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CPT: introduction 

CPT theorem : 
                          
 
 
 
 
 
 
 
 
Exact CPT invariance holds for any quantum field theory (like the Standard Model) 
formulated on flat space-time which assumes: 
(1)  Lorentz invariance  (2) Locality (3) Unitarity (i.e. conservation of probability). 
Testing the validity of the CPT symmetry probes the most fundamental assumptions 
of our present understanding of particles and their interactions. 
 

The three discrete symmetries of QM, C (charge conjugation: q ! -q),   
P (parity: x ! -x), and  T (time reversal: t ! -t) are known to be violated in nature 
both singly and in pairs. Only CPT appears to be an exact symmetry of nature. 
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Quantum Field Theory

Charges and symmetries

Apart from the electric charge, particle physicists have be-
come familiar with many different charges, including „fla-
vor“ and „color“ of leptons and quarks. The traditional un-
derstanding of charge quantum numbers as characteristic 
eigenvalues in representations of internal symmetry groups 
involves unobservable entities. An intrinsic characterization 
in terms of observable data has confirmed this picture, but it 
has also revealed its limitations, e.g. in the presence of long-
range forces. Especially in model theories in less than three 
space dimensions, the association of charges with symmetry 
groups cannot be maintained, and a world of new types of 
„quantum charges“ has been discovered, including the fasci-
nating theory of generalized symmetries, which occur in real 
physics in the guise of critical behavior of statistical systems 
confined to surfaces. 

Particles

The fundamental observables in relativistic quantum physics  
are neutral fields. Particles arise as excitations in certain sta-
tes in which these fields can be measured. As such they may 
possess properties depending on the state. For instance, their 
mass can be temperature dependent, if it can be sharply defi-
ned at all. Defining the mass of a particle in interaction is not 
an easy task. In scattering theory, one can wait until the par-
ticle is far away from all other particles, and hence its mass 
can be defined as for non-interacting particles. This is clearly 
not possible if the particle is confined, as for quarks, or if it 
cannot be separated from a surrounding „photon cloud“ due 
to its electric charge and the long-range nature of the elec-
tromagnetic interaction, or if it moves in a thermal environ-
ment. The conceptual problems with the notion of „particle“ 
were attacked in Göttingen, and led to several new analytic 
tools allowing to compute their properties. 

Gerhart Lüders Hans-Jürgen Borchers Detlev Buchholz

Quantum field theory (QFT) is the „language“ describing the fundamental physics in the relativistic mi-

crocosmos, notably the elementary particles. In a continuous endeavor, the quantum field theory group 

in Göttingen (previously led by Max Planck medalists Gerhart Lüders, Hans-Jürgen Borchers, and Detlev 

Buchholz) pursues a mathematical approach in which the strong internal constraints imposed by the 

interplay between the principles of relativity, Einstein causality, and the stability of quantum systems are 

explored. It turns out that notions like „particle“, „charge“, and their fundamental interactions are far 

more subtle in QFT than in the more familiar setting of quantum mechanics. A careful analysis of these 

structures leads to insights that bear fruit in many applications.
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No predictive theory incorporating CPT violation => only phenomenological models 
to be constrained by experiments. 
 Consequences of CPT symmetry: equality of masses, lifetimes, |q| and |µ| 

of a particle and its anti-particle. 

Neutral meson systems offer unique possibilities to test CPT invariance;  

e.g. taking as figure of merit the fractional difference between the masses of 
a particle and its anti-particle: 
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CPT: introduction 
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Extension of CPT theorem to a theory of quantum gravity far from obvious. 
(e.g. CPT violation appears in several QG models) 

Other interesting CPT tests: e.g. the study of anti-hydrogen atoms, etc..  
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Extension of CPT theorem to a theory of quantum gravity far from obvious. 
(e.g. CPT violation appears in several QG models) 

Other interesting CPT tests: e.g. the study of anti-hydrogen atoms, etc..  
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€ 

Ψ = a K 0 + b K 0

€ 

i ∂
∂t
Ψ t( ) =HΨ t( )

H is the effective hamiltonian (non-hermitian), decomposed into a Hermitian  
part (mass matrix M) and an anti-Hermitian part (i/2 decay matrix Γ) : 

Diagonalizing the effective Hamiltonian: 

€ 

λS,L = mS,L −
i
2
ΓS,L

€ 

KS,L t( ) = e− iλS ,L t KS,L 0( )

€ 

KS,L =
1

2 1+ εS,L( )
1+εS,L( ) K 0 ± 1−εS,L( ) K 0[ ]

=
1

1+ εS,L( )
K1,2 +εS,L K2,1[ ]

eigenvalues 
eigenstates: physical states  

τS ~ 90 ps τL ~ 51 ns 
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small CP impurity ~2 x 10-3 

|K1,2> are 
CP=±1 states 

€ 

KL →ππ violates CP

€ 

KS KL ≅εS
∗ +εL ≠ 0
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K0 and K0 can decay to common final 
states due to weak interactions: 
strangeness oscillations 

K 0                       K 0

2π

3π

The neutral kaon two-level oscillating system in a nutshell 
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€ 

δ =
H11 −H22

2 λS − λL( )
=
1
2

m
K 0
−m

K 0( ) − i 2( ) ΓK 0
−Γ

K 0( )
Δm + iΔΓ/2

 

 ε LS δε ±=,

€ 

Δm = mL −mS    ,      ΔΓ = ΓS −ΓL
Δm = 3.5 ×10−15  GeV
ΔΓ≈ ΓS ≈ 2Δm = 7 ×10−15  GeV

ε =
H12 −H21

2 λS −λL( )
=
−iℑM12 −ℑΓ12 2
Δm+ iΔΓ / 2

 

•  δ ≠ 0 implies CPT violation  
•  ε ≠ 0 implies T violation 
•  ε ≠ 0 or δ ≠ 0 implies CP violation 

012 =Γℑ(with a phase convention               ) 

CPT violation:

CP violation: T violation:

6 

KS,L ∝ 1+εS,L( ) K 0 ± 1−εS,L( ) K 0#
$

%
&

The neutral kaon two-level oscillating system in a nutshell 
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KS,L ∝ 1+εS,L( ) K 0 ± 1−εS,L( ) K 0#
$

%
&

huge amplification factor!! 

The neutral kaon two-level oscillating system in a nutshell 
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<m> 
(GeV) 

 

Δm 
(GeV) 

<Γ>
(GeV) 

ΔΓ/2 
(GeV) 

K0 0.5 3x10-15 3x10-15 3x10-15 

D0 

 
1.9 6x10-15 2x10-12 1x10-14 

B0
d

 5.3 3x10-13 4x10-13 O(10-15) 
(SM prediction) 

B0
s
 

 
5.4 1x10-11 4x10-13 3x10-14 

neutral kaons vs other oscillating meson systems  
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Comparing “survival” probabilities of K0 and K0 measuring 
semileptonic decays vs time: 

€ 

ΓK 0 −ΓK 0( )   
10−18GeV( )

Combining Reδ and Imδ results 

€ 

δ =
1
2

mK 0 −mK 0( ) − i 2( ) ΓK 0 −ΓK 0( )
Δm + iΔΓ/2

 

Assuming                                , i.e. no CPT viol. in decay: ( ) 000 =− KK ΓΓ

m
K 0 −mK 0 < 4.0×10−19   GeV  at 95% c.l. 

“Standard” CPT test 

ℜδ   =  (3.0 ± 3.3 ± 0.6) × 10-4

CPLEAR   
PLB444 (1998) 52 

 Im δ =(-0.7 ± 1.4) × 10-5

PDG fit (2014)  

2ℑδ =ℑ KL KS
"# $%=ℑ

f T KS
f
∑ f T KL

∗

i λS −λL
∗( )

"

#

)
)
)

$

%

*
*
*

using the unitarity constraint  
(Bell-Steinberger relation) 
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– 5–

Figure 1: Top: allowed region at 68% and 95%
C.L. in the ℜ(ϵ), ℑ(δ) plane. Bottom: allowed
region at 68% and 95% C.L. in the ∆M, ∆Γ
plane.

August 21, 2014 13:17

€ 

mK 0 −mK 0( )   10−18  GeV( )

K0 e+ 
π-

ν
τ=0 τ

K0 
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Direct CPT test in transitions  

 
•  Is it possible to test the CPT symmetry directly in transition processes between 

kaon states, rather than comparing masses, lifetimes, or other intrinsic 
properties of particle and anti-particle states? 

•  CPT violating effects may not appear at first order in diagonal mass terms 
(survival probabilities) while they can manifest at first order in transitions (non-
diagonal terms). 

•  Clean formulation required. Possible spurious effects induced by CP violation 
in the decay and/or a violation of the ∆S = ∆Q rule have to be well under 
control. 

•  In standard WWA the test is related to Reδ, a genuine CPT violating effect 
independent of ∆Γ, i.e. not requiring the decay as an essential ingredient.  

Probing CPT:  J. Bernabeu, A.D.D., P. Villanueva, JHEP 10 (2015) 139 
Time-reversal violation: J. Bernabeu, A.D.D., P. Villanueva, NPB 868 (2013) 102 
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2) |K+⟩ and |K−⟩    (* not to be confused with charged kaons K+ and K- ) 
JHEP10(2015)139

exploiting the entanglement of the kaon pairs, as we will discuss in the next section. |K+⟩
and |K−⟩ are defined as the filtered states when observing definite CP = ±1 decay products.

Even though the decay products are orthogonal, the filtered |K+⟩ and |K−⟩ states can still

be nonorthoghonal. In the following we will assume

|K+⟩ ≡ |K̃+⟩
|K−⟩ ≡ |K̃−⟩ , (2.12)

which corresponds to impose the condition of orthogonality ⟨K−|K+⟩ = 0, implying that

β = −ηππ and α = −η3π0 , and a precise relationship between the two amplitude ratios ηππ
and η3π0 :

ηππ + η⋆3π0 − ηππη
⋆
3π0⟨KL|KS⟩ = ⟨KS|KL⟩

=
ϵL + ϵ⋆S√

(1 + |ϵL|2)(1 + |ϵS |2)
, (2.13)

Neglecting terms of O(ϵ3) (with ϵ = O(10−3)), therefore with a high degree of accuracy,

O(10−9), this translates into the following relation:

ηππ + η⋆3π0 = ϵL + ϵ⋆S . (2.14)

This clearly indicates that direct CP and CPT violation have to be neglected when imposing

assumption (2.12). In fact, for instance, eq. (2.14) cannot be simultaneously satisfied for

π+π− and π0π0 decays, being (ηπ+π− − ηπ0π0) = 3ϵ′, with ϵ′ = O(10−6) the direct CP

violation parameter [8]. Similar subtle points were previously discussed in the literature

for the T-asymmetry measurement in the flavour-CP eigenstates of J/ΨK0 decay channels

of Bd’s [30], as well as for any pair of decay channels [31].

More in general, while possible direct CPT violation contributions might be still cast

into the definition of the observable quantities for the CPT test that will be presented in

the next section, direct CP violation may appear as a contaminating fake effect which is

necessary to keep well under control.

Finally the validity of the ∆S = ∆Q rule will be assumed in the following, so that the

two flavor orthogonal eigenstates |K0⟩ and |K̄0⟩ are identified by the charge of the lepton

in semileptonic decays. When the decay into π−ℓ+ν is observed, it cannot come from |K̄0⟩
so that the state |K0⟩ is filtered, and vice-versa for the decay into π+ℓ−ν̄.

The relevance of these assumptions will be discussed in section 4, where it will be

shown that they can be safely released for our purposes, without affecting the cleanliness

of the test.

3 CPT symmetry test at a φ-factory

Similarly to the T symmetry test proposed at a φ-factory (or B-factory) [22–25], the imple-

mentation of the CPT test proposed here exploits the Einstein-Podolsky-Rosen (EPR) [32]

entanglement of the neutral meson pair produced in φ → K0K̄0 decays. In fact in this case

– 4 –

We need two orthogonal bases:   
1)                    assuming ΔS=ΔQ rule identified by their πlν decay (l+ or l-)    
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Definition of states 

J
H
E
P
1
0
(
2
0
1
5
)
1
3
9

the kaon proper time t as pure exponentials

|KS(t)⟩ = e−iλSt|KS⟩
|KL(t)⟩ = e−iλLt|KL⟩ . (2.1)

with λS,L = mS,L − iΓS,L/2, and ΓS,L = (τS,L)−1. They are usually expressed in terms of

the flavor eigenstates |K0⟩, |K̄0⟩ as:

|KS⟩ =
1√

2 (1 + |ϵS |2)
[
(1 + ϵS)|K0⟩+ (1− ϵS)|K̄0⟩

]
(2.2)

|KL⟩ =
1√

2 (1 + |ϵL|2)
[
(1 + ϵL)|K0⟩ − (1− ϵL)|K̄0⟩

]
, (2.3)

with ϵS and ϵL two small complex parameters describing the CP impurity in the physical

states. One can equivalently define ϵ ≡ (ϵS+ϵL)/2, and δ ≡ (ϵS−ϵL)/2; adopting a suitable

phase convention (e.g. the Wu-Yang phase convention [29]) ϵ ̸= 0 implies T violation, δ ̸= 0

implies CPT violation, while δ ̸= 0 or ϵ ̸= 0 implies CP violation.

Let us also consider the states |K+⟩, |K−⟩ defined as follows: |K+⟩ is the state filtered

by the decay into ππ (π+π+ or π0π0), a pure CP = +1 state; analogously |K−⟩ is the state
filtered by the decay into 3π0, a pure CP = −1 state. Their orthogonal states correspond

to the states which cannot decay into ππ or 3π0, defined, respectively, as

|K̃−⟩ ≡ Ñ− [|KL⟩ − ηππ|KS⟩] (2.4)

|K̃+⟩ ≡ Ñ+ [|KS⟩ − η3π0 |KL⟩] (2.5)

with

ηππ =
⟨ππ|T |KL⟩
⟨ππ|T |KS⟩

(2.6)

η3π0 =
⟨3π0|T |KS⟩
⟨3π0|T |KL⟩

, (2.7)

and Ñ± two suitable normalization factors. With these definitions of states, |K+⟩ and |K−⟩
can be explicitly constructed imposing the conditions ⟨K̃±|K∓⟩ = 0:

|K+⟩ = N+ [|KS⟩+ α|KL⟩] (2.8)

|K−⟩ = N− [|KL⟩+ β|KS⟩] (2.9)

where

α =
η⋆ππ − ⟨KL|KS⟩
1− η⋆ππ⟨KS|KL⟩

, (2.10)

β =
η⋆3π0 − ⟨KS|KL⟩
1− η⋆3π0⟨KL|KS⟩

, (2.11)

and N± are two normalization factors.

Here we have kept separate definitions of the filtered states |K+⟩ and |K−⟩, which are

observed through their decay, from the tagged states |K̃+⟩ and |K̃−⟩, which are prepared

– 3 –

Even though the decay products are orthogonal, the filtered |K+⟩ and |K−⟩  
states can still be non-orthoghonal.    
Condition of orthoghonality: 
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can be explicitly constructed imposing the conditions ⟨K̃±|K∓⟩ = 0:

|K+⟩ = N+ [|KS⟩+ α|KL⟩] (2.8)

|K−⟩ = N− [|KL⟩+ β|KS⟩] (2.9)

where

α =
η⋆ππ − ⟨KL|KS⟩
1− η⋆ππ⟨KS|KL⟩

, (2.10)

β =
η⋆3π0 − ⟨KS|KL⟩
1− η⋆3π0⟨KL|KS⟩

, (2.11)

and N± are two normalization factors.

Here we have kept separate definitions of the filtered states |K+⟩ and |K−⟩, which are

observed through their decay, from the tagged states |K̃+⟩ and |K̃−⟩, which are prepared
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In order to study the impact of the approximations involved in the proposed CPT test,

namely negligible direct CP and CPT violation contributions in the ππ and 3π0 channels,

and the validity of the ∆S = ∆Q rule, they are treated separately.

First, the effect of possible direct CP and CPT violation contributions is evaluated on

the observable ratios Rexp
i,CPT(∆t), while still assuming the ∆S = ∆Q rule. To this aim the

following parametrisation is introduced:

ηππ = ϵL + ϵ′ππ

η3π0 = ϵS + ϵ′3π0 , (4.1)

where ϵ′ππ and ϵ′3π0 represent the generic contributions of direct CP and/or CPT violation

in the ππ and 3π0 channels, respectively. In this more general case, the orthogonality

condition eqs. (2.12) is no more satisfied, and the true orthogonal pair to be considered in

writing the initial state (3.1) is {K+, K̃−} (or {K̃+,K−}) instead of {K+,K−}. The effect

of ϵ′ππ and ϵ′3π0 can be easily singled out in the explicit expressions of the observable ratios

(neglecting higher order terms in small parameters and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K̃−(0) → K̄0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1−ϵL√

2

)
η3π0 + e−iλL∆t

(
1−ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1−ϵS√

2

)
ηππ + e−iλL∆t

(
1−ϵL√

2

)∣∣∣
2 ×DCPT ,

≃ |1− 2δ|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT , (4.2)

Rexp
4,CPT(∆t) =

P [K̄0(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1+ϵL√

2

)
η3π0 − e−iλL∆t

(
1+ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1+ϵS√

2

)
ηππ − e−iλL∆t

(
1+ϵL√

2

)∣∣∣
2 ×DCPT

≃ |1 + 2δ|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1 + 2δ|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT . (4.3)

It is important to realise from eqs. (4.2) and (4.3) that there exists a sum rule for ∆t ! 0

given by:

Rexp
2,CPT(∆t) +Rexp

4,CPT(∆t) = 2DCPT , (4.4)

indicating that the quantity DCPT is measurable within the same experiment.
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exploiting the entanglement of the kaon pairs, as we will discuss in the next section. |K+⟩
and |K−⟩ are defined as the filtered states when observing definite CP = ±1 decay products.

Even though the decay products are orthogonal, the filtered |K+⟩ and |K−⟩ states can still

be nonorthoghonal. In the following we will assume

|K+⟩ ≡ |K̃+⟩
|K−⟩ ≡ |K̃−⟩ , (2.12)

which corresponds to impose the condition of orthogonality ⟨K−|K+⟩ = 0, implying that

β = −ηππ and α = −η3π0 , and a precise relationship between the two amplitude ratios ηππ
and η3π0 :

ηππ + η⋆3π0 − ηππη
⋆
3π0⟨KL|KS⟩ = ⟨KS|KL⟩

=
ϵL + ϵ⋆S√

(1 + |ϵL|2)(1 + |ϵS |2)
, (2.13)

Neglecting terms of O(ϵ3) (with ϵ = O(10−3)), therefore with a high degree of accuracy,

O(10−9), this translates into the following relation:

ηππ + η⋆3π0 = ϵL + ϵ⋆S . (2.14)

This clearly indicates that direct CP and CPT violation have to be neglected when imposing

assumption (2.12). In fact, for instance, eq. (2.14) cannot be simultaneously satisfied for

π+π− and π0π0 decays, being (ηπ+π− − ηπ0π0) = 3ϵ′, with ϵ′ = O(10−6) the direct CP

violation parameter [8]. Similar subtle points were previously discussed in the literature

for the T-asymmetry measurement in the flavour-CP eigenstates of J/ΨK0 decay channels

of Bd’s [30], as well as for any pair of decay channels [31].

More in general, while possible direct CPT violation contributions might be still cast

into the definition of the observable quantities for the CPT test that will be presented in

the next section, direct CP violation may appear as a contaminating fake effect which is

necessary to keep well under control.

Finally the validity of the ∆S = ∆Q rule will be assumed in the following, so that the

two flavor orthogonal eigenstates |K0⟩ and |K̄0⟩ are identified by the charge of the lepton

in semileptonic decays. When the decay into π−ℓ+ν is observed, it cannot come from |K̄0⟩
so that the state |K0⟩ is filtered, and vice-versa for the decay into π+ℓ−ν̄.

The relevance of these assumptions will be discussed in section 4, where it will be

shown that they can be safely released for our purposes, without affecting the cleanliness

of the test.

3 CPT symmetry test at a φ-factory

Similarly to the T symmetry test proposed at a φ-factory (or B-factory) [22–25], the imple-

mentation of the CPT test proposed here exploits the Einstein-Podolsky-Rosen (EPR) [32]

entanglement of the neutral meson pair produced in φ → K0K̄0 decays. In fact in this case

– 4 –
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the kaon proper time t as pure exponentials

|KS(t)⟩ = e−iλSt|KS⟩
|KL(t)⟩ = e−iλLt|KL⟩ . (2.1)

with λS,L = mS,L − iΓS,L/2, and ΓS,L = (τS,L)−1. They are usually expressed in terms of

the flavor eigenstates |K0⟩, |K̄0⟩ as:

|KS⟩ =
1√

2 (1 + |ϵS |2)
[
(1 + ϵS)|K0⟩+ (1− ϵS)|K̄0⟩

]
(2.2)

|KL⟩ =
1√

2 (1 + |ϵL|2)
[
(1 + ϵL)|K0⟩ − (1− ϵL)|K̄0⟩

]
, (2.3)

with ϵS and ϵL two small complex parameters describing the CP impurity in the physical

states. One can equivalently define ϵ ≡ (ϵS+ϵL)/2, and δ ≡ (ϵS−ϵL)/2; adopting a suitable

phase convention (e.g. the Wu-Yang phase convention [29]) ϵ ̸= 0 implies T violation, δ ̸= 0

implies CPT violation, while δ ̸= 0 or ϵ ̸= 0 implies CP violation.

Let us also consider the states |K+⟩, |K−⟩ defined as follows: |K+⟩ is the state filtered

by the decay into ππ (π+π+ or π0π0), a pure CP = +1 state; analogously |K−⟩ is the state
filtered by the decay into 3π0, a pure CP = −1 state. Their orthogonal states correspond

to the states which cannot decay into ππ or 3π0, defined, respectively, as

|K̃−⟩ ≡ Ñ− [|KL⟩ − ηππ|KS⟩] (2.4)

|K̃+⟩ ≡ Ñ+ [|KS⟩ − η3π0 |KL⟩] (2.5)

with

ηππ =
⟨ππ|T |KL⟩
⟨ππ|T |KS⟩

(2.6)

η3π0 =
⟨3π0|T |KS⟩
⟨3π0|T |KL⟩

, (2.7)

and Ñ± two suitable normalization factors. With these definitions of states, |K+⟩ and |K−⟩
can be explicitly constructed imposing the conditions ⟨K̃±|K∓⟩ = 0:

|K+⟩ = N+ [|KS⟩+ α|KL⟩] (2.8)

|K−⟩ = N− [|KL⟩+ β|KS⟩] (2.9)

where

α =
η⋆ππ − ⟨KL|KS⟩
1− η⋆ππ⟨KS|KL⟩

, (2.10)

β =
η⋆3π0 − ⟨KS|KL⟩
1− η⋆3π0⟨KL|KS⟩

, (2.11)

and N± are two normalization factors.

Here we have kept separate definitions of the filtered states |K+⟩ and |K−⟩, which are

observed through their decay, from the tagged states |K̃+⟩ and |K̃−⟩, which are prepared
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and the validity of the ∆S = ∆Q rule, they are treated separately.

First, the effect of possible direct CP and CPT violation contributions is evaluated on

the observable ratios Rexp
i,CPT(∆t), while still assuming the ∆S = ∆Q rule. To this aim the

following parametrisation is introduced:

ηππ = ϵL + ϵ′ππ

η3π0 = ϵS + ϵ′3π0 , (4.1)

where ϵ′ππ and ϵ′3π0 represent the generic contributions of direct CP and/or CPT violation

in the ππ and 3π0 channels, respectively. In this more general case, the orthogonality

condition eqs. (2.12) is no more satisfied, and the true orthogonal pair to be considered in

writing the initial state (3.1) is {K+, K̃−} (or {K̃+,K−}) instead of {K+,K−}. The effect

of ϵ′ππ and ϵ′3π0 can be easily singled out in the explicit expressions of the observable ratios

(neglecting higher order terms in small parameters and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K̃−(0) → K̄0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1−ϵL√

2

)
η3π0 + e−iλL∆t

(
1−ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1−ϵS√

2

)
ηππ + e−iλL∆t

(
1−ϵL√

2

)∣∣∣
2 ×DCPT ,

≃ |1− 2δ|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t
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indicating that the quantity DCPT is measurable within the same experiment.
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exploiting the entanglement of the kaon pairs, as we will discuss in the next section. |K+⟩
and |K−⟩ are defined as the filtered states when observing definite CP = ±1 decay products.

Even though the decay products are orthogonal, the filtered |K+⟩ and |K−⟩ states can still

be nonorthoghonal. In the following we will assume

|K+⟩ ≡ |K̃+⟩
|K−⟩ ≡ |K̃−⟩ , (2.12)

which corresponds to impose the condition of orthogonality ⟨K−|K+⟩ = 0, implying that

β = −ηππ and α = −η3π0 , and a precise relationship between the two amplitude ratios ηππ
and η3π0 :

ηππ + η⋆3π0 − ηππη
⋆
3π0⟨KL|KS⟩ = ⟨KS|KL⟩

=
ϵL + ϵ⋆S√

(1 + |ϵL|2)(1 + |ϵS |2)
, (2.13)

Neglecting terms of O(ϵ3) (with ϵ = O(10−3)), therefore with a high degree of accuracy,

O(10−9), this translates into the following relation:

ηππ + η⋆3π0 = ϵL + ϵ⋆S . (2.14)

This clearly indicates that direct CP and CPT violation have to be neglected when imposing

assumption (2.12). In fact, for instance, eq. (2.14) cannot be simultaneously satisfied for

π+π− and π0π0 decays, being (ηπ+π− − ηπ0π0) = 3ϵ′, with ϵ′ = O(10−6) the direct CP

violation parameter [8]. Similar subtle points were previously discussed in the literature

for the T-asymmetry measurement in the flavour-CP eigenstates of J/ΨK0 decay channels

of Bd’s [30], as well as for any pair of decay channels [31].

More in general, while possible direct CPT violation contributions might be still cast

into the definition of the observable quantities for the CPT test that will be presented in

the next section, direct CP violation may appear as a contaminating fake effect which is

necessary to keep well under control.

Finally the validity of the ∆S = ∆Q rule will be assumed in the following, so that the

two flavor orthogonal eigenstates |K0⟩ and |K̄0⟩ are identified by the charge of the lepton

in semileptonic decays. When the decay into π−ℓ+ν is observed, it cannot come from |K̄0⟩
so that the state |K0⟩ is filtered, and vice-versa for the decay into π+ℓ−ν̄.

The relevance of these assumptions will be discussed in section 4, where it will be

shown that they can be safely released for our purposes, without affecting the cleanliness

of the test.

3 CPT symmetry test at a φ-factory

Similarly to the T symmetry test proposed at a φ-factory (or B-factory) [22–25], the imple-

mentation of the CPT test proposed here exploits the Einstein-Podolsky-Rosen (EPR) [32]

entanglement of the neutral meson pair produced in φ → K0K̄0 decays. In fact in this case
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the kaon proper time t as pure exponentials

|KS(t)⟩ = e−iλSt|KS⟩
|KL(t)⟩ = e−iλLt|KL⟩ . (2.1)

with λS,L = mS,L − iΓS,L/2, and ΓS,L = (τS,L)−1. They are usually expressed in terms of

the flavor eigenstates |K0⟩, |K̄0⟩ as:

|KS⟩ =
1√

2 (1 + |ϵS |2)
[
(1 + ϵS)|K0⟩+ (1− ϵS)|K̄0⟩

]
(2.2)

|KL⟩ =
1√

2 (1 + |ϵL|2)
[
(1 + ϵL)|K0⟩ − (1− ϵL)|K̄0⟩

]
, (2.3)

with ϵS and ϵL two small complex parameters describing the CP impurity in the physical

states. One can equivalently define ϵ ≡ (ϵS+ϵL)/2, and δ ≡ (ϵS−ϵL)/2; adopting a suitable

phase convention (e.g. the Wu-Yang phase convention [29]) ϵ ̸= 0 implies T violation, δ ̸= 0

implies CPT violation, while δ ̸= 0 or ϵ ̸= 0 implies CP violation.

Let us also consider the states |K+⟩, |K−⟩ defined as follows: |K+⟩ is the state filtered

by the decay into ππ (π+π+ or π0π0), a pure CP = +1 state; analogously |K−⟩ is the state
filtered by the decay into 3π0, a pure CP = −1 state. Their orthogonal states correspond

to the states which cannot decay into ππ or 3π0, defined, respectively, as

|K̃−⟩ ≡ Ñ− [|KL⟩ − ηππ|KS⟩] (2.4)

|K̃+⟩ ≡ Ñ+ [|KS⟩ − η3π0 |KL⟩] (2.5)

with

ηππ =
⟨ππ|T |KL⟩
⟨ππ|T |KS⟩

(2.6)

η3π0 =
⟨3π0|T |KS⟩
⟨3π0|T |KL⟩

, (2.7)

and Ñ± two suitable normalization factors. With these definitions of states, |K+⟩ and |K−⟩
can be explicitly constructed imposing the conditions ⟨K̃±|K∓⟩ = 0:

|K+⟩ = N+ [|KS⟩+ α|KL⟩] (2.8)

|K−⟩ = N− [|KL⟩+ β|KS⟩] (2.9)

where

α =
η⋆ππ − ⟨KL|KS⟩
1− η⋆ππ⟨KS|KL⟩

, (2.10)

β =
η⋆3π0 − ⟨KS|KL⟩
1− η⋆3π0⟨KL|KS⟩

, (2.11)

and N± are two normalization factors.

Here we have kept separate definitions of the filtered states |K+⟩ and |K−⟩, which are

observed through their decay, from the tagged states |K̃+⟩ and |K̃−⟩, which are prepared
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More in general, while possible direct CPT violation contributions might be still cast

into the definition of the observable quantities for the CPT test that will be presented in

the next section, direct CP violation may appear as a contaminating fake effect which is

necessary to keep well under control.

Finally the validity of the ∆S = ∆Q rule will be assumed in the following, so that the

two flavor orthogonal eigenstates |K0⟩ and |K̄0⟩ are identified by the charge of the lepton

in semileptonic decays. When the decay into π−ℓ+ν is observed, it cannot come from |K̄0⟩
so that the state |K0⟩ is filtered, and vice-versa for the decay into π+ℓ−ν̄.

The relevance of these assumptions will be discussed in section 4, where it will be

shown that they can be safely released for our purposes, without affecting the cleanliness

of the test.

3 CPT symmetry test at a φ-factory

Similarly to the T symmetry test proposed at a φ-factory (or B-factory) [22–25], the imple-

mentation of the CPT test proposed here exploits the Einstein-Podolsky-Rosen (EPR) [32]
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In order to study the impact of the approximations involved in the proposed CPT test,

namely negligible direct CP and CPT violation contributions in the ππ and 3π0 channels,

and the validity of the ∆S = ∆Q rule, they are treated separately.

First, the effect of possible direct CP and CPT violation contributions is evaluated on

the observable ratios Rexp
i,CPT(∆t), while still assuming the ∆S = ∆Q rule. To this aim the

following parametrisation is introduced:

ηππ = ϵL + ϵ′ππ

η3π0 = ϵS + ϵ′3π0 , (4.1)

where ϵ′ππ and ϵ′3π0 represent the generic contributions of direct CP and/or CPT violation

in the ππ and 3π0 channels, respectively. In this more general case, the orthogonality

condition eqs. (2.12) is no more satisfied, and the true orthogonal pair to be considered in

writing the initial state (3.1) is {K+, K̃−} (or {K̃+,K−}) instead of {K+,K−}. The effect

of ϵ′ππ and ϵ′3π0 can be easily singled out in the explicit expressions of the observable ratios

(neglecting higher order terms in small parameters and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K̃−(0) → K̄0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1−ϵL√

2

)
η3π0 + e−iλL∆t

(
1−ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1−ϵS√

2

)
ηππ + e−iλL∆t

(
1−ϵL√

2

)∣∣∣
2 ×DCPT ,

≃ |1− 2δ|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT , (4.2)

Rexp
4,CPT(∆t) =

P [K̄0(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1+ϵL√

2

)
η3π0 − e−iλL∆t

(
1+ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1+ϵS√

2

)
ηππ − e−iλL∆t

(
1+ϵL√

2

)∣∣∣
2 ×DCPT
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∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,
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(
2δ + ϵ′3π0 − ϵ′ππ
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∣∣∣
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×DCPT . (4.3)

It is important to realise from eqs. (4.2) and (4.3) that there exists a sum rule for ∆t ! 0

given by:

Rexp
2,CPT(∆t) +Rexp

4,CPT(∆t) = 2DCPT , (4.4)

indicating that the quantity DCPT is measurable within the same experiment.
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P [K0(0) → K−(∆t)]

P [K̃−(0) → K̄0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1−ϵL√

2

)
η3π0 + e−iλL∆t

(
1−ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1−ϵS√

2

)
ηππ + e−iλL∆t

(
1−ϵL√

2

)∣∣∣
2 ×DCPT ,

≃ |1− 2δ|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT , (4.2)

Rexp
4,CPT(∆t) =

P [K̄0(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1+ϵL√

2

)
η3π0 − e−iλL∆t

(
1+ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1+ϵS√

2

)
ηππ − e−iλL∆t

(
1+ϵL√

2

)∣∣∣
2 ×DCPT

≃ |1 + 2δ|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1 + 2δ|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT . (4.3)

It is important to realise from eqs. (4.2) and (4.3) that there exists a sum rule for ∆t ! 0

given by:

Rexp
2,CPT(∆t) +Rexp

4,CPT(∆t) = 2DCPT , (4.4)

indicating that the quantity DCPT is measurable within the same experiment.

– 10 –
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Table 2
Possible comparisons between CP-conjugated transitions and the associated
time-ordered decay products in the experimental φ-factory scheme.

Reference CP-conjugate

Transition Decay products Transition Decay products

K0 → K+ (ℓ−,ππ) K̄0 → K+ (ℓ+,ππ)

K0 → K− (ℓ−,3π0) K̄0 → K− (ℓ+,3π0)

K̄0 → K+ (ℓ+,ππ) K0 → K+ (ℓ−,ππ)

K̄0 → K− (ℓ+,3π0) K0 → K− (ℓ−,3π0)

Table 3
Possible comparisons between CPT -conjugated transitions and the associated
time-ordered decay products in the experimental φ-factory scheme.

Reference CPT -conjugate

Transition Decay products Transition Decay products

K0 → K+ (ℓ−,ππ) K+ → K̄0 (3π0,ℓ−)

K0 → K− (ℓ−,3π0) K− → K̄0 (ππ,ℓ−)

K̄0 → K+ (ℓ+,ππ) K+ → K0 (3π0,ℓ+)

K̄0 → K− (ℓ+,3π0) K− → K0 (ππ,ℓ+)

R3($t) = P
[
K̄0(0) → K+($t)

]
/P

[
K+(0) → K̄0($t)

]
,

R4($t) = P
[
K̄0(0) → K−($t)

]
/P

[
K−(0) → K̄0($t)

]
. (15)

The measurement of any deviation from the prediction

R1($t) = R2($t) = R3($t) = R4($t) = 1 (16)

imposed by T invariance is a signal of T violation. This outcome will be highly rewarding as a
model-independent and a direct observation of T violation.

If we express two generic orthogonal bases {KX, K̄X} and {KY, K̄Y}, which in our case corre-
spond to {K0, K̄0} or {K+,K−}, as follows:

|KX⟩ = XS |KS⟩ + XL|KL⟩, (17)

|K̄X⟩ = X̄S |KS⟩ + X̄L|KL⟩, (18)

|KY⟩ = YS |KS⟩ + YL|KL⟩, (19)

|K̄Y⟩ = ȲS |KS⟩ + ȲL|KL⟩, (20)

the generic quantum mechanical expression for the probabilities entering in Eqs. (15) is given
by

P
[
KX(0) → KY($t)

]
=

∣∣〈KY
∣∣KX($t)

〉∣∣2

= 1
|detY |2

∣∣e−iλS$tXSȲL − e−iλL$tXLȲS

∣∣2

= 1
|detY |2

{
e−ΓS$t |XSȲL|2 + e−ΓL$t |XLȲS |2

− 2e− (ΓS+ΓL)
2 $tℜ

(
ei$m$tXSȲLX⋆

LȲ ⋆
S

)}
, (21)

of the pair is totally antisymmetric and can be written in terms of any pair of orthogonal
states, e.g. K0 and K̄0, or K

+

and K�, as:

|ii = 1p
2
{|K0i|K̄0i � |K̄0i|K0i} =

1p
2
{|K

+

i|K�i � |K�i|K+

i} . (3.1)

Thus, exploiting the perfect anticorrelation of the state implied by eq. (3.1), which remains
unaltered until one of the two kaons decays, it is possible to have a “flavor-tag”or a “CP-tag”,
i.e. to infer the flavor (K0 or K̄0) or the CP (K

+

or K�) state of the still alive kaon by
observing a specific flavor decay1 (`� or `

+) or CP decay (⇡⇡ or 3⇡0) of the other (and
first decaying) kaon in the pair. For instance, the transition K0 ! K

+

and its associated
probability P

⇥
K0(0) ! K

+

(�t)
⇤

corresponds to the observation of a `

� decay at a proper
time t

1

of the opposite K̄0 and a ⇡⇡ decay at a later proper time t

2

= t

1

+�t, with �t > 0.
In other words, the `

� decay of a kaon on one side prepares, in the quantum mechanical
sense, the opposite (if undecayed) kaon in the state |K0i at a starting time t = 0. The |K0i
state freely evolves in time until its ⇡⇡ decay filters it in the state |K

+

i at a time t = �t.
In this way one can experimentally access all the four reference transitions listed in

Table 1, and their T , CP and CPT conjugated transitions. It can be easily checked that
the three conjugated transitions correspond to different categories of events; therefore the
comparisons between reference vs conjugated transitions correspond to independent T , CP
and CPT tests.

Reference T -conjug. CP-conjug. CPT -conjug.
K0 ! K

+

K
+

! K0 K̄0 ! K
+

K
+

! K̄0

K0 ! K� K� ! K0 K̄0 ! K� K� ! K̄0

K̄0 ! K
+

K
+

! K̄0 K0 ! K
+

K
+

! K0

K̄0 ! K� K� ! K̄0 K0 ! K� K� ! K0

Table 1. Scheme of possible reference transitions and their associated T , CP or CPT conjugated
processes accessible at a �-factory.

For the CPT symmetry test one can define the following ratios of probabilities:

R

1,CPT (�t) = P

⇥
K

+

(0) ! K̄0(�t)
⇤
/P

⇥
K0(0) ! K

+

(�t)
⇤

R

2,CPT (�t) = P

⇥
K0(0) ! K�(�t)

⇤
/P

⇥
K�(0) ! K̄0(�t)

⇤

R

3,CPT (�t) = P

⇥
K

+

(0) ! K0(�t)
⇤
/P

⇥
K̄0(0) ! K

+

(�t)
⇤

R

4,CPT (�t) = P

⇥
K̄0(0) ! K�(�t)

⇤
/P

⇥
K�(0) ! K0(�t)

⇤
. (3.2)

The measurement of any deviation from the prediction Ri,CPT (�t) = 1 imposed by CPT
invariance is a signal of CPT violation.
It is worth noting that for �t = 0:

R

1,CPT (0) = R

2,CPT (0) = R

3,CPT (0) = R

4,CPT (0) = 1 (3.3)
1
In the following the semileptonic decays ⇡+`�⌫ or ⇡�`+⌫̄ are denoted as `� and `+, respectively.

– 4 –
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Reference T -conjugate

Transition Decay products Transition Decay products

K0 � K+ (⇤�, ��) K+ � K0 (3�0, ⇤+)

K0 � K� (⇤�, 3�0) K� � K0 (��, ⇤+)

K̄0 � K+ (⇤+, ��) K+ � K̄0 (3�0, ⇤�)

K̄0 � K� (⇤+, 3�0) K� � K̄0 (��, ⇤�)

TABLE I: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 /////////////K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 /////////////K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 /////////////K̄0 � K0

K̄0 � K̄0 /////////////K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE II: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 K̄0 � K0

K̄0 � K̄0 K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE III: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.
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Reference T -conjugate

Transition Decay products Transition Decay products

K0 � K+ (⇤�, ��) K+ � K0 (3�0, ⇤+)

K0 � K� (⇤�, 3�0) K� � K0 (��, ⇤+)

K̄0 � K+ (⇤+, ��) K+ � K̄0 (3�0, ⇤�)
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TABLE I: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 /////////////K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 /////////////K0 � K̄0
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K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE II: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 K̄0 � K0

K̄0 � K̄0 K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE III: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Conjugate= 
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Reference T -conjugate

Transition Decay products Transition Decay products

K0 � K+ (⇤�, ��) K+ � K0 (3�0, ⇤+)

K0 � K� (⇤�, 3�0) K� � K0 (��, ⇤+)

K̄0 � K+ (⇤+, ��) K+ � K̄0 (3�0, ⇤�)

K̄0 � K� (⇤+, 3�0) K� � K̄0 (��, ⇤�)

TABLE I: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 /////////////K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 /////////////K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 /////////////K̄0 � K0
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K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE II: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0
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K� � K� K� � K� K� � K� K� � K�

TABLE III: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Conjugate= 
reference 

already in the  
table with 
conjugate as 
reference 
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Reference T -conjugate

Transition Decay products Transition Decay products
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TABLE II: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 K0 � K̄0
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K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE III: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Conjugate= 
reference 

Two identical 
conjugates 
for one reference 

already in the  
table with 
conjugate as 
reference 

Direct test of symmetries with neutral kaons  

18 
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4

Reference T -conjugate

Transition Decay products Transition Decay products

K0 � K+ (⇤�, ��) K+ � K0 (3�0, ⇤+)

K0 � K� (⇤�, 3�0) K� � K0 (��, ⇤+)

K̄0 � K+ (⇤+, ��) K+ � K̄0 (3�0, ⇤�)

K̄0 � K� (⇤+, 3�0) K� � K̄0 (��, ⇤�)

TABLE I: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 /////////////K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 /////////////K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 /////////////K̄0 � K0

K̄0 � K̄0 /////////////K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE II: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 K̄0 � K0

K̄0 � K̄0 K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE III: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Conjugate= 
reference 

Two identical 
conjugates 
for one reference 

already in the  
table with 
conjugate as 
reference 

Direct test of symmetries with neutral kaons  

4 distinct tests 
of T symmetry 

4 distinct tests 
of CP symmetry 

4 distinct tests 
of CPT symmetry 

19 
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•  The in<->out states inversion required in a DIRECT test of CPT (or T)  
can be performed exploiting the properties of the quantum entanglement. 

•  In maximally entangled systems the complete knowledge of the system as a 
whole is encoded in the state, no information on single subsystems is 
available. 

•  Once a measurement is performed on one subsystem, then the information is 
immediately transferred to its partner, which is prepared in the orthogonal state 

•  At a φ-factory: σ(e+e- → φ ) ~3 mb;   W = mφ = 1019.4 MeV BR(φ → K0K0) ~34% 
~106/pb-1 KK pairs produced in an antisymmetric quantum state  with JPC = 1--  : 

Quantum entanglement as a tool 

  

€ 
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K 0  p ( ) K 0 −  p ( ) − K 0  p ( ) K 0 −
 p ( )[ ]

=
N
2

KS
 p ( ) KL −
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 p ( )[ ]

€ 

N = 1+ εS
2( ) 1+ εL

2( ) 1−εSεL( ) ≅1
KL,S 

KS,L 
e- e+ φ

pK = 110 MeV/c      
λS = 6 mm     λL = 3.5 m 
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• EPR correlations at a φ-factory can be exploited to study transitions involving 
orthogonal “CP states” K+ and K- 

φ
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      3π0 
K0

 
   π+l-ν 
 

t1 

K0
 

Δt=t2-t1 

K-
 

  

€ 

i =
1
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K 0 ! p ( ) K 0 − ! p ( ) − K 0 ! p ( ) K 0 −
! p ( )[ ]

=
1
2

K+

! p ( ) K− −
! p ( ) − K−

! p ( ) K+ −
! p ( )[ ]

• decay as filtering  
measurement 
• entanglement -> 
preparation of state 

21 

Entanglement in neutral kaon pairs  
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• EPR correlations at a φ-factory can be exploited to study transitions involving 
orthogonal “CP states” K+ and K- 

φ
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K0
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K-
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€ 

K 0 →K−
reference process 

• decay as filtering  
measurement 
• entanglement -> 
preparation of state 
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Entanglement in neutral kaon pairs  



A. Di Domenico  Workshop on the Standard Model and Beyond, Corfu’, Greece – 31 August – 9 September 2018 

• EPR correlations at a φ-factory can be exploited to study transitions involving 
orthogonal “CP states” K+ and K- 
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Entanglement in neutral kaon pairs  
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• EPR correlations at a φ-factory can be exploited to study transitions involving 
orthogonal “CP states” K+ and K- 
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• EPR correlations at a φ-factory can be exploited to study transitions involving 
orthogonal “CP states” K+ and K- 
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Note: CP and T conjugated process 
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Entanglement in neutral kaon pairs  
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Direct test of CPT symmetry in neutral kaon transitions 
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where the coefficient C(fX̄ , fY ), depending only on the final states fX̄ and fY , is given by:

C(fX̄ , fY ) =
1

2(ΓS + ΓL)

∣∣⟨fX̄ |T |K̄X⟩⟨fY |T |KY⟩
∣∣2 (3.7)

and P [KX(0) → KY(∆t)] is the generic KX → KY transition probability which contains

the ∆t time dependence only.

It’s worth noting that a similar expression can be easily formulated also for the case ∆t < 0:

I(fX̄ , fY ;∆t) = C(fX̄ , fY )× P
[
K̄Y(0) → K̄X(|∆t|)

]
. (3.8)

Therefore, at a φ-factory one can define the observable ratios:

Rexp
2,CPT(∆t) ≡ I(ℓ−, 3π0;∆t)

I(ππ, ℓ−;∆t)
(3.9)

Rexp
4,CPT(∆t) ≡ I(ℓ+, 3π0;∆t)

I(ππ, ℓ+;∆t)
, (3.10)

which are related to the Ri,CPT(∆t) ratios defined in eqs. (3.2) as follows, for ∆t ≥ 0:

Rexp
2,CPT(∆t) = R2,CPT(∆t)×DCPT

Rexp
4,CPT(∆t) = R4,CPT(∆t)×DCPT (3.11)

whereas for ∆t < 0 one has:

Rexp
2,CPT(∆t) = R1,CPT(|∆t|)×DCPT

Rexp
4,CPT(∆t) = R3,CPT(|∆t|)×DCPT , (3.12)

with DCPT the ratio of coefficients:

DCPT =
C(ℓ−, 3π0;∆t)

C(ππ, ℓ−;∆t)
=

C(ℓ+, 3π0;∆t)

C(ππ, ℓ+;∆t)
=

∣∣⟨3π0|T |K−⟩
∣∣2

|⟨ππ|T |K+⟩|2
(3.13)

that can be expressed, with a high degree of accuracy, at least O(10−7), as:

DCPT =
BR

(
KL → 3π0

)

BR (KS → ππ)

ΓL

ΓS
. (3.14)

The value of DCPT can be therefore evaluated from branching ratios and lifetimes,

but it is also directly measurable from the observable ratios (3.9) and (3.10), as it will be

discussed in detail in the next section.

The explicit expressions of ratios (3.9) and (3.10) (neglecting higher order terms in

small parameters and for not too large negative ∆t) are:

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K−(0) → K̄0(∆t)]
×DCPT

≃ |1− 2δ|2
∣∣∣1 + 2δe−i(λS−λL)∆t

∣∣∣
2
×DCPT , (3.15)
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Explicitly in standard Wigner Weisskopf approach for Δt>0: 
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Figure 1. The ratios Rexp
2,CPT(∆t) and Rexp

4,CPT(∆t) as a function of ∆t. For visualization purposes
the CPT violating parameters have been fixed to the values ℜδ = 3.3× 10−4 and ℑδ = 1.6× 10−5.

Rexp
4,CPT(∆t) =

P [K̄0(0) → K−(∆t)]

P [K−(0) → K0(∆t)]
×DCPT

≃ |1 + 2δ|2
∣∣∣1− 2δe−i(λS−λL)∆t

∣∣∣
2
×DCPT . (3.16)

The expected behavior of the observables Rexp
2,CPT(∆t) and Rexp

4,CPT(∆t) as a function of

∆t, and without the approximations of eqs. (3.15) and (3.16), is shown in figure 1, where

— for visualization purposes — the probabilities involved have been evaluated fixing the

CPT violating parameters ℜδ and ℑδ to a value different from zero, and equal to their

present uncertainties [8], i.e. ℜδ = 3.3 × 10−4 and ℑδ = 1.6 × 10−5. In figure 2 a zoom

of the ∆t > 0 region, where the “plateau” regimes (3.4) and (3.5) dominate, is shown.

Experimentally, this is the most interesting and statistically most populated region, where

the best sensitivity to CPT violation effects can be reached by the KLOE-2 experiment

(see section 4).

We emphasise that these observables are genuine CPT violating effects by comparing

experimentally the probability for a given transition and its CPT reverse, independent of

any theoretical scenario generating this effect. When they are interpreted in a model for

CPT violation in the mass matrix (i.e. with δ ̸= 0) and nothing else, these observables can

be compared with the result expected for the survival probabilities (diagonal processes)

like the one that has been measured by the CPLEAR experiment [18]. In this case, the

– 8 –

For comparison the ratio of survival probabilities: 
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Figure 2. A zoom of the plots shown in figure 1 in the region 0 ≤ ∆t ≤ 20τS .

CPLEAR asymmetry can be easily translated into our formalism as an observable ratio of

probabilities (in this case DCPT = 1):

I(ℓ−, ℓ+;∆t)

I(ℓ+, ℓ−;∆t)
=

P [K0(0) → K0(∆t)]

P [K̄0(0) → K̄0(∆t)]

≃ |1− 4δ|2
∣∣∣∣1 +

8δ

1 + e+i(λS−λL)∆t

∣∣∣∣
2

. (3.17)

The comparison of equations (3.15) and (3.16) with equation (3.17) shows that even

within the same model, the difference in the dependence on the CPT violation parameter

δ is apparent. In the limit ∆Γ → 0 the ratio (3.17) tends to unity for all times, whereas

ratios (3.15) and (3.16) are different from unity through ℜδ, which is independent of ∆Γ.

Moreover, just as an illustration of the different sensitivity of these observables to CPT

violation, in the hypothesis of CPT-violating effects introduced via a deviation from con-

ventional quantum mechanics, believed to reflect the loss of quantum coherence expected in

some approaches to quantum gravity [37, 38], the ratio (3.17) is insensitive to these effects

(up to second order in the CPT violation parameters of the model and for all times [38]),

while it can be shown that ratios (3.15) and (3.16) are sensitive to them at first order in

some of the parameters.

– 9 –

Vanishes for ΔΓ->0 
 
As an illustration of the different  
sensitivity: it vanishes up to  
second order in CPTV and  
decoherence parameters α,β,γ
(Ellis, Mavromatos et al. PRD1996) 

Two observable ratios of  
double decay intensities 

JHEP10(2015)139

where the coefficient C(fX̄ , fY ), depending only on the final states fX̄ and fY , is given by:

C(fX̄ , fY ) =
1

2(ΓS + ΓL)

∣∣⟨fX̄ |T |K̄X⟩⟨fY |T |KY⟩
∣∣2 (3.7)

and P [KX(0) → KY(∆t)] is the generic KX → KY transition probability which contains

the ∆t time dependence only.

It’s worth noting that a similar expression can be easily formulated also for the case ∆t < 0:

I(fX̄ , fY ;∆t) = C(fX̄ , fY )× P
[
K̄Y(0) → K̄X(|∆t|)

]
. (3.8)

Therefore, at a φ-factory one can define the observable ratios:

Rexp
2,CPT(∆t) ≡ I(ℓ−, 3π0;∆t)

I(ππ, ℓ−;∆t)
(3.9)

Rexp
4,CPT(∆t) ≡ I(ℓ+, 3π0;∆t)

I(ππ, ℓ+;∆t)
, (3.10)

which are related to the Ri,CPT(∆t) ratios defined in eqs. (3.2) as follows, for ∆t ≥ 0:

Rexp
2,CPT(∆t) = R2,CPT(∆t)×DCPT

Rexp
4,CPT(∆t) = R4,CPT(∆t)×DCPT (3.11)

whereas for ∆t < 0 one has:

Rexp
2,CPT(∆t) = R1,CPT(|∆t|)×DCPT

Rexp
4,CPT(∆t) = R3,CPT(|∆t|)×DCPT , (3.12)

with DCPT the ratio of coefficients:

DCPT =
C(ℓ−, 3π0;∆t)

C(ππ, ℓ−;∆t)
=

C(ℓ+, 3π0;∆t)

C(ππ, ℓ+;∆t)
=

∣∣⟨3π0|T |K−⟩
∣∣2

|⟨ππ|T |K+⟩|2
(3.13)

that can be expressed, with a high degree of accuracy, at least O(10−7), as:

DCPT =
BR

(
KL → 3π0

)

BR (KS → ππ)

ΓL

ΓS
. (3.14)

The value of DCPT can be therefore evaluated from branching ratios and lifetimes,

but it is also directly measurable from the observable ratios (3.9) and (3.10), as it will be

discussed in detail in the next section.

The explicit expressions of ratios (3.9) and (3.10) (neglecting higher order terms in

small parameters and for not too large negative ∆t) are:

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K−(0) → K̄0(∆t)]
×DCPT

≃ |1− 2δ|2
∣∣∣1 + 2δe−i(λS−λL)∆t

∣∣∣
2
×DCPT , (3.15)
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with DCPT constant  
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Impact of the approximations  

Explicitly for Δt>0: 
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Figure 4. A zoom of the plots shown in figure 3 in the region 0 ≤ ∆t ≤ 20τS .

and N0, N0̄ two suitable normalization factors.

The orthogonal pairs {K̃0,K0̄} and {K̃0̄,K0} (note the different symbols adopted in

this case with respect to K0, K̄0) constitute now the true orthogonal bases to be considered.

The effect of the ∆S ̸= ∆Q parameters x+ and x− can be easily singled out in the explicit

expressions of the observable ratios (still neglecting higher order terms in small parameters

and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K̃0(0) → K−(∆t)]

P [K̃−(0) → K0̄(∆t)]
×DCPT

=

∣∣e−iλS∆t(ηℓ−)(η3π0)− e−iλL∆t
∣∣2

|e−iλS∆t(ηππ)− e−iλL∆t(ηℓ−)|
2 ×DCPT ,

≃
∣∣∣∣
1

ηℓ−

∣∣∣∣
2 ∣∣∣∣1 +

(
ηππ
ηℓ−

− (ηℓ−)(η3π0)

)
e−i(λS−λL)∆t

∣∣∣∣
2

×DCPT ,

≃ |1− 2δ + 2x⋆+ − 2x⋆−|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ + 2x⋆+ − 2x⋆−|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.17)
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Rexp
4,CPT(∆t) =

P [K̃0̄(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣e−iλS∆t(ηℓ+)(η3π0)− e−iλL∆t
∣∣2

|e−iλS∆t(ηππ)− e−iλL∆t(ηℓ+)|
2 ×DCPT ,

≃
∣∣∣∣
1

ηℓ+

∣∣∣∣
2 ∣∣∣∣1 +

(
ηππ
ηℓ+

− (ηℓ+)(η3π0)

)
e−i(λS−λL)∆t

∣∣∣∣
2

×DCPT ,

≃ |1 + 2δ + 2x+ + 2x−|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT

= |1 + 2δ + 2x+ + 2x−|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.18)

In the limit ∆t = 0 the deviation of each ratio from unity (once DCPT is factored out)

is given by the contaminating parameters ℜϵ′3π0 , ℜϵ′ππ, and x+, and by the x− parameter,

which is explicitly CPT violating in the ∆S ̸= ∆Q decay amplitudes, and can be considered

a genuine source of CPT violation:

Rexp
2,CPT(0) =

[
1 + 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ − x−)

]
×DCPT (4.19)

Rexp
4,CPT(0) =

[
1− 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ + x−)

]
×DCPT . (4.20)

In the limit ∆t ≫ τS we get:

Rexp
2,CPT(∆t ≫ τS) = (1− 4ℜδ + 4ℜx+ − 4ℜx−)×DCPT (4.21)

Rexp
4,CPT(∆t ≫ τS) = (1 + 4ℜδ + 4ℜx+ + 4ℜx−)×DCPT . (4.22)

These results suggest the possibility of having a measurement independent of x+ and

DCPT, directly measuring the double ratio:

Rexp
2,CPT(∆t)

Rexp
4,CPT(∆t)

≃ (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2 (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2

= (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
,

(4.23)

which becomes for ∆t = 0:

Rexp
2,CPT(0)

Rexp
4,CPT(0)

= 1− 8ℜx− + 4ℜ(ϵ′3π0 − ϵ′ππ) . (4.24)

and in the limit ∆t ≫ τS :

Rexp
2,CPT(∆t ≫ τS)

Rexp
4,CPT(∆t ≫ τS)

= 1− 8ℜδ − 8ℜx− . (4.25)

The double ratio (4.23) constitutes one of the most robust observables for our proposed

CPT test. In the limit ∆t ≫ τS it exhibits a pure and genuine CPT violating effect,
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Figure 4. A zoom of the plots shown in figure 3 in the region 0 ≤ ∆t ≤ 20τS .

and N0, N0̄ two suitable normalization factors.

The orthogonal pairs {K̃0,K0̄} and {K̃0̄,K0} (note the different symbols adopted in

this case with respect to K0, K̄0) constitute now the true orthogonal bases to be considered.

The effect of the ∆S ̸= ∆Q parameters x+ and x− can be easily singled out in the explicit

expressions of the observable ratios (still neglecting higher order terms in small parameters

and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K̃0(0) → K−(∆t)]

P [K̃−(0) → K0̄(∆t)]
×DCPT

=

∣∣e−iλS∆t(ηℓ−)(η3π0)− e−iλL∆t
∣∣2

|e−iλS∆t(ηππ)− e−iλL∆t(ηℓ−)|
2 ×DCPT ,

≃
∣∣∣∣
1

ηℓ−

∣∣∣∣
2 ∣∣∣∣1 +

(
ηππ
ηℓ−

− (ηℓ−)(η3π0)

)
e−i(λS−λL)∆t

∣∣∣∣
2

×DCPT ,

≃ |1− 2δ + 2x⋆+ − 2x⋆−|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ + 2x⋆+ − 2x⋆−|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.17)
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Rexp
4,CPT(∆t) =

P [K̃0̄(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣e−iλS∆t(ηℓ+)(η3π0)− e−iλL∆t
∣∣2

|e−iλS∆t(ηππ)− e−iλL∆t(ηℓ+)|
2 ×DCPT ,

≃
∣∣∣∣
1

ηℓ+

∣∣∣∣
2 ∣∣∣∣1 +

(
ηππ
ηℓ+

− (ηℓ+)(η3π0)

)
e−i(λS−λL)∆t

∣∣∣∣
2

×DCPT ,

≃ |1 + 2δ + 2x+ + 2x−|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT

= |1 + 2δ + 2x+ + 2x−|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.18)

In the limit ∆t = 0 the deviation of each ratio from unity (once DCPT is factored out)

is given by the contaminating parameters ℜϵ′3π0 , ℜϵ′ππ, and x+, and by the x− parameter,

which is explicitly CPT violating in the ∆S ̸= ∆Q decay amplitudes, and can be considered

a genuine source of CPT violation:

Rexp
2,CPT(0) =

[
1 + 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ − x−)

]
×DCPT (4.19)

Rexp
4,CPT(0) =

[
1− 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ + x−)

]
×DCPT . (4.20)

In the limit ∆t ≫ τS we get:

Rexp
2,CPT(∆t ≫ τS) = (1− 4ℜδ + 4ℜx+ − 4ℜx−)×DCPT (4.21)

Rexp
4,CPT(∆t ≫ τS) = (1 + 4ℜδ + 4ℜx+ + 4ℜx−)×DCPT . (4.22)

These results suggest the possibility of having a measurement independent of x+ and

DCPT, directly measuring the double ratio:

Rexp
2,CPT(∆t)

Rexp
4,CPT(∆t)

≃ (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2 (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2

= (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
,

(4.23)

which becomes for ∆t = 0:

Rexp
2,CPT(0)

Rexp
4,CPT(0)

= 1− 8ℜx− + 4ℜ(ϵ′3π0 − ϵ′ππ) . (4.24)

and in the limit ∆t ≫ τS :

Rexp
2,CPT(∆t ≫ τS)

Rexp
4,CPT(∆t ≫ τS)

= 1− 8ℜδ − 8ℜx− . (4.25)

The double ratio (4.23) constitutes one of the most robust observables for our proposed

CPT test. In the limit ∆t ≫ τS it exhibits a pure and genuine CPT violating effect,
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4 Impact of the approximations on the test. Results.

In order to study the impact of the approximations involved in the proposed CPT test,

namely negligible direct CP and CPT violation contributions in the ππ and 3π0 channels,

and the validity of the ∆S = ∆Q rule, they are treated separately.

First, the effect of possible direct CP and CPT violation contributions is evaluated on

the observable ratios Rexp
i,CPT(∆t), while still assuming the ∆S = ∆Q rule. To this aim the

following parametrisation is introduced:

ηππ = ϵL + ϵ′ππ

η3π0 = ϵS + ϵ′3π0 , (4.1)

where ϵ′ππ and ϵ′3π0 represent the generic contributions of direct CP and/or CPT violation

in the ππ and 3π0 channels, respectively. In this more general case, the orthogonality

condition eqs. (2.12) is no more satisfied, and the true orthogonal pair to be considered in

writing the initial state (3.1) is {K+, K̃−} (or {K̃+,K−}) instead of {K+,K−}. The effect

of ϵ′ππ and ϵ′3π0 can be easily singled out in the explicit expressions of the observable ratios

(neglecting higher order terms in small parameters and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K̃−(0) → K̄0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1−ϵL√

2

)
η3π0 + e−iλL∆t

(
1−ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1−ϵS√

2

)
ηππ + e−iλL∆t

(
1−ϵL√

2

)∣∣∣
2 ×DCPT ,

≃ |1− 2δ|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT , (4.2)

Rexp
4,CPT(∆t) =

P [K̄0(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1+ϵL√

2

)
η3π0 − e−iλL∆t

(
1+ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1+ϵS√

2

)
ηππ − e−iλL∆t

(
1+ϵL√

2

)∣∣∣
2 ×DCPT

≃ |1 + 2δ|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1 + 2δ|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT . (4.3)

It is important to realise from eqs. (4.2) and (4.3) that there exists a sum rule for ∆t ! 0

given by:

Rexp
2,CPT(∆t) +Rexp

4,CPT(∆t) = 2DCPT , (4.4)

indicating that the quantity DCPT is measurable within the same experiment.
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Figure 3. The expected ratios for the CPT test Rexp
2,CPT(∆t) (top) and Rexp

4,CPT(∆t) (bottom) as
a function of ∆t (solid line); dashed lines correspond to ±10% variation in the absolute value of
η3π0 , while dotted lines correspond to a ±10◦ variation of its phase (with respect to the value
η3π0 = ϵS). For visualization purposes the CPT violating parameters have been fixed to the values
ℜδ = 3.3× 10−4 and ℑδ = 1.6× 10−5.

and the x+, x− parameters defined as:

x± =
1

2

[(
A(K̄0 → ℓ+)

A(K0 → ℓ+)

)
±
(
A(K0 → ℓ−)

A(K̄0 → ℓ−)

)⋆]
, (4.13)

and corresponding to CPT-invariant and CPT-violating ∆S = ∆Q rule violation, respec-

tively.

The orthogonal partners of |K̃0⟩ and |K̃0̄⟩ states are, respectively:

|K0̄⟩ ≡ N0̄ [|KL⟩+ γ−|KS⟩] (4.14)

|K0⟩ ≡ N0 [|KL⟩+ γ+|KS⟩] (4.15)

with

γ± =
1− η⋆ℓ±⟨KS|KL⟩
η⋆ℓ± − ⟨KL|KS⟩

, (4.16)

– 12 –

CPT cons. and CPT viol. 
ΔS=ΔQ violation 

Direct CP (CPT) violation 

JHEP10(2015)139

4 Impact of the approximations on the test. Results.

In order to study the impact of the approximations involved in the proposed CPT test,

namely negligible direct CP and CPT violation contributions in the ππ and 3π0 channels,

and the validity of the ∆S = ∆Q rule, they are treated separately.

First, the effect of possible direct CP and CPT violation contributions is evaluated on

the observable ratios Rexp
i,CPT(∆t), while still assuming the ∆S = ∆Q rule. To this aim the

following parametrisation is introduced:

ηππ = ϵL + ϵ′ππ

η3π0 = ϵS + ϵ′3π0 , (4.1)

where ϵ′ππ and ϵ′3π0 represent the generic contributions of direct CP and/or CPT violation

in the ππ and 3π0 channels, respectively. In this more general case, the orthogonality

condition eqs. (2.12) is no more satisfied, and the true orthogonal pair to be considered in

writing the initial state (3.1) is {K+, K̃−} (or {K̃+,K−}) instead of {K+,K−}. The effect

of ϵ′ππ and ϵ′3π0 can be easily singled out in the explicit expressions of the observable ratios

(neglecting higher order terms in small parameters and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K̃−(0) → K̄0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1−ϵL√

2

)
η3π0 + e−iλL∆t

(
1−ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1−ϵS√

2

)
ηππ + e−iλL∆t

(
1−ϵL√

2

)∣∣∣
2 ×DCPT ,

≃ |1− 2δ|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT , (4.2)

Rexp
4,CPT(∆t) =

P [K̄0(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1+ϵL√

2

)
η3π0 − e−iλL∆t

(
1+ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1+ϵS√

2

)
ηππ − e−iλL∆t

(
1+ϵL√

2

)∣∣∣
2 ×DCPT

≃ |1 + 2δ|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1 + 2δ|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT . (4.3)

It is important to realise from eqs. (4.2) and (4.3) that there exists a sum rule for ∆t ! 0

given by:

Rexp
2,CPT(∆t) +Rexp

4,CPT(∆t) = 2DCPT , (4.4)

indicating that the quantity DCPT is measurable within the same experiment.
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Figure 4. A zoom of the plots shown in figure 3 in the region 0 ≤ ∆t ≤ 20τS .

and N0, N0̄ two suitable normalization factors.

The orthogonal pairs {K̃0,K0̄} and {K̃0̄,K0} (note the different symbols adopted in

this case with respect to K0, K̄0) constitute now the true orthogonal bases to be considered.

The effect of the ∆S ̸= ∆Q parameters x+ and x− can be easily singled out in the explicit

expressions of the observable ratios (still neglecting higher order terms in small parameters

and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K̃0(0) → K−(∆t)]

P [K̃−(0) → K0̄(∆t)]
×DCPT

=

∣∣e−iλS∆t(ηℓ−)(η3π0)− e−iλL∆t
∣∣2

|e−iλS∆t(ηππ)− e−iλL∆t(ηℓ−)|
2 ×DCPT ,

≃
∣∣∣∣
1

ηℓ−

∣∣∣∣
2 ∣∣∣∣1 +

(
ηππ
ηℓ−

− (ηℓ−)(η3π0)

)
e−i(λS−λL)∆t

∣∣∣∣
2

×DCPT ,

≃ |1− 2δ + 2x⋆+ − 2x⋆−|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ + 2x⋆+ − 2x⋆−|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.17)
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4 Impact of the approximations on the test. Results.

In order to study the impact of the approximations involved in the proposed CPT test,

namely negligible direct CP and CPT violation contributions in the ππ and 3π0 channels,

and the validity of the ∆S = ∆Q rule, they are treated separately.

First, the effect of possible direct CP and CPT violation contributions is evaluated on

the observable ratios Rexp
i,CPT(∆t), while still assuming the ∆S = ∆Q rule. To this aim the

following parametrisation is introduced:

ηππ = ϵL + ϵ′ππ

η3π0 = ϵS + ϵ′3π0 , (4.1)

where ϵ′ππ and ϵ′3π0 represent the generic contributions of direct CP and/or CPT violation

in the ππ and 3π0 channels, respectively. In this more general case, the orthogonality

condition eqs. (2.12) is no more satisfied, and the true orthogonal pair to be considered in

writing the initial state (3.1) is {K+, K̃−} (or {K̃+,K−}) instead of {K+,K−}. The effect

of ϵ′ππ and ϵ′3π0 can be easily singled out in the explicit expressions of the observable ratios

(neglecting higher order terms in small parameters and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K̃−(0) → K̄0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1−ϵL√

2

)
η3π0 + e−iλL∆t

(
1−ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1−ϵS√

2

)
ηππ + e−iλL∆t

(
1−ϵL√

2

)∣∣∣
2 ×DCPT ,

≃ |1− 2δ|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT , (4.2)

Rexp
4,CPT(∆t) =

P [K̄0(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1+ϵL√

2

)
η3π0 − e−iλL∆t

(
1+ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1+ϵS√

2

)
ηππ − e−iλL∆t

(
1+ϵL√

2

)∣∣∣
2 ×DCPT

≃ |1 + 2δ|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1 + 2δ|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT . (4.3)

It is important to realise from eqs. (4.2) and (4.3) that there exists a sum rule for ∆t ! 0

given by:

Rexp
2,CPT(∆t) +Rexp

4,CPT(∆t) = 2DCPT , (4.4)

indicating that the quantity DCPT is measurable within the same experiment.
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Rexp
4,CPT(∆t) =

P [K̃0̄(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣e−iλS∆t(ηℓ+)(η3π0)− e−iλL∆t
∣∣2

|e−iλS∆t(ηππ)− e−iλL∆t(ηℓ+)|
2 ×DCPT ,

≃
∣∣∣∣
1

ηℓ+

∣∣∣∣
2 ∣∣∣∣1 +

(
ηππ
ηℓ+

− (ηℓ+)(η3π0)

)
e−i(λS−λL)∆t

∣∣∣∣
2

×DCPT ,

≃ |1 + 2δ + 2x+ + 2x−|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT

= |1 + 2δ + 2x+ + 2x−|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.18)

In the limit ∆t = 0 the deviation of each ratio from unity (once DCPT is factored out)

is given by the contaminating parameters ℜϵ′3π0 , ℜϵ′ππ, and x+, and by the x− parameter,

which is explicitly CPT violating in the ∆S ̸= ∆Q decay amplitudes, and can be considered

a genuine source of CPT violation:

Rexp
2,CPT(0) =

[
1 + 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ − x−)

]
×DCPT (4.19)

Rexp
4,CPT(0) =

[
1− 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ + x−)

]
×DCPT . (4.20)

In the limit ∆t ≫ τS we get:

Rexp
2,CPT(∆t ≫ τS) = (1− 4ℜδ + 4ℜx+ − 4ℜx−)×DCPT (4.21)

Rexp
4,CPT(∆t ≫ τS) = (1 + 4ℜδ + 4ℜx+ + 4ℜx−)×DCPT . (4.22)

These results suggest the possibility of having a measurement independent of x+ and

DCPT, directly measuring the double ratio:

Rexp
2,CPT(∆t)

Rexp
4,CPT(∆t)

≃ (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2 (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2

= (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
,

(4.23)

which becomes for ∆t = 0:

Rexp
2,CPT(0)

Rexp
4,CPT(0)

= 1− 8ℜx− + 4ℜ(ϵ′3π0 − ϵ′ππ) . (4.24)

and in the limit ∆t ≫ τS :

Rexp
2,CPT(∆t ≫ τS)

Rexp
4,CPT(∆t ≫ τS)

= 1− 8ℜδ − 8ℜx− . (4.25)

The double ratio (4.23) constitutes one of the most robust observables for our proposed

CPT test. In the limit ∆t ≫ τS it exhibits a pure and genuine CPT violating effect,
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Rexp
4,CPT(∆t) =

P [K̃0̄(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣e−iλS∆t(ηℓ+)(η3π0)− e−iλL∆t
∣∣2

|e−iλS∆t(ηππ)− e−iλL∆t(ηℓ+)|
2 ×DCPT ,

≃
∣∣∣∣
1

ηℓ+

∣∣∣∣
2 ∣∣∣∣1 +

(
ηππ
ηℓ+

− (ηℓ+)(η3π0)

)
e−i(λS−λL)∆t

∣∣∣∣
2

×DCPT ,

≃ |1 + 2δ + 2x+ + 2x−|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT

= |1 + 2δ + 2x+ + 2x−|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.18)

In the limit ∆t = 0 the deviation of each ratio from unity (once DCPT is factored out)

is given by the contaminating parameters ℜϵ′3π0 , ℜϵ′ππ, and x+, and by the x− parameter,

which is explicitly CPT violating in the ∆S ̸= ∆Q decay amplitudes, and can be considered

a genuine source of CPT violation:

Rexp
2,CPT(0) =

[
1 + 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ − x−)

]
×DCPT (4.19)

Rexp
4,CPT(0) =

[
1− 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ + x−)

]
×DCPT . (4.20)

In the limit ∆t ≫ τS we get:

Rexp
2,CPT(∆t ≫ τS) = (1− 4ℜδ + 4ℜx+ − 4ℜx−)×DCPT (4.21)

Rexp
4,CPT(∆t ≫ τS) = (1 + 4ℜδ + 4ℜx+ + 4ℜx−)×DCPT . (4.22)

These results suggest the possibility of having a measurement independent of x+ and

DCPT, directly measuring the double ratio:

Rexp
2,CPT(∆t)

Rexp
4,CPT(∆t)

≃ (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2 (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2

= (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
,

(4.23)

which becomes for ∆t = 0:

Rexp
2,CPT(0)

Rexp
4,CPT(0)

= 1− 8ℜx− + 4ℜ(ϵ′3π0 − ϵ′ππ) . (4.24)

and in the limit ∆t ≫ τS :

Rexp
2,CPT(∆t ≫ τS)

Rexp
4,CPT(∆t ≫ τS)

= 1− 8ℜδ − 8ℜx− . (4.25)

The double ratio (4.23) constitutes one of the most robust observables for our proposed

CPT test. In the limit ∆t ≫ τS it exhibits a pure and genuine CPT violating effect,
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proposed CPT test. In the limit ∆t ≫ τS it exhibits a pure and genuine CPT 
violating effect, even without assuming negligible contaminations from direct 
CP violation and/or ΔS=ΔQ rule violation. 

There exists a connection with charge semileptonic asymmetries of KS and KL 
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even without the assumptions of the validity of the ∆S = ∆Q rule and of negligible

contaminations from direct CP violation.

In principle, the possible contribution of ℜx− might be disentangled from the one of

ℜδ, or at least bound, by making a study of the time dependence of the double ratio in

the ∆t < 0 region — the most difficult experimentally, due to the lack of statistics — and

independently measuring the direct CP violation contributions in 3π0 and ππ decays, or

making an ansatz on their size.

The KLOE-2 experiment at the DAΦNE facility could make a measurement of the

two observable ratios Rexp
2,CPT(∆t) and Rexp

4,CPT(∆t), with an integrated luminosity L of

O(10 fb−1) [28]. The I(f1, f2;∆t) distributions have been evaluated with a simple Monte

Carlo simulation, making the approximation of a gaussian ∆t experimental resolution with

σ = 1 τS , and a full detection efficiency, as discussed in detail in ref. [22]. From this study it

emerges that the I(ℓ±, 3π0;∆t) distributions, at the considered integrated luminosity, have

very few or no events for∆t ! −5 τS . While a complete feasibility study is beyond the scope

of the present paper, by considering a large ∆t interval in the statistically most populated

region, e.g. 0 ≤ ∆t ≤ 300 τS , which is the most interesting one for our CPT test, a statistical

sensitivity on the double ratio (4.25) of (3.0×10−3), (2.1×10−3), and (1.5×10−3) is obtained

for L = 5, 10, and 20 fb−1, respectively. Once translated into an uncertainty on ℜδ, these
results might improve the present best measurement by CPLEAR [18].

As a final remark it’s worth noting that the double ratio in eq. (4.25) in practice

corresponds to the following ratio of combinations of the semileptonic asymmetries for KS

and KL:

Rexp
2,CPT(∆t ≫ τS)

Rexp
4,CPT(∆t ≫ τS)

=
1 +AL

1−AL
× 1−AS

1 +AS
≃ 1 + 2(AL −AS) , (4.26)

with

AS =
Γ(KS → ℓ+)− Γ(KS → ℓ−)

Γ(KS → ℓ+) + Γ(KS → ℓ−)

AL =
Γ(KL → ℓ+)− Γ(KL → ℓ−)

Γ(KL → ℓ+) + Γ(KL → ℓ−)
. (4.27)

Eq. (4.26) is model independent in the interpretation of the CPT-violating asymmetries.

Therefore the same observable could be accessible by measuring separately and indepen-

dently AS and AL, instead of the double ratio at large ∆t (4.25). This is indeed a part of

the KLOE-2 program [28].

5 Conclusions

A novel CPT test has been studied in the neutral kaon system based on the direct compari-

son of a transition probability with its CPT reverse transition. The appropriate preparation

and detection of in and out states in both the reference and the reverse processes is made

by exploiting the EPR entanglement of neutral kaons produced in a φ-factory and using

their decays as filtering measurements of the kaon states only.
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Rexp
4,CPT(∆t) =

P [K̃0̄(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣e−iλS∆t(ηℓ+)(η3π0)− e−iλL∆t
∣∣2

|e−iλS∆t(ηππ)− e−iλL∆t(ηℓ+)|
2 ×DCPT ,

≃
∣∣∣∣
1

ηℓ+

∣∣∣∣
2 ∣∣∣∣1 +

(
ηππ
ηℓ+

− (ηℓ+)(η3π0)

)
e−i(λS−λL)∆t

∣∣∣∣
2

×DCPT ,

≃ |1 + 2δ + 2x+ + 2x−|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT

= |1 + 2δ + 2x+ + 2x−|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.18)

In the limit ∆t = 0 the deviation of each ratio from unity (once DCPT is factored out)

is given by the contaminating parameters ℜϵ′3π0 , ℜϵ′ππ, and x+, and by the x− parameter,

which is explicitly CPT violating in the ∆S ̸= ∆Q decay amplitudes, and can be considered

a genuine source of CPT violation:

Rexp
2,CPT(0) =

[
1 + 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ − x−)

]
×DCPT (4.19)

Rexp
4,CPT(0) =

[
1− 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ + x−)

]
×DCPT . (4.20)

In the limit ∆t ≫ τS we get:

Rexp
2,CPT(∆t ≫ τS) = (1− 4ℜδ + 4ℜx+ − 4ℜx−)×DCPT (4.21)

Rexp
4,CPT(∆t ≫ τS) = (1 + 4ℜδ + 4ℜx+ + 4ℜx−)×DCPT . (4.22)

These results suggest the possibility of having a measurement independent of x+ and

DCPT, directly measuring the double ratio:

Rexp
2,CPT(∆t)

Rexp
4,CPT(∆t)

≃ (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2 (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2

= (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
,

(4.23)

which becomes for ∆t = 0:

Rexp
2,CPT(0)

Rexp
4,CPT(0)

= 1− 8ℜx− + 4ℜ(ϵ′3π0 − ϵ′ππ) . (4.24)

and in the limit ∆t ≫ τS :

Rexp
2,CPT(∆t ≫ τS)

Rexp
4,CPT(∆t ≫ τS)

= 1− 8ℜδ − 8ℜx− . (4.25)

The double ratio (4.23) constitutes one of the most robust observables for our proposed

CPT test. In the limit ∆t ≫ τS it exhibits a pure and genuine CPT violating effect,
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4,CPT(∆t) =

P [K̃0̄(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣e−iλS∆t(ηℓ+)(η3π0)− e−iλL∆t
∣∣2

|e−iλS∆t(ηππ)− e−iλL∆t(ηℓ+)|
2 ×DCPT ,

≃
∣∣∣∣
1

ηℓ+

∣∣∣∣
2 ∣∣∣∣1 +

(
ηππ
ηℓ+

− (ηℓ+)(η3π0)

)
e−i(λS−λL)∆t
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2

×DCPT ,

≃ |1 + 2δ + 2x+ + 2x−|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT

= |1 + 2δ + 2x+ + 2x−|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.18)

In the limit ∆t = 0 the deviation of each ratio from unity (once DCPT is factored out)

is given by the contaminating parameters ℜϵ′3π0 , ℜϵ′ππ, and x+, and by the x− parameter,

which is explicitly CPT violating in the ∆S ̸= ∆Q decay amplitudes, and can be considered

a genuine source of CPT violation:

Rexp
2,CPT(0) =

[
1 + 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ − x−)

]
×DCPT (4.19)

Rexp
4,CPT(0) =

[
1− 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ + x−)

]
×DCPT . (4.20)

In the limit ∆t ≫ τS we get:

Rexp
2,CPT(∆t ≫ τS) = (1− 4ℜδ + 4ℜx+ − 4ℜx−)×DCPT (4.21)

Rexp
4,CPT(∆t ≫ τS) = (1 + 4ℜδ + 4ℜx+ + 4ℜx−)×DCPT . (4.22)

These results suggest the possibility of having a measurement independent of x+ and

DCPT, directly measuring the double ratio:

Rexp
2,CPT(∆t)

Rexp
4,CPT(∆t)

≃ (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2 (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2

= (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
,

(4.23)

which becomes for ∆t = 0:

Rexp
2,CPT(0)

Rexp
4,CPT(0)

= 1− 8ℜx− + 4ℜ(ϵ′3π0 − ϵ′ππ) . (4.24)

and in the limit ∆t ≫ τS :

Rexp
2,CPT(∆t ≫ τS)

Rexp
4,CPT(∆t ≫ τS)

= 1− 8ℜδ − 8ℜx− . (4.25)

The double ratio (4.23) constitutes one of the most robust observables for our proposed

CPT test. In the limit ∆t ≫ τS it exhibits a pure and genuine CPT violating effect,
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even without the assumptions of the validity of the ∆S = ∆Q rule and of negligible

contaminations from direct CP violation.

In principle, the possible contribution of ℜx− might be disentangled from the one of

ℜδ, or at least bound, by making a study of the time dependence of the double ratio in

the ∆t < 0 region — the most difficult experimentally, due to the lack of statistics — and

independently measuring the direct CP violation contributions in 3π0 and ππ decays, or

making an ansatz on their size.

The KLOE-2 experiment at the DAΦNE facility could make a measurement of the

two observable ratios Rexp
2,CPT(∆t) and Rexp

4,CPT(∆t), with an integrated luminosity L of

O(10 fb−1) [28]. The I(f1, f2;∆t) distributions have been evaluated with a simple Monte

Carlo simulation, making the approximation of a gaussian ∆t experimental resolution with

σ = 1 τS , and a full detection efficiency, as discussed in detail in ref. [22]. From this study it

emerges that the I(ℓ±, 3π0;∆t) distributions, at the considered integrated luminosity, have

very few or no events for∆t ! −5 τS . While a complete feasibility study is beyond the scope

of the present paper, by considering a large ∆t interval in the statistically most populated

region, e.g. 0 ≤ ∆t ≤ 300 τS , which is the most interesting one for our CPT test, a statistical

sensitivity on the double ratio (4.25) of (3.0×10−3), (2.1×10−3), and (1.5×10−3) is obtained

for L = 5, 10, and 20 fb−1, respectively. Once translated into an uncertainty on ℜδ, these
results might improve the present best measurement by CPLEAR [18].

As a final remark it’s worth noting that the double ratio in eq. (4.25) in practice

corresponds to the following ratio of combinations of the semileptonic asymmetries for KS

and KL:

Rexp
2,CPT(∆t ≫ τS)

Rexp
4,CPT(∆t ≫ τS)

=
1 +AL

1−AL
× 1−AS

1 +AS
≃ 1 + 2(AL −AS) , (4.26)

with

AS =
Γ(KS → ℓ+)− Γ(KS → ℓ−)

Γ(KS → ℓ+) + Γ(KS → ℓ−)

AL =
Γ(KL → ℓ+)− Γ(KL → ℓ−)

Γ(KL → ℓ+) + Γ(KL → ℓ−)
. (4.27)

Eq. (4.26) is model independent in the interpretation of the CPT-violating asymmetries.

Therefore the same observable could be accessible by measuring separately and indepen-

dently AS and AL, instead of the double ratio at large ∆t (4.25). This is indeed a part of

the KLOE-2 program [28].

5 Conclusions

A novel CPT test has been studied in the neutral kaon system based on the direct compari-

son of a transition probability with its CPT reverse transition. The appropriate preparation

and detection of in and out states in both the reference and the reverse processes is made

by exploiting the EPR entanglement of neutral kaons produced in a φ-factory and using

their decays as filtering measurements of the kaon states only.
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Total KLOE  ∫L dt ~ 2.5 fb-1 
(2001 - 05) →  ~2.5×109  KSKL pairs 

Integrated luminosity  (KLOE) 

The KLOE detector at the Frascati φ-factory DAΦNE 

Lead/scintillating fiber calorimeter 
 drift chamber 
4 m diameter × 3.3 m length 
helium based gas mixture  

KLOE detector 
DAFNE  
collider 

30 
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LET 

HET  11 m da IP 

CCALT 

QCALT 

IT KLOE-2 at DAΦNE 

31 

LYSO Crystal w SiPM  
Low polar angle 

Tungsten / Scintillating Tiles w SiPM  
Quadrupole Instrumentation 

calorimeters LYSO+SiPMs 
at ~ 1 m from IP 

Scintillator hodoscope +PMTs 

Inner Tracker – 4 layers of  
Cylindrical  GEM detectors  
Improve track and vtx reconstr.   
      First CGEM in HEP expt. 
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KLOE-2 run  

Total L delivered: 6.8 fb-1 

Total L acquired: 5.5 fb-1 

KLOE-2 goal accomplished:  L acquired > 5 fb-1   =>  L delivered > ~ 6.2 fb-1 

17 November 2014 30 March 2018 
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KLOE-2 run  

Total L delivered: 6.8 fb-1 

Total L acquired: 5.5 fb-1 

KLOE-2 goal accomplished:  L acquired > 5 fb-1   =>  L delivered > ~ 6.2 fb-1 

17 November 2014 30 March 2018 

KLOE + KLOE-2 
L = 8 fb-1  =>  ~ 2.4 x1010  φ decays 
                    ~ 8 x109  KSKL pairs 
Worldwide unique data sample  

for typology and statistical relevance 
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Mode Test Param. KLOE measurement 
KL→π+π-  CP BR  (1.963 ± 0.012± 0.017) × 10−3 

KS→3π0 CP BR < 2.6 × 10-8 

KS→πeν CP AS (1.5 ± 10) × 10-3 

KS→πeν CPT Re(x-) (-0.8 ± 2.5) × 10-3    

KS→πeν CPT Re(y) (0.4 ± 2.5) × 10-3  

All KS,L BRs, η’s etc...
(unitarity) 

CP 
CPT 

Re(ε) 
Im(δ) 

(159.6 ± 1.3) × 10-5 

(0.4 ± 2.1) × 10-5  

KSKL→π+π- ,π+π-  CPT & QM α  (-10 ± 37) × 10-17 GeV  

KSKL→π+π- ,π+π-  CPT & QM β (1.8 ± 3.6) × 10-19 GeV  

KSKL→π+π- ,π+π-  CPT & QM γ (0.4 ± 4.6) × 10-21 GeV  
compl. pos. hyp.  

(0.7 ± 1.2) × 10-21 GeV 

KSKL→π+π- ,π+π-  CPT & QM Re(ω) (-1.6 ± 2.6) × 10-4 

KSKL→π+π- ,π+π-  CPT & QM Im(ω) (-1.7 ± 3.4) × 10-4 

KSKL→π+π- ,π+π-  CPT & Lorentz Δa0 (-6.2 ± 8.8) × 10-18 GeV 

KSKL→π+π- ,π+π-  CPT & Lorentz ΔaZ (-0.7 ± 1.0) × 10-18 GeV 

KSKL→π+π- ,π+π-  CPT & Lorentz ΔaX (3.3 ± 2.2) × 10-18 GeV 

KSKL→π+π- ,π+π-  CPT & Lorentz ΔaY (-0.7 ± 2.0) × 10-18 GeV 

List of KLOE CP/CPT tests with neutral kaons 
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KS semileptonic charge asymmetry

AS = ( 1.5 ± 9.6 ± 2.9 ) × 10-3 

AS≠AL  signals CPT violation 

AL=( 3.322 ± 0.058 ± 0.047 ) × 10-3 

KTEV PRL88,181601(2002) 

( ) ( )
( ) ( ) −−++−

−++−

ℜ±ℜ−ℜ±ℜ=
→Γ+→Γ

→Γ−→Γ
= xy

eKeK
eKeK

A
LSLS

LSLS
LS 2222

,,

,,
, δε

νπνπ

νπνπ

KS and KL semileptonic charge asymmetry 

CPTV in ΔS=ΔQ  ΔS≠ΔQ decays 
   

T  CPT viol. in mixing 

KLOE PLB 636(2006) 173 

KLOE PLB 636(2006) 173 

ℜx- = ( -0.8 ± 2.5) × 10-3

ℜy = ( 0.4 ± 2.5) × 10-3

( )−ℜ+ℜ=− xAA LS δ4

( )yAA LS ℜ−ℜ=+ ε4

CPT & ΔS=ΔQ viol.  

CPT viol. 

input from other experiments 

AS,L≠0  signals CP violation 

Data sample: L=410 pb-1 
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calorimeter (tcl ≠ T0), and the time calculated from the DC measurement of track length
L and particle momentum p under the mX mass hypothesis:

”t(X) = (tcl ≠ T0)≠
L

c · —(X) , —(X) =
p

Ò
p

2 +m2X
. (3.3)

Since at this stage the „ decay time (T0) is not known with suÖcient precision, the following
diÄerence is introduced:

”t(X,Y ) = ”t(X)1 ≠ ”t(Y )2 , (3.4)

where the mass hypothesis mX(Y ) is used for track 1(2). Since for the correct mass assign-
ments the value of ”t(X,Y ) is close to zero, the condition |”t(fi,fi)| > 1.5 ns is applied for
further KS æ fi+fi≠ rejection. The remaining pairs of tracks are tested under pion-electron
”t(fi, e) and electron-pion ”t(e,fi) hypothesis (see Figure 2). Once particle identification has
been performed, the T0 and the time diÄerences ”t(e) and ”t(fi) are reevaluated accordingly.
Events are then selected within the circle in the ”t(e)≠ ”t(fi) plane as shown in Figure 3.
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Figure 2. Distribution of TOF diÄerences ”
t

(fi, e) vs ”
t

(e,fi) for simulated K
S

æ fie‹ events
(left plot), all simulated events (center plot) and data (right plot). The signal events are se-
lected in the regions delimited by the dashed lines: (|”

t

(e,fi)| < 1.3 ns, ”
t

(fi, e) < ≠3.4 ns) or
(”
t

(e,fi) > 3.4 ns, |”
t

(fi, e)| < 1.3 ns).

The best separation between the signal and background components is obtained with
the variable:

M

2(e) = [EKS ≠ E(fi)≠ E‹ ]
2 ≠ p2(e), (3.5)

where E‹ = |p̨KS ≠ p̨(e)≠ p̨(fi)|. M2(e) is calculated according to the TOF particle identi-
fication. For the signal events M2(e) peaks close to zero (see Figure 4).

3.5 Signal extraction

The signal yield is obtained by fitting the M2(e) distribution with a superposition of
the corresponding simulated distributions for signal and residual background components,
with free normalizations, separately for each final charge state, and taking into account
the statistical uncertainty of the Monte Carlo sample [22, 23]. The remaining residual
background components are:
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Figure 3. Distribution of the time diÄerences ”
t

(fi) vs ”
t

(e) for data events (top-left), all simulated
events (top-right), simulated K

S

æ fie‹ events (bottom-left) and simulated background events
(bottom-right). Events within the circle [(”

t

(e)≠ 0.07 ns)]2 + [(”
t

(fi)≠ 0.13 ns)]2 = (0.6 ns)2 are
retained for the analysis.

• the KS æ fi+fi≠ decays with one of the pion tracks not correctly reconstructed and
classified as an electron by the TOF algorithm (1.6% of the sample after the fit,
summing on the two final charge states);

• the KS æ fi+fi≠ decays where one of the pions decays into a muon before entering
the drift chamber (18.7%);

• radiative KS æ fi+fi≠“ decays (2.5%);

• other decays mainly originating from „æ K+K≠ (6.7%) .
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KS tagged by KL interaction in EmC 
Efficiency ~ 30% (largely geometrical) 

KL “crash” 
β= 0.22 (TOF)

KS → π-e+ν

KS semileptonic charge asymmetry
•  Pure KS sample selected exploiting entanglement 
•  L=1.6 fb-1;  ~ 4 × statistics w.r.t. previous 

measurement 
•  Pre-selection: 1 vtx close to IP with Minv(π,π)<MK  

+ KL crash 
•  PID with time of flight technique 

data 

i ∝ KS KL − KL KS
#$ %&

δt X( ) = tcl −T0( )− L
cβ X( )

      ;      X = e,π

δt X,Y( ) = δt X( )1 −δt Y( )2



A. Di Domenico  Workshop on the Standard Model and Beyond, Corfu’, Greece – 31 August – 9 September 2018 39 

KS semileptonic charge asymmetry
•  Fit of M2(e) distribution 

varying MC normalizations of signal 
and bkg contributions 

•  Control sample:   
KL-> πeν close to IP  
tagged by KS->π0π0 

•  track to EMC cluster and  
TOF efficiency correction 
from data c.s. 

Daria Kisielewska � ! KLKS ! KL(crash)⇡e⌫ 03.07.2017 17 / 37

Control sample selection - Time of Flight analysis
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ℜx- = ( -2.0 ±1.4) × 10-3

ℜy = ( 1.7 ± 1.4) × 10-3

Data sample: L=1.7 fb-1 

( )−ℜ+ℜ=− xAA LS δ4

( )yAA LS ℜ−ℜ=+ ε4

CPT & ΔS=ΔQ viol.  

CPT viol. 

input from other experiments 

KS semileptonic charge asymmetry

with KLOE-2 data: δAS(stat) → ~ 3×10-3 

It will improve the CPT test ( Imδ ) 
using Bell-Steinberger relationship  

Taking into account the correlations of the systematical uncertainties of both measure-
ments, based on similar analysis schemes, their combination provides:

AS = (≠3.8± 5.0stat ± 2.6syst)◊ 10≠3 . (7.2)

A comparison of these results is shown in Figure 5.
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Figure 5. Comparison of the previous result for A
S

(KLOE 2006 [17]), the result presented in this
paper (KLOE 2018) and the combination of the two. The KTeV result for A

L

[14] is also shown.
The uncertainties of the points correspond to the statistical and systematic uncertainties summed
in quadrature.

The combined result 7.2 together with the KTeV result on AL [14] yields for the sum
and diÄerence of asymmetries:

(AS ≠AL)/4 = Re(”K) +Re(x≠) = (≠1.8± 1.4)◊ 10≠3, (7.3)

(AS +AL)/4 = Re(‘K)≠Re(y) = (≠0.1± 1.4)◊ 10≠3. (7.4)

Using Re(”K) = (2.5± 2.3)◊ 10≠4 [13] and Re(‘K) = (1.596± 0.013)◊ 10≠3 [12] the CPT
violating parameters Re(x≠) and Re(y) are extracted:

Re(x≠) = (≠2.0± 1.4)◊ 10≠3, (7.5)

Re(y) = (1.7± 1.4)◊ 10≠3, (7.6)

which are consistent with CPT invariance and improve by almost a factor of two the
previous results [17].
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The combined result 7.2 together with the KTeV result on AL [14] yields for the sum
and diÄerence of asymmetries:

(AS ≠AL)/4 = Re(”K) +Re(x≠) = (≠1.8± 1.4)◊ 10≠3, (7.3)

(AS +AL)/4 = Re(‘K)≠Re(y) = (≠0.1± 1.4)◊ 10≠3. (7.4)

Using Re(”K) = (2.5± 2.3)◊ 10≠4 [13] and Re(‘K) = (1.596± 0.013)◊ 10≠3 [12] the CPT
violating parameters Re(x≠) and Re(y) are extracted:

Re(x≠) = (≠2.0± 1.4)◊ 10≠3, (7.5)

Re(y) = (1.7± 1.4)◊ 10≠3, (7.6)

which are consistent with CPT invariance and improve by almost a factor of two the
previous results [17].
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The combined result 7.2 together with the KTeV result on AL [14] yields for the sum
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(AS +AL)/4 = Re(‘K)≠Re(y) = (≠0.1± 1.4)◊ 10≠3. (7.4)

Using Re(”K) = (2.5± 2.3)◊ 10≠4 [13] and Re(‘K) = (1.596± 0.013)◊ 10≠3 [12] the CPT
violating parameters Re(x≠) and Re(y) are extracted:

Re(x≠) = (≠2.0± 1.4)◊ 10≠3, (7.5)

Re(y) = (1.7± 1.4)◊ 10≠3, (7.6)

which are consistent with CPT invariance and improve by almost a factor of two the
previous results [17].
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Summary of the analysis

● Event selection of K
S
K

L
→πe±ν 3π0 and K

S
K

L
→π+π– πe±ν done with the following parameters:

● Event selection efficiencies estimated with data and 4 independent control samples:

● exception: efficiency of a cut on d
PCA

 vs. ΔE(π,e) was based on MC

● T-violation sensitive observables were obtained 
with the following result: 

● problems:

● a “slope” in R
2
(Δt)

● large systematic effects also due to 
certain K

S
→πeν selection cuts

Process total ε
SIG

S/B

K
S
K

L
→πe±

ν 3π0 ~ 13 % 33.5

K
S
K

L
→π+π– πe±

ν ~ 15 % 64.5

KSKL⌅⇧0⇧0 ⇧e KSKL ⌅ ⇧+⇧– 3⇧0 KS⌅ ⇧e Klcrash KS⌅⇧+⇧-Klcrash

K
S
K

L 
→ ⇧e±� 3⇧0 KSKL ⌅ ⇧+⇧– ⇧e±� 

44 

Direct test of T and CPT in neutral kaon transitions 
•  First test of T and CPT in transitions with neutral kaons  (L=1.7 fb-1) 
•  ϕ→KSKL→πe±ν 3π0 and π+π− πe±ν          
•  Selection efficiencies estimated from data with 4 independent control samples 

σ(R2
T)=0.017 

σ(R4
T)=0.017 

preliminary 

preliminary 

T test 
R2,T Δt( ) =

P K 0 0( )→ K− Δt( )$% &'
P K− 0( )→ K 0 Δt( )$% &'

R2,T Δt >> τ S( ) =1− 4ℜε

R4,T Δt( ) =
P K

0
0( )→ K− Δt( )$

%&
'
()

P K− 0( )→ K
0
Δt( )$

%&
'
()

R4,T Δt >> τ S( ) =1+ 4ℜε

Daria Kisielewska 11.06.2018 13 / 17

Direct test of T in neutral kaon transitions

First test of T in transitions with neutral kaons (L=1.7 fb�1)

R2(�t) = P[K0(0)!K�(�t)]
P[K�(0)!K0(�t)] ⇠ I (l�,3⇡0;�t)

I (⇡⇡,l+;�t)
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Direct test of T and CPT in neutral kaon transitions 

σ(DRCPT)=0.028 preliminary 

CPT test 

DRCPT =
R2,CPT Δt >> τ S( )
R4,CPT Δt >> τ S( )

=1−8ℜδ −8ℜx−

R2,CPT Δt( ) =
P K 0 0( )→ K− Δt( )$% &'

P K− 0( )→ K
0
Δt( )$

%(
&
')

R4,CPT Δt( ) =
P K

0
0( )→ K− Δt( )$

%(
&
')

P K− 0( )→ K 0 Δt( )$% &'

DRCPT
  

DRCPT =1+ 2 AL − AS( )

(L=1.7 fb-1) 

DRCPT is the cleanest CPT observable; DRCPT≠1 implies CPT violation. 
KLOE-2 can reach a precision <1%. 
  

DRCPT= 1.016 ± 0.011   Using KTeV result on AL and KLOE on AS:  (preliminary) 

There exists a connection between DRCPT and the AS,L charge asymmetries : 
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Conclusions
 
•  The entangled neutral kaon system at a φ-factory is an excellent laboratory for the 

study of discrete symmetries and fundamental principles of QM. 
•  It is the ideal place to directly test discrete symmetries, and in particular CPT, in 

transition processes for the first time between neutral kaon states.  
•  The proposed CPT test is model independent, fully robust, and very clean. 

Possible spurious effects are well under control, e.g. direct CP violation, ΔS=ΔQ 
rule violation, decoherence effects.  

•  The KLOE-2 experiment at the upgraded DAFNE completed its data-taking at the 
end of March 2018 collecting L = 5.5 fb-1. 

•  The KLOE+KLOE-2 data sample (~ 8 fb-1)  is worldwide unique for typology and 
statistical relevance.  

•  New measurement of the KS semileptonic charge asymmetry (accepted on JHEP) 
•  First test of T and CPT in neutral kaon transitions: analysis in advanced phase; 

the connection of the CPT test with AS,L opens new interesting possibilities. 
•  At KLOE-2 the test can reach a statistical sensitivity of O(10−3) on the new 

observables. 
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Spare slides 
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Entanglement in neutral kaon pairs from φ
Both kaons decay in the same final state: 

  f1 = f2 = π+π- 
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KLOE result: 

€ 

ζ00 = 1.4 ± 9.5STAT ± 3.8SYST( ) ×10−7

PLB 642(2006) 315, FP 40 (2010) 852  

The most precise test in an entangled system 


