Rendering two-loop Feynman diagrams finite

Babis Anastasiou ETH Zurich

in collaboration with G. Sterman

Corfu 2018

Outline

- Motivation
- Infrared divergences of Feynman diagrams
- Nested subtractions
- Examples
- Summary

LHC precision physics

A "Feynman diagram" of finding New Laws

Perturbative expansion

Perturbative expansion

Perturbative expansion

What has been achieved for the LHC?

$$
\sigma=\sigma_{0} \alpha_{s}^{n}+\sigma_{1} \alpha_{s}^{n+1}+\sigma_{2} \alpha_{s}^{n+2}+\ldots
$$

Les Houches wish-list

- There is a long agenda for precision physics at the LHC
- Essential theoretical work which is needed to exploit to its maximum the multi-billion investment for the experiments

Process	State of the Art	Desired
$\mathrm{t} \overline{\mathrm{t}}$	$\sigma_{\text {tot }}$ (stable tops) @ NNLO QCD $\mathrm{d} \sigma$ (top decays) @ NLO QCD $\mathrm{d} \sigma$ (stable tops) @ NLO EW	$\mathrm{d} \sigma$ (top decays) @ NNLO QCD + NLO EW
$\mathrm{t} \overline{\mathrm{t}}+\mathrm{j}(\mathrm{j})$	$\mathrm{d} \sigma$ (NWA top decays) @ NLO QCD	$\mathrm{d} \sigma$ (NWA top decays) $@$ NNLO QCD + NLO EW
$\mathrm{t} \mathrm{\bar{t}+Z}$	$\mathrm{~d} \sigma$ (stable tops) @ NLO QCD	$\mathrm{d} \sigma($ top decays) @ NLO QCD + NLO EW
single-top	$\mathrm{d} \sigma$ (NWA top decays) @ NLO QCD	$\mathrm{d} \sigma$ (NWA top decays) @ NNLO QCD + NLO EW
dijet	$\mathrm{d} \sigma$ @ NNLO QCD (g only) $\mathrm{d} \sigma$ @ NLO EW (weak)	$\mathrm{d} \sigma$ @ NNLO QCD + NLO EW
3 j	$\mathrm{d} \sigma$ @ NLO QCD	$\mathrm{d} \sigma$ @ NNLO QCD + NLO EW
$\gamma+\mathrm{j}$	$\mathrm{d} \sigma$ @ NLO QCD $\mathrm{d} \sigma$ @ NLO EW	$\mathrm{d} \sigma$ @ NNLO QCD + NLO EW

Table 2: Wishlist part 2 - Jets and Heavy Quarks

Process	State of the Art	Desired
H	$\mathrm{d} \sigma$ @ NNLO QCD (expansion in $1 / m_{\mathrm{t}}$) full m_{t} / m_{b} dependence @ NLO QCD and @ NLO EW NNLO+PS, in the $m_{t} \rightarrow \infty$ limit	$\mathrm{d} \sigma$ @ NNNLO QCD (infinite- m_{t} limit) full $m_{\mathrm{t}} / m_{\mathrm{b}}$ dependence @ NNLO QCD and @ NNLO QCD+EW NNLO + PS with finite top quark mass effects
$\mathrm{H}+\mathrm{j}$	$\mathrm{d} \sigma$ @ NNLO QCD (g only) and finite-quark-mass effects @ LO QCD and LO EW	$\mathrm{d} \sigma$ @ NNLO QCD (infinite- m_{t} limit) and finite-quark-mass effects @ NLO QCD and NLO EW
H + 2j	$\begin{aligned} & \sigma_{\text {tot }}(\text { VBF }) @ \text { NNLO(DIS) QCD } \\ & \mathrm{d} \sigma(\mathrm{VBF}) @ \text { NLO EW } \\ & \mathrm{d} \sigma(\mathrm{gg}) @ \text { NLO QCD (infinite- } m_{\mathrm{t}} \text { limit) } \\ & \text { and finite-quark-mass effects @ LO QCD } \end{aligned}$	$\mathrm{d} \sigma(\mathrm{VBF}) @$ NNLO QCD + NLO EW $\mathrm{d} \sigma(\mathrm{gg}) @$ NNLO QCD (infinite- m_{t} limit) and finite-quark-mass effects @ NLO QCD and NLO EW
H+V	$\begin{aligned} & \mathrm{d} \sigma \text { @ NNLO QCD } \\ & \mathrm{d} \sigma \text { @ NLO EW } \\ & \sigma_{\text {tot }}(\mathrm{gg}) @ \text { NLO QCD (infinite- } m_{\mathrm{t}} \text { limit) } \end{aligned}$	with $\mathrm{H} \rightarrow \mathrm{bb}$ @ same accuracy $\mathrm{d} \sigma(\mathrm{gg}) @ \operatorname{NLO} \mathrm{QCD}$ with full $m_{\mathrm{t}} / m_{\mathrm{b}}$ dependence
$\begin{aligned} & \mathrm{tH} \text { and } \\ & \overline{\mathrm{t}} \mathrm{H} \end{aligned}$	d σ (stable top) @ LO QCD	$\mathrm{d} \sigma$ (top decays) @ NLO QCD and NLO EW
tt H	d σ (stable tops) @ NLO QCD	$\mathrm{d} \sigma$ (top decays) @ NLO QCD and NLO EW
gg \rightarrow HH	$\mathrm{d} \sigma$ @ NLO QCD (leading m_{t} dependence) $\mathrm{d} \sigma$ @ NNLO QCD (infinite- m_{t} limit)	$\mathrm{d} \sigma$ @ NLO QCD with full $m_{\mathrm{t}} / m_{\mathrm{b}}$ dependence

Table 1: Wishlist part $1-\operatorname{Higgs}(\mathrm{V}=\mathrm{W}, \mathrm{Z})$

Process	State of the Art	esired
V	d σ (lept. V decay) @ NNLO QCD $\mathrm{d} \sigma$ (lept. V decay) @ NLO EW	$\begin{aligned} & \text { d } \sigma \text { (lept. V decay) @ NNNLO QCD } \\ & \text { and @ NNLO QCD+EW } \\ & \text { NNLO+PS } \end{aligned}$
$\mathrm{V}+\mathrm{j}(\mathrm{j})$	$\begin{aligned} & \hline \text { d } \sigma \text { (lept. V decay) @ NLO QCD } \\ & \text { d } \sigma \text { (lept. V decay) @ NLO EW } \\ & \hline \end{aligned}$	d σ (lept. V decay) @ NNLO QCD + NLO EW
VV^{\prime}	$\mathrm{d} \sigma(\mathrm{V}$ decays) @ NLO QCD $\mathrm{d} \sigma$ (on-shell V decays) @ NLO EW	d σ (decaying off-shell V) @ NNLO QCD + NLO EW
$\mathrm{gg} \rightarrow \mathrm{VV}$	$\mathrm{d} \sigma$ (V decays) @ LO QCD	$\mathrm{d} \sigma$ (V decays) @ NLO QCD
V γ	$\mathrm{d} \sigma(\mathrm{V}$ decay) @ NLO QCD $\mathrm{d} \sigma$ (PA, V decay) @ NLO EW	$\begin{aligned} & \mathrm{d} \sigma \text { (V decay) } \\ & \text { @ NNLO QCD + NLO EW } \\ & \hline \end{aligned}$
Vbb	d σ (lept. V decay) @ NLO QCD massive b	d σ (lept. V decay) @ NNLO QCD + NLO EW, massless b
$\mathrm{VV}^{\prime} \gamma$	$\mathrm{d} \sigma$ (V decays) @ NLO QCD	$\begin{aligned} & \mathrm{d} \sigma(\mathrm{~V} \text { decays }) \\ & @ \text { NLO QCD }+ \text { NLO EW } \end{aligned}$
$\mathrm{VV}^{\prime} \mathrm{V}^{\prime \prime}$	$\mathrm{d} \sigma$ (V decays) @ NLO QCD	$\begin{aligned} & \mathrm{d} \sigma(\mathrm{~V} \text { decays }) \\ & \text { @ NLO QCD }+\mathrm{NLO} \text { EW } \end{aligned}$
$\mathrm{VV}^{\prime}+\mathrm{j}$	$\mathrm{d} \sigma$ (V decays) @ NLO QCD	$\begin{aligned} & \mathrm{d} \sigma(\mathrm{~V} \text { decays) } \\ & \text { @ NLO QCD + NLO EW } \end{aligned}$
$\mathrm{VV}^{\prime}+\mathrm{jj}$	$\mathrm{d} \sigma$ (V decays) @ NLO QCD	$\begin{aligned} & \mathrm{d} \sigma(\mathrm{~V} \text { decays) } \\ & \text { @ NLO QCD }+\mathrm{NLO} \text { EW } \end{aligned}$
$\gamma \gamma$	$\mathrm{d} \sigma$ @ NNLO QCD + NLO EW	q_{T} resummation at NNLL matched to NNLO

How to compute a multi loop amplitude

NUMERICAL EVALUATION

A PURELY NUMERICAL APPROACH?

Bypasses the problem of algebraically demanding reductions to master integrals

Bypasses the problem of computing the master integrals

Singularities of Feynman diagrams with loops

Some singularities can be avoided with a contour deformation

Endpoint singularities:

Pinched singularities:
Cannot be avoided with a deformation of the contour

Subtraction of nondeformable singularities

$$
\begin{gathered}
\int d^{d} l G(l)=\int d^{d} l G_{\text {sing }}(l) \longrightarrow \\
+\int d^{d} l\left[G(l)-G_{\text {sing }}()\right]
\end{gathered}
$$

- Identify all inescapable singular limits and remove them from the integrand
- Integrate the singular contributions analytically.
- Integrate the smooth bounded remainder numerically.

Physical picture of "inescapable" singularities

- Singularities that cannot be avoided with a contour deformation are:
- Ultraviolet
- Soft
- Collinear
- Can be found systematically

- But they overlap!

Subtraction of singularities

Feynman parameter space

Momentum space

- IR/UV counterterms can be found algorithmically for arbitrary loops
- A sector-decomposition algorithm can disentangle overlapping singularities
(Binoth, Heinrich; ...)
- Contour deformations can be produced algorithmically for arbitrary loops (Nagy, Soper; ...)
- IR/UV counterterms have been found only at one-loop (Nagy, Soper)
- Contour deformations are known at one-loop and beyond for processes with massless propagators. (Nagy, Soper; Becker, Weinzierl), But not efficient!
- A promising field of research with space for new ideas

REMOVING THE SINGULARITIES OF TWO-LOOP AMPLITUDES

- Loop integrals become divergent when internal particles in any of the two loops become collinear to external particles, or they are soft.
- However, the web of singularities at two-loops is complicated.
- Singularities are many and highly entangled

Nested subtractions
 Ozan Erdogan, George Sterman

- Order the singular regions by their "volume"
- Subtract an approximation of the integrand in the smallest volume
- Then, proceed to the next volume and repeat until there are no more singularities to remove.

$$
R^{(n)} \gamma^{(n)}=\gamma^{(n)}+\sum_{\left.N \in \mathcal{N} \mid \gamma^{(n)}\right]} \prod_{\rho \in N}\left(-t_{\rho}\right) \gamma^{(n)},
$$

Nested subtractions

Ozan Erdogan, George Sterman

- Order the singular regions by their "volume"
- Subtract an approximation of the integrand in the smallest volume
- Then, proceed to the next volume and repeat until there are no more singularities to remove.

$$
R^{(n)} \gamma^{(n)}=\gamma^{(n)}+\sum_{\left.N \in \mathcal{N} \mid \gamma^{(n)}\right]} \prod_{\rho \in N}\left(-t_{\rho}\right) \gamma^{(n)},
$$

Nested subtractions
 Ozan Erdogan, George Sterman

- Order the singular regions by their "volume"
- Subtract an approximation of the integrand in the smallest volume

$$
R^{(n)} \gamma^{(n)}=\gamma^{(n)}+\sum_{N \in \mathcal{N}\left[\gamma^{(n)}\right]} \prod_{\rho \in N}\left(-t_{\rho}\right) \gamma^{(n)}
$$

- Then, proceed to the next volume and repeat until there are no more singularities to remove.
- Method should work at all orders in perturbation theory.
- This structure gives rise to factorisation into Jet, Soft and Hard functions for scattering amplitudes.

Nested subtractions at 2-

 loopsCA, George Sterman

- Order of subtractions:
- double-soft
- soft-collinear
- double-collinear
- single-soft
- single-collinear
- Approximations in singular regions do not need to be strict limits!
- Good approximations should not introduce ultraviolet divergences
- Good approximations should be easy to integrate exactly.

An example: 2-loop planar box

Example: planar double-box

$$
F_{P b o x}=\frac{F_{P b o x}^{(2)}}{P_{1} P_{2} P_{3} P_{4} P_{5} P_{6} P_{7}}+F_{P b o x}^{(1 s)}+F_{P b o x}^{(1 c)}
$$

$$
\begin{aligned}
& \text { double soft }
\end{aligned}
$$

$$
\begin{aligned}
& F_{P b o x}^{(1 s)}=\underbrace{-\underbrace{\frac{1}{P_{1} P_{2} P_{3}}}\left[\frac{F_{\text {Pbx }}^{(2)}}{P_{4} P_{5} P_{6} P_{7}}\right]_{k_{2}=0}-\frac{1}{P_{4} P_{5} P_{6}}\left[\frac{F_{P b o x}^{(2)}}{P_{1} P_{2} P_{3} P_{7}}\right]_{k_{5}=0}}_{\text {Single -tot }}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\frac{\mu^{2}}{\mu^{2} P_{6}}}{P_{6} P_{5}\left(1-x_{4}\right)}\left\{\left[\frac{F_{P_{b o x}}^{(2)}}{P_{1} P_{2} P_{3} P_{7}}\right]_{k_{6}=x_{4} p_{4}}-\left[\frac{F_{P b o x}^{(2)}}{P_{1} P_{2} P_{3} P_{7}}\right]_{k_{5}=0}\right\} \\
& -\frac{\frac{\mu^{2}}{\mu^{2}-P_{4}}}{\underbrace{}_{A_{4} P_{5} s\left(1-x_{3}\right)}\left\{\left[\frac{F_{P b o x}^{(2)}}{P_{1} P_{2} P_{3} P_{7}}\right]_{k_{4}=-x_{3} p_{3}}-\left[\frac{F_{P b o x}^{(2)}}{P_{1} P_{2} P_{3} P_{7}}\right]_{k_{5}=0}\right\}} \\
& \text { single collinear }
\end{aligned}
$$

Example:cross-box

$$
\begin{aligned}
& F_{X b o x}=\frac{F_{X b o x}^{(2)}}{P_{1} P_{2} P_{3} P_{4} P_{5} P_{6} P_{7}}+F_{X b o x}^{(1 s)}+F_{X b o x}^{(1 c)}, \\
& F_{X b o x}^{(2)}=\left(1-\frac{P_{13}}{s}\right)^{2}+\frac{P_{2}}{t u}\left(P_{2}+s-P_{13}\right) \\
& -\left(1-\frac{P_{1}}{s}\right)\left(\frac{P_{5}}{t}+\frac{P_{7}}{u}\right)-\left(1-\frac{P_{3}}{s}\right)\left(\frac{P_{4}}{u}+\frac{P_{6}}{t}\right)+\frac{P_{2} P_{4567}}{t u} \\
& -\frac{P_{3}}{s}\left(\frac{P_{7}}{t}+\frac{P_{5}}{u}\right)-\frac{P_{1}}{s}\left(\frac{P_{6}}{u}+\frac{P_{4}}{t}\right)+\frac{(t-u)^{2}}{s^{2}} \frac{P_{1} P_{3}}{t u} . \\
& F_{X b o x}^{(1 c)}=-\frac{\frac{\mu^{2}}{\mu^{2}-P_{1}}}{P_{1} P_{2} s\left(1-x_{1}\right)}\left\{\left[\frac{F_{X b o x}^{(2)}}{P_{4} P_{5} P_{6} P_{7}}\right]_{k_{1}=-x_{1} p_{1}}-\left[\frac{F_{X b o x}^{(2)}}{P_{4} P_{5} P_{6} P_{7}}\right]_{k_{2}=0}\right\} \\
& F_{X b o x}^{(1 s)}=-\frac{1}{P_{1} P_{2} P_{3}}\left[\frac{F_{X b o x}^{(2)}}{P_{4} P_{5} P_{6} P_{7}}\right]_{k_{2}=0} \quad-\frac{\frac{\mu^{2}}{\mu^{2}-P_{1}}}{P_{2} P_{3} s\left(1-x_{3}\right)}\left\{\left[\frac{F_{X b o x}^{(2)}}{P_{4} P_{5} P_{6} P_{7}}\right]_{k_{3}=-x_{2} p_{2}}-\left[\frac{F_{\text {Xbox }}^{(2)}}{P_{4} P_{5} P_{6} P_{7}}\right]_{k_{2}=0}\right\} \\
& -\frac{\frac{\mu^{2}}{\mu^{2}-P_{4}}}{P_{4} P_{5}}\left[\frac{F_{X b o x}^{(2)}}{P_{1} P_{2} P_{3} P_{6} P_{7}}\right]_{k_{5}=-x_{3} p_{3}}-\frac{\frac{\mu^{2}}{\mu^{2}-P_{6}}}{P_{6} P_{7}}\left[\frac{F_{X b o x}^{(2)}}{P_{1} P_{2} P_{3} P_{4} P_{5}}\right]_{k_{5}=-x_{4} p_{4}}
\end{aligned}
$$

Example:bubble-box

$$
\begin{aligned}
\left.\mathrm{B}_{\mathrm{box}}\right|_{\text {fin }}= & \int \frac{d^{d} k_{2}}{i \pi^{\frac{d}{2}}} \frac{d^{d} k_{5}}{i \pi^{\frac{d}{2}}}\left\{\frac{1}{A_{1} A_{2} A_{3} A_{4} A_{5}}-\frac{1}{A_{1} A_{2} A_{3}}\left[\frac{1}{A_{4} A_{5}}\right]_{k_{2}=0}\right. \\
& -\frac{\frac{-\mu^{2}}{A_{1}-\mu^{2}}}{A_{1} A_{2} s\left(1-x_{1}\right)}\left[\left.\frac{1}{A_{4} A_{5}}\right|_{k_{1}=-x_{1} p_{1}}-\left.\frac{1}{A_{4} A_{5}}\right|_{k_{1}=-p_{1}}\right] \\
= & \left.-\frac{\frac{-\mu^{2}}{A_{3}-\mu^{2}}}{A_{2} A_{3} s\left(1-x_{2}\right)}\left[\left.\frac{1}{A_{4} A_{5}}\right|_{k_{3}=x_{2} p_{2}}-\left.\frac{1}{A_{4} A_{5}}\right|_{k_{3}=p_{2}}\right]\right\}
\end{aligned}
$$

Physical regulators

- The subtraction counterterms are local.
- They can be invented with dimensional regularisation in mind, but they can also be adapted to other regularisation schemes for the IR divergences.
- Small quark masses act as physical regulators.
- In such case, the infrared counterterms integrate to yield the logarithmically enhanced terms of the integral.

Large logs from small masses easily determined.

$$
\begin{aligned}
& \mathrm{D}_{\text {box }}=\left[\frac{1}{\left(A_{1}-m^{2}\right)\left(A_{2}-m^{2}\right)}-\frac{1}{\left(A_{1}-\mu^{2}\right)\left(A_{2}-\mu^{2}\right)}\right]\left[\frac{1}{A_{3} A_{4} A_{5}}\right]_{k_{1}=-x_{2} p_{2}} \\
& +\left[\frac{1}{\left(A_{3}-m^{2}\right)\left(A_{4}-m^{2}\right)}-\frac{1}{\left(A_{3}-\mu^{2}\right)\left(A_{4}-\mu^{2}\right)}\right]\left[\frac{1}{A_{1} A_{2} A_{5}}\right]_{k_{4}=x_{4} p_{4}} \\
& -\left[\frac{1}{\left(A_{1}-m^{2}\right)\left(A_{2}-m^{2}\right)\left(A_{3}-m^{2}\right)\left(A_{4}-m^{2}\right)}\right] \\
& \quad \times\left[-\frac{1}{\left(A_{1}-\mu^{2}\right)\left(A_{2}-\mu^{2}\right)\left(A_{3}-\mu^{2}\right)\left(A_{4}-\mu^{2}\right)}\right]\left[\frac{1}{A_{5}}\right]_{\substack{k_{4}=x_{4} p_{4}, k_{1}=-x_{2} p_{2}}} \\
& \quad+\left.\mathrm{D}_{\text {box }}\right|_{\text {fin }}+\mathcal{O}\left(m^{2}\right)
\end{aligned}
$$

Large logs from small masses easily determined.

$$
\begin{aligned}
& \quad\left(m_{1}^{2}+m_{3}^{2}-s-t\right) \mathrm{D}_{\text {box }}=1 / 3 \ln \left(-\frac{\left(m_{1}^{2}-s\right)\left(m_{1}^{2}-t\right)}{m_{1}^{2} m_{3}^{2}-s t}\right) \ln ^{3}\left(-\frac{m_{1}^{2}}{m^{2}}\right) \\
& +\operatorname{Li}_{2}\left(\frac{\left(m_{1}^{2}+m_{3}^{2}-s-t\right) m_{1}^{2}}{m_{1}^{2} m_{3}^{2}-s t}\right) \ln ^{2}\left(-\frac{m_{1}^{2}}{m^{2}}\right)-2 \operatorname{Li}_{3}\left(\frac{\left(m_{1}^{2}+m_{3}^{2}-s-t\right) m_{1}^{2}}{m_{1}^{2} m_{3}^{2}-s t}\right)\left(\ln \left(-\frac{m_{1}^{2}}{m^{2}}\right)\right) \\
& -1 / 3 \ln ^{3}\left(-\frac{s}{m^{2}}\right) \ln \left(\frac{\left(m_{3}^{2}-s\right)\left(m_{1}^{2}-s\right)}{m_{1}^{2} m_{3}^{2}-s t}\right)-1 / 3 \ln ^{3}\left(-\frac{t}{m^{2}}\right) \ln \left(\frac{\left(m_{3}^{2}-t\right)\left(m_{1}^{2}-t\right)}{m_{1}^{2} m_{3}^{2}-s t}\right) \\
& +1 / 3 \ln ^{3}\left(-\frac{m_{3}^{2}}{m^{2}}\right) \ln \left(-\frac{\left(m_{3}^{2}-t\right)\left(m_{3}^{2}-s\right)}{m_{1}^{2} m_{3}^{2}-s t}\right)-\operatorname{Li}_{2}\left(\frac{s\left(m_{1}^{2}+m_{3}^{2}-s-t\right)}{m_{1}^{2} m_{3}^{2}-s t}\right) \ln ^{2}\left(-\frac{s}{m^{2}}\right) \\
& +2 \operatorname{Li}_{3}\left(\frac{s\left(m_{1}^{2}+m_{3}^{2}-s-t\right)}{m_{1}^{2} m_{3}^{2}-s t}\right) \ln \left(-\frac{s}{m^{2}}\right)-\operatorname{Li}_{2}\left(\frac{t\left(m_{1}^{2}+m_{3}^{2}-s-t\right)}{m_{1}^{2} m_{3}^{2}-s t}\right) \ln ^{2}\left(-\frac{t}{m^{2}}\right) \\
& +2 \operatorname{Li}_{3}\left(\frac{t\left(m_{1}^{2}+m_{3}^{2}-s-t\right)}{m_{1}^{2} m_{3}^{2}-s t}\right) \ln \left(-\frac{t}{m^{2}}\right)+\operatorname{Li}_{2}\left(\frac{m_{3}^{2}\left(m_{1}^{2}+m_{3}^{2}-s-t\right)}{m_{1}^{2} m_{3}^{2}-s t}\right) \ln ^{2}\left(-\frac{m_{3}^{2}}{m^{2}}\right) \\
& -2 \operatorname{Li}_{3}\left(\frac{m_{3}^{2}\left(m_{1}^{2}+m_{3}^{2}-s-t\right)}{m_{1}^{2} m_{3}^{2}-s t}\right) \ln \left(-\frac{m_{3}^{2}}{m^{2}}\right)+2 \operatorname{Li}_{4}\left(\frac{\left(m_{1}^{2}+m_{3}^{2}-s-t\right) m_{1}^{2}}{m_{1}^{2} m_{3}^{2}-s t}\right) \\
& -2 \operatorname{Li}_{4}\left(\frac{s\left(m_{1}^{2}+m_{3}^{2}-s-t\right)}{m_{1}^{2} m_{3}^{2}-s t}\right)-2 \operatorname{Li}_{4}\left(\frac{t\left(m_{1}^{2}+m_{3}^{2}-s-t\right)}{m_{1}^{2} m_{3}^{2}-s t}\right) \\
& +2 \operatorname{Li}_{4}\left(\frac{m_{3}^{2}\left(m_{1}^{2}+m_{3}^{2}-s-t\right)}{m_{1}^{2} m_{3}^{2}-s t}\right)
\end{aligned}
$$

Summary/Prospects

- I presented a method for the removal of singularities in multiloop integrals.
- We are testing the method on complicated two-loop examples.
- It paves the way for a direct numerical evaluation of two-loop amplitudes in momentum space.
- It can also be used for extracting the asymptotic behaviour of Feynman diagrams in a small mass limit or other kinematic limits.
- Work in progress...

