tt̄ + Z d‡(stable tops) @ NLO QCD d‡(top decays) @ NLO QCD
+ NLO EW

single-top d‡(NWA top decays) @ NLO QCD d‡(NWA top decays)
@ NNLO QCD + NLO EW

dijet d‡ @ NNLO QCD (g only) d‡ @ NNLO QCD + NLO EW
d‡ @ NLO EW (weak)

3j d‡ @ NLO QCD d‡ @ NNLO QCD + NLO EW
“ + j d‡ @ NLO QCD d‡ @ NNLO QCD + NLO EW

d‡ @ NLO EW

Table 2: Wishlist part 2 – Jets and Heavy Quarks

quarks. In all three cases, it is necessary to know the cross section (with top decays) at
NLO QCD, possibly including NLO EW e�ects.

HH: The self-coupling of the Higgs boson arises from the EW symmetry breaking of the Higgs
potential and measuring the triple-Higgs-boson coupling then directly probes the EW
potential. Double-Higgs production via gluon fusion, used to measure the triple-Higgs
coupling, is known at LO QCD with full top mass dependence, including the leading
finite-mass e�ects at NLO QCD [52,53] and at NNLO QCD in the infinite-mt limit [54]. It
may be necessary to compute the full top mass dependence at NLO QCD. The production
cross section for double-Higgs production is small, and the backgrounds non-negligible.
Nonetheless, it is hoped that a 50% precision on the self-coupling parameter may be
possible with 3000 fb≠1 at 14 TeV [42]. Other double-Higgs production processes, such as
via gluon fusion or associated production with W/Z bosons, are mostly known to NLO
QCD (excluding final states with top quarks) and were recently discussed in Refs. [55,56].
Owing to the strong suppression of their cross sections, their observability at the LHC is
extremely challenging.

1.1.2 Final states involving Jets or Heavy Quarks
tt̄: Precision top physics is important for a number of reasons. It is by far the most massive

quark, and it is possible that new physics might have a strong coupling to top quarks;
hence the need for precision predictions. For example, a forward–backward asymmetry
has been observed at the Tevatron larger than predicted by NLO QCD+EW predictions.
The larger than expected asymmetry may be the result of new physics, due to missing
higher-order corrections, or caused by unknown problems in the experimental analysis.
At the LHC, the dominant production mechanism for top pair production is through gg
fusion, for basically all kinematic regions. Thus, a comparison of precise top-quark mea-
surements with similar predictions can greatly help the determination of the gluon PDF,
especially at high x where the current uncertainty is large. The present experimental
uncertainty on the total top-quark pair cross section is on the order of 5% for the dilep-
ton final state, and should improve for the lepton + jets final state to be of the same
order [57, 58]. Note that a sizeable portion of that uncertainty is due to the luminosity
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Process State of the Art Desired
V d‡(lept. V decay) @ NNLO QCD d‡(lept. V decay) @ NNNLO QCD

d‡(lept. V decay) @ NLO EW and @ NNLO QCD+EW
NNLO+PS

V + j(j) d‡(lept. V decay) @ NLO QCD d‡(lept. V decay)
d‡(lept. V decay) @ NLO EW @ NNLO QCD + NLO EW

VVÕ d‡(V decays) @ NLO QCD d‡(decaying o�-shell V)
d‡(on-shell V decays) @ NLO EW @ NNLO QCD + NLO EW

gg æ VV d‡(V decays) @ LO QCD d‡(V decays) @ NLO QCD
V“ d‡(V decay) @ NLO QCD d‡(V decay)

d‡(PA, V decay) @ NLO EW @ NNLO QCD + NLO EW
Vbb̄ d‡(lept. V decay) @ NLO QCD d‡(lept. V decay) @ NNLO QCD

massive b + NLO EW, massless b
VVÕ“ d‡(V decays) @ NLO QCD d‡(V decays)

@ NLO QCD + NLO EW
VVÕVÕÕ d‡(V decays) @ NLO QCD d‡(V decays)

@ NLO QCD + NLO EW
VVÕ + j d‡(V decays) @ NLO QCD d‡(V decays)

@ NLO QCD + NLO EW
VVÕ + jj d‡(V decays) @ NLO QCD d‡(V decays)

@ NLO QCD + NLO EW
““ d‡ @ NNLO QCD + NLO EW qT resummation at NNLL matched to NNLO

Table 3: Wishlist part 3 – Electroweak Gauge Bosons (V = W, Z)

VVÕ: With precision measurements of double-vector-boson production (VVÕ), one has a han-
dle on the determination of triple gauge couplings, and a possible window onto new
physics. Currently, the cross sections are known to NLO QCD (with V decays) and
to NLO EW (with on-shell or at least resonant V’s). WZ cross sections currently have
a (non-luminosity) experimental uncertainty on the order of 10% or less, dominated by
the statistical error [103, 104]. The current theoretical uncertainty is on the order of 6%.
Both the experimental statistical and systematic errors will improve with more data, ne-
cessitating the need for a calculation of VVÕ to NNLO QCD + NLO EW (with V decays).
Recently the well-known NLO QCD corrections have been complemented by the NLO
EW corrections, first for stable W and Z bosons [105–107], and in the WW case also in-
cluding corrections to leptonic W-boson decays [108]. Moreover, the EW corrections to
on-shell VVÕ production have been implemented in the Herwig Monte Carlo generator in
an approximative way [109].
A thorough knowledge of the VV production cross section is needed, because of mea-
surements of triple gauge couplings and since that final state forms a background for
Higgs measurements in those channels. The non-luminosity errors for the VV final state
are of the order of 10% or less, with the theoretical uncertainties approximately half
that [103,104,110–113].

gg æ VV: An important piece of the VV cross section is that resulting from a gg initial state. For-
mally, the gg production sub-process is suppressed by a factor of –2

s with respect to the
dominant qq̄ sub-process, but still contributes 5–10% to the cross section for typical event-
selection cuts due to the large gluon flux at the LHC. As background to Higgs-boson stud-
ies, it can even be enhanced to the level of some 10% (see, e.g., discussions in Refs. [38–40]
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• There is a long agenda for precision 
physics at the LHC 

• Essential theoretical work which is 
needed to exploit to its maximum 
the multi-billion investment for the 
experiments 



How to compute a multi -
loop amplitude

FEYNMAN RULES
BASIS OF 
MASTER  

INTEGRALS
POLYLOGARITHMS

NUMERICAL  
EVALUATION

COMPUTER 
ALGEBRA /  

Gauss elimination, 
unitarity methods  

…

EXPANSION  
around D=4

ISOLATION of UV/IR 
singularities



A PURELY NUMERICAL 
APPROACH?

FEYNMAN RULES NUMERICAL  
EVALUATION

Singularities?

Bypasses the problem of 
computing the master integrals

Bypasses  the problem  
of algebraically demanding 
reductions to master integrals



Singularities of Feynman 
diagrams with loops

Some singularities can be avoided with a contour deformation 

Endpoint singularities:

Pinched singularities:

Cannot be avoided 
with a deformation of  

the contour



Subtraction of non-
deformable singularities

•  Identify all inescapable singular limits and remove 
them from the integrand    

• Integrate the singular contributions analytically.  

• Integrate the smooth bounded remainder numerically.            



Physical picture of 
“inescapable” singularities

•  Singularities that cannot be avoided with a contour 
deformation are:  
 
- Ultraviolet 
- Soft  
- Collinear 

• Can be found  
systematically 

• But they overlap!



 Subtraction of singularities

• IR/UV counterterms can be found 
algorithmically for arbitrary loops 

• A sector-decomposition algorithm  
can disentangle overlapping 
singularities  
(Binoth, Heinrich; …) 

• Contour deformations can be 
produced algorithmically for 
arbitrary loops  
(Nagy, Soper; …)

• IR/UV counterterms have been 
found only at one-loop 
(Nagy, Soper) 

• Contour deformations are known 
at one-loop and beyond for 
processes with massless 
propagators. (Nagy, Soper; Becker, 
Weinzierl), But not efficient! 

• A promising field of research with 
space for new ideas

Feynman parameter space Momentum space



REMOVING THE SINGULARITIES 
OF TWO-LOOP AMPLITUDES

• Loop integrals become divergent when internal 
particles in any of the two loops become 
collinear to external particles, or they are soft.  

• However, the web of singularities at two-loops is 
complicated.   

• Singularities are many and highly entangled
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Nested subtractions
• Order the singular regions by 

their “volume” 

• Subtract an approximation of 
the integrand in the smallest 
volume 

• Then, proceed to the next 
volume and repeat until there 
are no more singularities to 
remove.  
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where ⇥(n̂[⇢]) restricts the integration to the reduced neighborhood n̂[⇢] [Eq. (25)]. This integral over the reduced

neighborhood converges because of the accuracy of the soft-collinear and hard-collinear approximations in the entire

reduced neighborhood n̂[⇢]. The PSs internal to the original neighborhoods n[⇢] have been removed by construction.

Equation (28) is the main result we will use for applications in the following sections, treating the neighborhood of

each PS separately. As a more general result, however, we will show that all divergent contributions to amplitudes

can be written without restriction to specific regions, in terms of a construction based on nested subtractions [7],

which we now discuss.

D. Nested subtractions

The quantities t⇢� [Eq. (20)] can also be thought of as counterterms for ultraviolet divergences associated with the
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! 0 in the partonic matrix elements [Eq. (2)] and with multieikonal amplitudes [Eq. (4)]. We will denote an
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The products in Eqs. (29) and (30) are ordered with the larger PSs to the right of smaller PSs. Thus, the first

approximation operators t⇢ to act on �(n) involve the fewest points on the light cones or at short distances. As in Eq.

(20), the approximation operators act on the diagram over the full integration region, and are not restricted to the

neighborhood of the corresponding pinch surface.

Among the approximation operators that appear in R(n)�(n), we may identify the smallest, ⇢� , for which all vertices

approach the origin, that is, for which H(��) = �(n). Now because ⇢� is the smallest PS, it nests with every other

pinch surface. Its approximation operator, which we denote by tuv for any diagram, always appears to the left of

every other operator in Eq. (30). Operator tuv acts only on the external propagators that attach to �(n). We can

thus separate it in the sum over nestings, and we find
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Ozan Erdogan, George Sterman



Nested subtractions
• Order the singular regions by 

their “volume” 

• Subtract an approximation of 
the integrand in the smallest 
volume 

• Then, proceed to the next 
volume and repeat until there 
are no more singularities to 
remove.  

14

of Eq. (21), namely that the divergences from PS ⇢ are equal for �(n) and t⇢�(n),

�(n)
��
div n̂[⇢]

� t⇢�
(n)

��
divn̂[⇢]

=
Y

I

Z
d⌧ (I)

Z
dD�1z(I)

Z
d⌘(I)

Z
dD�1y(I) ⇥(n̂[⇢])

⇥
h
S(⇢)

{µI}(z
(I)) J (⇢)µI⌫I

I
(z(I), y(I)) H(⇢)

{⌫I}(y
(I))

� S(⇢)

{µI}(⌧
(I)) �µI

I
�̄I,µ

0
I

J
(⇢)µ

0
I⌫

0
I

I
(z(I), ⌘(I)) �̄I,⌫

0
I
�⌫I

I
H(⇢)

{⌫I}(y
(I))

i ���
div n̂[⇢]

= 0 , (28)

where ⇥(n̂[⇢]) restricts the integration to the reduced neighborhood n̂[⇢] [Eq. (25)]. This integral over the reduced

neighborhood converges because of the accuracy of the soft-collinear and hard-collinear approximations in the entire

reduced neighborhood n̂[⇢]. The PSs internal to the original neighborhoods n[⇢] have been removed by construction.

Equation (28) is the main result we will use for applications in the following sections, treating the neighborhood of

each PS separately. As a more general result, however, we will show that all divergent contributions to amplitudes

can be written without restriction to specific regions, in terms of a construction based on nested subtractions [7],

which we now discuss.

D. Nested subtractions

The quantities t⇢� [Eq. (20)] can also be thought of as counterterms for ultraviolet divergences associated with the

limits x2

I
! 0 in the partonic matrix elements [Eq. (2)] and with multieikonal amplitudes [Eq. (4)]. We will denote an

arbitrary n-loop diagram that is one-particle irreducible in the xI channel as �(n). Following the momentum-space

procedure of Ref. [7], we define a regulated version of �(n) by

R(n) �(n) = �(n) +
X

N2N [�(n)]

Y

⇢2N

�
� t⇢

�
�(n) , (29)

where N [�] is the set of all nonempty nestings for diagram �. We will refer to R(n) as the subtraction operator at

nth order. We may then write for the full nth-order xI -irreducible partonic amplitude (5), Ḡ(n) =
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Nested subtractions
• Order the singular regions by their 

“volume” 

• Subtract an approximation of the 
integrand in the smallest volume 

• Then, proceed to the next volume 
and repeat until there are no more 
singularities to remove.   

• Method should work at all orders in 
perturbation theory.  

• This structure gives rise to 
factorisation into Jet, Soft and Hard 
functions for scattering amplitudes. 
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The quantities t⇢� [Eq. (20)] can also be thought of as counterterms for ultraviolet divergences associated with the

limits x2

I
! 0 in the partonic matrix elements [Eq. (2)] and with multieikonal amplitudes [Eq. (4)]. We will denote an

arbitrary n-loop diagram that is one-particle irreducible in the xI channel as �(n). Following the momentum-space

procedure of Ref. [7], we define a regulated version of �(n) by

R(n) �(n) = �(n) +
X

N2N [�(n)]

Y

⇢2N

�
� t⇢

�
�(n) , (29)

where N [�] is the set of all nonempty nestings for diagram �. We will refer to R(n) as the subtraction operator at

nth order. We may then write for the full nth-order xI -irreducible partonic amplitude (5), Ḡ(n) =
P

�(n),

Ḡ(n) =
X

�(n)

2

4�
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Y

⇢2N
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3

5 . (30)

The products in Eqs. (29) and (30) are ordered with the larger PSs to the right of smaller PSs. Thus, the first

approximation operators t⇢ to act on �(n) involve the fewest points on the light cones or at short distances. As in Eq.

(20), the approximation operators act on the diagram over the full integration region, and are not restricted to the

neighborhood of the corresponding pinch surface.

Among the approximation operators that appear in R(n)�(n), we may identify the smallest, ⇢� , for which all vertices

approach the origin, that is, for which H(��) = �(n). Now because ⇢� is the smallest PS, it nests with every other

pinch surface. Its approximation operator, which we denote by tuv for any diagram, always appears to the left of

every other operator in Eq. (30). Operator tuv acts only on the external propagators that attach to �(n). We can

thus separate it in the sum over nestings, and we find

Ḡ(n) =
X

�(n)

8
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; , (31)
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Nested subtractions at 2-
loops

• Order of subtractions:  
- double-soft 
- soft-collinear  
- double-collinear 
- single-soft 
- single-collinear 

• Approximations in singular regions 
do not need to be strict limits!  

• Good approximations should not 
introduce ultraviolet divergences 

• Good approximations should be 
easy to integrate exactly.  
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of Eq. (21), namely that the divergences from PS ⇢ are equal for �(n) and t⇢�(n),
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where ⇥(n̂[⇢]) restricts the integration to the reduced neighborhood n̂[⇢] [Eq. (25)]. This integral over the reduced

neighborhood converges because of the accuracy of the soft-collinear and hard-collinear approximations in the entire

reduced neighborhood n̂[⇢]. The PSs internal to the original neighborhoods n[⇢] have been removed by construction.

Equation (28) is the main result we will use for applications in the following sections, treating the neighborhood of

each PS separately. As a more general result, however, we will show that all divergent contributions to amplitudes

can be written without restriction to specific regions, in terms of a construction based on nested subtractions [7],

which we now discuss.

D. Nested subtractions

The quantities t⇢� [Eq. (20)] can also be thought of as counterterms for ultraviolet divergences associated with the

limits x2

I
! 0 in the partonic matrix elements [Eq. (2)] and with multieikonal amplitudes [Eq. (4)]. We will denote an

arbitrary n-loop diagram that is one-particle irreducible in the xI channel as �(n). Following the momentum-space

procedure of Ref. [7], we define a regulated version of �(n) by

R(n) �(n) = �(n) +
X

N2N [�(n)]

Y

⇢2N

�
� t⇢

�
�(n) , (29)

where N [�] is the set of all nonempty nestings for diagram �. We will refer to R(n) as the subtraction operator at

nth order. We may then write for the full nth-order xI -irreducible partonic amplitude (5), Ḡ(n) =
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FIG. 1. Displayed are the conventions for assigning propagators in a two-loop diagram.

of so-called adapted coordinates: the inverse propagator variables ⇢li, and the auxiliary

variables ↵li and µi
l. The variables µi

l are dependent and fixed by (II.15). The vectors ni

form an orthogonal basis transverse to the scattering plane, i.e ni
·pj = 0. Labels in B✏ refer

to directions beyond four-dimensions and labels in Bct denote transverse directions within

four dimensions. For each strand l of the diagram we use a distinct basis of the scattering

plane, spanned by the vectors vil ,

vil = (Gl)
ijpj , with i, j 2 Bp

l [Bt
l , (II.16)

where (Gl)ij is the inverse of the Gram matrix,

(Gl)ij = pi · pj with i, j 2 Bp
l [Bt

l . (II.17)

The index set Bp
l labels the external momenta which leave the strand l. These momenta

are completed with other independent external momenta pi, with i 2 Bt
l , so as to span the

whole scattering plane. This parameterization follows the conventions of ref. [25], with the

caveat that the vectors spanning Bct are no longer normalized.

The inverse coordinate transformation is often useful and is given by

↵li = pi · `l , i 2 Bt
l , (II.18)

↵li = ni
· `l , i 2 Bct , (II.19)

⇢li = (`l � qli)
2 (II.20)

The on-shell variety is then defined by setting the propagator variables ⇢li to zero. In

D-dimensions the variables ↵li form an independent complete set of coordinates on the

13
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The two-loop box is defined as:
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where the momenta of the propagators are depicted in Fig. 1.
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Figure 1. The two-loop double-box

We find that the following integrand is free of all the above singularities,

FPbox =
F (2)

Pbox

P1P2P3P4P5P6P7
+ F (1s)

Pbox + F (1c)
Pbox, (4.1)

where

F (2)
Pbox = 1 � P257

t
� P1346

s
+

P1P6 + P3P4

s2
+

P13P5 + P46P2

st

+
s + t

s2t
(P1P4 + P3P6) (4.2)

(in the above, Pi ⌘ k2
i and Pijk... = Pi + Pj + Pk + . . .)
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P1P2P3

"
F (2)

Pbox

P4P5P6P7

#
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P4P5P6
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(4.3)
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In the above,

x1 = � . . .

. . .
, . . . (4.5)

4.2 Subtraction for the two-loop cross-box
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Figure 2. The two-loop cross-box

The two-loop cross-box is depicted at Fg. 2. The exernal momenta satisfy,

p1 + p2 + p3 + p4 = 0, p2
i = 0, p2

12 = s, p2
23 = t, p2

13 = u = �s � t. (4.6)

We note that for the purposes of analytic continuation, only real parts of the Man-

delstam variables satisfy a momentum conservation relation s + t + u = 0. The

– 3 –
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The two-loop cross-box is depicted at Fg. 2. The exernal momenta satisfy,

p1 + p2 + p3 + p4 = 0, p2
i = 0, p2

12 = s, p2
23 = t, p2

13 = u = �s � t. (4.6)

We note that for the purposes of analytic continuation, only real parts of the Man-

delstam variables satisfy a momentum conservation relation s + t + u = 0. The
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Mandelstam variables are assigned the following imaginary parts:

s + l�, t + i�, u + i� = �s � t + i�. (4.7)

Therefore, for the evaluation of the integral and its counterterms one should first

perform the analytic continuation to the kinematic region which is interested in and

only then apply momentum conservation.

We find that the following is free of all singularities:

FXbox =
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Xbox, (4.8)
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4.3 Subtraction for the two-loop box with a triangle-subgraph

5 Integration of two-loop infrared approximations

6 Conclusions
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Mandelstam variables are assigned the following imaginary parts:

s + l�, t + i�, u + i� = �s � t + i�. (4.7)

Therefore, for the evaluation of the integral and its counterterms one should first

perform the analytic continuation to the kinematic region which is interested in and

only then apply momentum conservation.

We find that the following is free of all singularities:

FXbox =
F (2)

Xbox

P1P2P3P4P5P6P7
+ F (1s)

Xbox + F (1c)
Xbox, (4.8)

F (2)
Xbox =

✓
1 � P13

s

◆2

+
P2

tu
(P2 + s � P13)

�
✓

1 � P1

s

◆ ✓
P5

t
+

P7

u

◆
�

✓
1 � P3

s

◆ ✓
P4

u
+

P6

t

◆
+

P2P4567

tu

�P3

s

✓
P7

t
+

P5

u

◆
� P1

s

✓
P6

u
+

P4

t

◆
+

(t � u)2

s2

P1P3

tu
. (4.9)

F (1s)
Xbox = � 1

P1P2P3

"
F (2)

Xbox

P4P5P6P7

#

k2=0

(4.10)

F (1c)
Xbox = �

µ2

µ2�P1

P1P2s(1 � x1)

8
<

:

"
F (2)

Xbox

P4P5P6P7

#

k1=�x1p1

�
"

F (2)
Xbox

P4P5P6P7

#

k2=0

9
=

;

�
µ2

µ2�P1

P2P3s(1 � x3)

8
<

:

"
F (2)

Xbox

P4P5P6P7

#

k3=�x2p2

�
"

F (2)
Xbox

P4P5P6P7

#

k2=0

9
=

;

�
µ2

µ2�P4

P4P5

"
F (2)

Xbox

P1P2P3P6P7

#

k5=�x3p3

�
µ2

µ2�P6

P6P7

"
F (2)

Xbox

P1P2P3P4P5

#

k5=�x4p4

(4.11)

4.3 Subtraction for the two-loop box with a triangle-subgraph

5 Integration of two-loop infrared approximations

6 Conclusions

Acknowledgements

We thank XYZ for useful discussions. This research was supported in part by the

Pauli Centre for Theoretical Physics, the National Science Foundation under Grant

No. ???, by the Swiss National Science Foundation (SNF) under contracts ?? and

by the European Commission through the ERC grant pertQCD.

– 4 –

Mandelstam variables are assigned the following imaginary parts:

s + l�, t + i�, u + i� = �s � t + i�. (4.7)

Therefore, for the evaluation of the integral and its counterterms one should first

perform the analytic continuation to the kinematic region which is interested in and

only then apply momentum conservation.

We find that the following is free of all singularities:

FXbox =
F (2)

Xbox

P1P2P3P4P5P6P7
+ F (1s)

Xbox + F (1c)
Xbox, (4.8)

F (2)
Xbox =

✓
1 � P13

s

◆2

+
P2

tu
(P2 + s � P13)

�
✓

1 � P1

s

◆ ✓
P5

t
+

P7

u

◆
�

✓
1 � P3

s

◆ ✓
P4

u
+

P6

t

◆
+

P2P4567

tu

�P3

s

✓
P7

t
+

P5

u

◆
� P1

s

✓
P6

u
+

P4

t

◆
+

(t � u)2

s2

P1P3

tu
. (4.9)

F (1s)
Xbox = � 1

P1P2P3

"
F (2)

Xbox

P4P5P6P7

#

k2=0

(4.10)

F (1c)
Xbox = �

µ2

µ2�P1

P1P2s(1 � x1)

8
<

:

"
F (2)

Xbox

P4P5P6P7

#

k1=�x1p1

�
"

F (2)
Xbox

P4P5P6P7

#

k2=0

9
=

;

�
µ2

µ2�P1

P2P3s(1 � x3)

8
<

:

"
F (2)

Xbox

P4P5P6P7

#

k3=�x2p2

�
"

F (2)
Xbox

P4P5P6P7

#

k2=0

9
=

;

�
µ2

µ2�P4

P4P5

"
F (2)

Xbox

P1P2P3P6P7

#

k5=�x3p3

�
µ2

µ2�P6

P6P7

"
F (2)

Xbox

P1P2P3P4P5

#

k5=�x4p4

(4.11)

4.3 Subtraction for the two-loop box with a triangle-subgraph

5 Integration of two-loop infrared approximations

6 Conclusions

Acknowledgements

We thank XYZ for useful discussions. This research was supported in part by the

Pauli Centre for Theoretical Physics, the National Science Foundation under Grant

No. ???, by the Swiss National Science Foundation (SNF) under contracts ?? and

by the European Commission through the ERC grant pertQCD.

– 4 –



Example:bubble-box
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3.5 Subtraction for the bubble-box
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Figure 5. The two-loop bubble-box

We now consider the bubble-box two-loop integral which was computed analyt-

ically in Ref [12]. This is an interesting case due to the presence of an ultraviolet

singularity in the bubble subgraph. It is defined as:
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with

Ai = k
2
i + i0. (3.59)

The momenta ki of the propagators are depicted in Fig. 5. One can concretely choose

k1 = l, k2 = l + p1, k3 = l + p12, k4 = k + p123, k5 = k � l. (3.60)

The kinematics of the external momenta pi are:

4X
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2
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In addition to the ultraviolet divergence we encounter one “single-soft” S2 and

two “single-collinear” (Ck1||p1 , Ck3||p2) singularities. We subtract first the soft and

collinear singular limits. These subtractions su�ce to render the integral finite:
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Indeed, the original integrand and the soft counter-term in the first line have the

same behaviour in the ultraviolet and cancel each other in that limit.

3.6 Subtraction for a two-loop QCD diagram in the qq̄ ! QQ̄ process
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Figure 6. A two-loop QCD diagram for the scattering of four massless quarks with

di↵erent flavours. The arrows indicate the direction of momenta and not of charge flow.

– 15 –



Physical regulators
• The subtraction counterterms are local.  

• They can be invented with dimensional regularisation 
in mind, but they can also be adapted to other 
regularisation schemes for the IR divergences.   

• Small quark masses act as physical regulators.   

• In such case, the infrared counterterms integrate to 
yield the logarithmically enhanced  terms of the 
integral. 



Large logs from small 
masses easily determined. 

the collinear limits. This yields an integrand which is well behaved in the entire

integration domain:
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with

x1 = ±
2k1 · ⌘1

2p1 · ⌘1
, x3 = ±

2k3 · ⌘3
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. (5.17)

5.3 Two-loop massive diagonal box with two o↵-shell legs
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Figure 9. The two-loop diagonal box with two o↵-shell legs. Thick double lines denote

massive propagators.

As a final example of our technique for a small mass expansion, we consider

again the diagonal box integral with four massive propagators:
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with

Ai = k
2
i + i0. (5.19)

The momenta ki of the propagators are depicted in Fig. 5. One can concretely choose

k1 = l + p1, k2 = l + p12, k3 = k + p123, k4 = k, k5 = k � l. (5.20)
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The kinematics of the external momenta pi are:
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This is a master integral for the production of a one or two Higgs bosons at hadron

colliders. We can write,

Dbox =
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= Dbox|fin (µ = m) + O(m2) (5.22)

where Dbox|fin is given by Eq. 3.57. We have checked our result against numerical

evaluations in the Euclidean region of results in Ref. [14] for m1 = 0 which were

carried out in and the numerical asymptotic expansions obtained using the program

of Refs [15, 16].
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Large logs from small 
masses easily determined. 
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integration domain:

JR =

Z
d

d
k1

i⇡
d
2

⇢
1

A1A2A3A4


1 �

A1

s
�

A4

t

�

�
(1 �

M2

t )

st

1

A1A2

1

x1 + (1 � x1)
M2

t

�
(1 �

M2

s )

st

1

A3A4

1

x3 + (1 � x3)
M2

s

)
(5.16)

with

x1 = ±
2k1 · ⌘1

2p1 · ⌘1
, x3 = ±

2k3 · ⌘3

2p3 · ⌘3
. (5.17)

5.3 Two-loop massive diagonal box with two o↵-shell legs
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Figure 9. The two-loop diagonal box with two o↵-shell legs. Thick double lines denote

massive propagators.

As a final example of our technique for a small mass expansion, we consider

again the diagonal box integral with four massive propagators:

Dbox ⌘

Z
d

d
k2

i⇡
d
2

d
d
k5

i⇡
d
2

1

(A1 � m2) (A2 � m2) (A3 � m2) (A4 � m2) A5
, (5.18)

with

Ai = k
2
i + i0. (5.19)

The momenta ki of the propagators are depicted in Fig. 5. One can concretely choose

k1 = l + p1, k2 = l + p12, k3 = k + p123, k4 = k, k5 = k � l. (5.20)
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Summary/Prospects
• I presented a method for the removal of singularities in multi-

loop integrals.  

• We are testing the method on complicated two-loop examples. 

• It paves the way for a direct numerical evaluation of two-loop 
amplitudes in momentum space.   

• It can also be used for extracting the asymptotic behaviour of 
Feynman diagrams in a small mass limit or other kinematic 
limits.   

• Work in progress… 


