Test of CPT in transitions with entangled neutral kaons

Antonio Di Domenico
Dipartimento di Fisica, Sapienza Università di Roma and INFN sezione di Roma, Italy

Workshop on the Standard Model and Beyond August 31 - September 9, 2018, Corfu, Greece

CPT: introduction

The three discrete symmetries of QM, C (charge conjugation: $q \rightarrow-q$), P (parity: $x \rightarrow-x$), and T (time reversal: $t \rightarrow-t$) are known to be violated in nature both singly and in pairs. Only CPT appears to be an exact symmetry of nature.

Exact CPT invariance holds for any quantum field theory (like the Standard Model) formulated on flat space-time which assumes:
(1) Lorentz invariance (2) Locality (3) Unitarity (i.e. conservation of probability).

Testing the validity of the CPT symmetry probes the most fundamental assumptions of our present understanding of particles and their interactions.

CPT: introduction

Extension of CPT theorem to a theory of quantum gravity far from obvious.
(e.g. CPT violation appears in several QG models)

No predictive theory incorporating CPT violation => only phenomenological models to be constrained by experiments.

Consequences of CPT symmetry: equality of masses, lifetimes, $|q|$ and $|\mu|$ of a particle and its anti-particle.

Neutral meson systems offer unique possibilities to test CPT invariance;
e.g. taking as figure of merit the fractional difference between the masses of a particle and its anti-particle:

$$
\begin{array}{ll}
\text { neutral } \mathrm{K} \text { system } & \left|m_{K^{0}}-m_{\bar{K}^{0}}\right| / m_{K}<10^{-18} \\
\text { neutral B system } & \left|m_{B^{0}}-m_{\bar{B}^{0}}\right| / m_{B}<10^{-14} \\
\text { proton- anti-proton } & \left|m_{p}-m_{\bar{p}}\right| / m_{p}<10^{-8}
\end{array}
$$

Other interesting CPT tests: e.g. the study of anti-hydrogen atoms, etc..

CPT: introduction

Extension of CPT theorem to a theory of quantum gravity far from obvious.
(e.g. CPT violation appears in several QG models)

No predictive theory incorporating CPT violation => only phenomenological models to be constrained by experiments.

Consequences of CPT symmetry: equality of masses, lifetimes, $|q|$ and $|\mu|$ of a particle and its anti-particle.

Neutral meson systems offer unique possibilities to test CPT invariance;
e.g. taking as figure of merit the fractional difference between the masses of a particle and its anti-particle:

$$
\begin{array}{ll}
\text { neutral } \mathrm{K} \text { system } & \left|m_{K^{0}}-m_{\bar{K}^{0}}\right| / m_{K}<10^{-18} \\
\text { neutral B system } & \left|m_{B^{0}}-m_{\bar{B}^{0}}\right| / m_{B}<10^{-14} \\
\text { proton- anti-proton } & \left|m_{p}-m_{\bar{p}}\right| / m_{p}<10^{-8}
\end{array}
$$

Other interesting CPT tests: e.g. the study of anti-hydrogen atoms, etc..

The neutral kaon two-level oscillating system in a nutshell

K^{0} and $\overline{\mathrm{K}^{0}}$ can decay to common final states due to weak interactions: strangeness oscillations

$$
\begin{gathered}
|\Psi\rangle=a\left|K^{0}\right\rangle+b\left|\bar{K}^{0}\right\rangle \\
i \frac{\partial}{\partial t} \Psi(t)=\mathbf{H} \Psi(t)
\end{gathered}
$$

\mathbf{H} is the effective hamiltonian (non-hermitian), decomposed into a Hermitian part (mass matrix \mathbf{M}) and an anti-Hermitian part ($\mathrm{i} / 2$ decay matrix Γ) :

$$
\mathbf{H}=\mathbf{M}-\frac{i}{2} \Gamma=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{ll}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{21} & \Gamma_{22}
\end{array}\right)
$$

Diagonalizing the effective Hamiltonian:
eigenstates: physical states

$$
\begin{aligned}
& \text { eigenvalues } \\
& \lambda_{S, L}=m_{S, L}-\frac{i}{2} \Gamma_{S, L} \\
& \left|K_{S, L}(t)\right\rangle=e^{-i \lambda_{S, L} t}\left|K_{S, L}(0)\right\rangle \\
& \tau_{S} \sim 90 \mathrm{ps} \tau_{\mathrm{L}} \sim 51 \mathrm{~ns} \\
& \quad K_{L} \rightarrow \pi \pi \text { violates CP }
\end{aligned}
$$

$$
\begin{aligned}
\left|K_{S, L}\right\rangle & =\frac{1}{\sqrt{2\left(1+\left|\varepsilon_{S, L}\right|\right.} \mid}\left[\left(1+\varepsilon_{S, L}\right)\left|K^{0}\right\rangle \pm\left(1-\varepsilon_{S, L}\right)\left|\bar{K}^{0}\right\rangle\right] \\
& =\frac{1}{\sqrt{\prime \mid}}\left[\left|K_{1,2}\right\rangle+\left(\varepsilon_{S, L}\left|K_{2, l}\right\rangle\right] \quad \begin{array}{l}
\mid \mathrm{K}_{1,2}> \\
\mathrm{CP}= \pm 1 \text { are states }
\end{array}\right.
\end{aligned}
$$

The neutral kaon two-level oscillating system in a nutshell

$$
\left|K_{S, L}\right\rangle \propto\left[\left(1+\varepsilon_{S, L}\right)\left|K^{0}\right\rangle \pm\left(1-\varepsilon_{S, L}\right)\left|\bar{K}^{0}\right\rangle\right]
$$

CP violation:

$$
\varepsilon_{S, L}=\varepsilon \pm \delta
$$

T violation:

$$
\varepsilon=\frac{H_{12}-H_{21}}{2\left(\lambda_{s}-\lambda_{L}\right)}=\frac{-i \Im M_{12}-\Im \Gamma_{12} / 2}{\Delta m+i \Delta \Gamma / 2}
$$

CPT violation:

$$
\delta=\frac{H_{11}-H_{22}}{2\left(\lambda_{S}-\lambda_{L}\right)}=\frac{1}{2} \frac{\left(m_{\bar{K}^{0}}-m_{K^{0}}\right)-(i / 2)\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)}{\Delta m+i \Delta \Gamma / 2}
$$

- $\delta \neq 0$ implies CPT violation
- $\varepsilon \neq 0$ implies T violation
- $\varepsilon \neq 0$ or $\delta \neq 0$ implies CP violation
(with a phase convention $\mathfrak{J} \Gamma_{12}=0$)
$\Delta m=m_{L}-m_{S} \quad, \quad \Delta \Gamma=\Gamma_{S}-\Gamma_{L}$
$\Delta m=3.5 \times 10^{-15} \mathrm{GeV}$

$$
\Delta \Gamma \approx \Gamma_{\mathrm{S}} \approx 2 \Delta m=7 \times 10^{-15} \mathrm{GeV}
$$

The neutral kaon two-level oscillating system in a nutshell

$$
\left|K_{S, L}\right\rangle \propto\left[\left(1+\varepsilon_{S, L}\right)\left|K^{0}\right\rangle \pm\left(1-\varepsilon_{S, L}\right)\left|\bar{K}^{0}\right\rangle\right]
$$

CP violation:

$$
\varepsilon_{S, L}=\varepsilon \pm \delta
$$

T violation:

$$
\varepsilon=\frac{H_{12}-H_{21}}{2\left(\lambda_{s}-\lambda_{L}\right)}=\frac{-i \Im M_{12}-\Im \Gamma_{12} / 2}{\Delta m+i \Delta \Gamma / 2}
$$

CPT violation:

$$
\delta=\frac{H_{11}-H_{22}}{2\left(\lambda_{S}-\lambda_{L}\right)}=\frac{1}{2} \frac{\left(m_{\bar{K}^{0}}-m_{K^{0}}\right)-(i / 2)\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)}{\Delta m+i \Delta \Gamma / 2}
$$

- $\delta \neq 0$ implies CPT violation
- $\varepsilon \neq 0$ implies T violation
- $\varepsilon \neq 0$ or $\delta \neq 0$ implies CP violation
(with a phase convention $\mathfrak{J} \Gamma_{12}=0$)
$\Delta m=m_{L}-m_{S} \quad, \quad \Delta \Gamma=\Gamma_{S}-\Gamma_{L}$
$\Delta m=3.5 \times 10^{-15} \mathrm{GeV}$

$$
\Delta \Gamma \approx \Gamma_{\mathrm{S}} \approx 2 \Delta m=7 \times 10^{-15} \mathrm{GeV}
$$

neutral kaons vs other oscillating meson systems

	$<\mathbf{m}>$ $(\mathbf{G e V})$	$\Delta \mathbf{m}$ $(\mathbf{G e V})$	$<\Gamma>$ $(\mathbf{G e V})$	$\Delta \Gamma / 2$ $(\mathbf{G e V})$
K^{0}	0.5	3×10^{-15}	3×10^{-15}	3×10^{-15}
D^{0}	1.9	6×10^{-15}	2×10^{-12}	1×10^{-14}
$\mathrm{~B}^{0}{ }_{\mathrm{d}}$	5.3	3×10^{-13}	4×10^{-13}	$\mathrm{O}\left(10^{-15}\right)$ $(\mathrm{SM}$ prediction)
$\mathrm{B}_{\mathrm{s}}^{0}$	5.4	1×10^{-11}	4×10^{-13}	3×10^{-14}

"Standard" CPT test

Comparing "survival" probabilities of K^{0} and $\overline{\mathrm{K}}^{0}$ measuring semileptonic decays vs time:

$$
\mathfrak{R \delta}=(3.0 \pm 3.3 \pm 0.6) \times 10^{-4}
$$

PLB444 (1998) 52
using the unitarity constraint (Bell-Steinberger relation)

$$
\operatorname{Im} \delta=(-0.7 \pm 1.4) \times 10^{-5}
$$

$$
2 \mathfrak{J} \delta=\Im\left[\left\langle K_{L} \mid K_{S}\right\rangle\right]=\Im\left[\frac{\sum_{f}\langle f| T\left|K_{S}\right\rangle\langle f| T\left|K_{L}\right\rangle^{*}}{i\left(\lambda_{S}-\lambda_{L}^{*}\right)}\right]
$$

PDG fit (2014)

$$
\delta=\frac{1}{2} \frac{\left(m_{\bar{K}^{0}}-m_{K^{0}}\right)-(i / 2)\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)}{\Delta m+i \Delta \Gamma / 2}
$$

$$
\left(\begin{array}{l:l}
\\
\Gamma_{K^{0}} & \left.\Gamma_{\bar{K}^{0}}\right) \\
& \square 95 \% \mathrm{CL} \\
& \square 68 \% \mathrm{CL}
\end{array}\right.
$$

Combining Red and Im δ results

Assuming $\quad\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)=0$, i.e. no CPT viol. in decay:

$$
\left|m_{\bar{K}^{0}}-m_{K^{0}}\right|<4.0 \times 10^{-19} \mathrm{GeV} \quad \text { at } 95 \% \text { c.l. }
$$

10

Direct CPT test in transitions

- Is it possible to test the CPT symmetry directly in transition processes between kaon states, rather than comparing masses, lifetimes, or other intrinsic properties of particle and anti-particle states?
- CPT violating effects may not appear at first order in diagonal mass terms (survival probabilities) while they can manifest at first order in transitions (nondiagonal terms).
- Clean formulation required. Possible spurious effects induced by CP violation in the decay and/or a violation of the $\Delta S=\Delta Q$ rule have to be well under control.
- In standard WWA the test is related to Re δ, a genuine CPT violating effect independent of $\Delta \Gamma$, i.e. not requiring the decay as an essential ingredient.

```
Probing CPT: J. Bernabeu, A.D.D., P. Villanueva, JHEP 10 (2015) 139
Time-reversal violation: J. Bernabeu, A.D.D., P. Villanueva, NPB 868 (2013) 102
```


Definition of states

We need two orthogonal bases:

1) $\left|\mathrm{K}^{0}\right\rangle$ and $\left|\bar{K}^{0}\right\rangle$ assuming $\Delta S=\Delta Q$ rule identified by their $\pi l v$ decay $\left(I^{+}\right.$or $\left.I^{-}\right)$
2) $\left|K_{+}\right\rangle$and $\left|K_{-}\right\rangle$(* not to be confused with charged kaons K^{+}and K^{-})

Let us also consider the states $\left|\mathrm{K}_{+}\right\rangle,\left|\mathrm{K}_{-}\right\rangle$defined as follows: $\left|\mathrm{K}_{+}\right\rangle$is the state filtered by the decay into $\pi \pi\left(\pi^{+} \pi^{+}\right.$or $\left.\pi^{0} \pi^{0}\right)$, a pure $\mathrm{CP}=+1$ state; analogously $\left|\mathrm{K}_{-}\right\rangle$is the state filtered by the decay into $3 \pi^{0}$, a pure $\mathrm{CP}=-1$ state. Their orthogonal states correspond to the states which cannot decay into $\pi \pi$ or $3 \pi^{0}$, defined, respectively, as

$$
\begin{array}{rlrl}
\left|\widetilde{\mathrm{K}}_{-}\right\rangle & \equiv \widetilde{\mathrm{N}}_{-}\left[\left|\mathrm{K}_{\mathrm{L}}\right\rangle-\eta_{\pi \pi}\left|\mathrm{K}_{\mathrm{S}}\right\rangle\right] & \eta_{\pi \pi} & =\frac{\langle\pi \pi| T\left|\mathrm{~K}_{\mathrm{L}}\right\rangle}{\langle\pi \pi| T\left|\mathrm{~K}_{\mathrm{S}}\right\rangle} \\
\left|\widetilde{\mathrm{K}}_{+}\right\rangle & \equiv \widetilde{\mathrm{N}}_{+}\left[\left|\mathrm{K}_{\mathrm{S}}\right\rangle-\eta_{3 \pi^{0}}\left|\mathrm{~K}_{\mathrm{L}}\right\rangle\right] & & \eta_{3 \pi^{0}}=\frac{\left\langle 3 \pi^{0}\right| T\left|\mathrm{~K}_{\mathrm{S}}\right\rangle}{\left\langle 3 \pi^{0}\right| T\left|\mathrm{~K}_{\mathrm{L}}\right\rangle} \\
\left.\mathrm{K}_{+}, \widetilde{\mathrm{K}}_{-}\right\} \quad\left\{\widetilde{\mathrm{K}}_{+}, \mathrm{K}_{-}\right\} &
\end{array}
$$

Orthogonal bases: $\quad\left\{\mathrm{K}_{+}, \widetilde{\mathrm{K}}_{-}\right\} \quad\left\{\widetilde{\mathrm{K}}_{+}, \mathrm{K}_{-}\right\}$
Even though the decay products are orthogonal, the filtered $\left|\mathrm{K}_{+}\right\rangle$and $\left|\mathrm{K}_{-}\right\rangle$ states can still be non-orthoghonal.
Condition of orthoghonality:

$$
\begin{array}{lll}
\eta_{\pi \pi}+\eta_{3 \pi^{0}}^{\star}=\epsilon_{L}+\epsilon_{S}^{\star} \quad \text { Neglecting direct CP violation } \varepsilon^{\prime} & \left|\mathrm{K}_{+}\right\rangle & \equiv\left|\widetilde{\mathrm{K}}_{+}\right\rangle \\
\left|\mathrm{K}_{-}\right\rangle & \equiv\left|\widetilde{\mathrm{K}}_{-}\right\rangle
\end{array}
$$

Definition of states

We need two orthogonal bases:

1) $\left|\mathrm{K}^{0}\right\rangle$ and $\left|\bar{K}^{0}\right\rangle$ assuming $\Delta S=\Delta Q$ rule identified by their $\pi l v$ decay (I^{+}or I^{-})
2) $\left|K_{+}\right\rangle$and $\left|K_{-}\right\rangle$(* not to be confused with charged kaons K^{+}and K^{-})

Let us also consider the states $\left|\mathrm{K}_{+}\right\rangle,\left|\mathrm{K}_{-}\right\rangle$defined as follows: $\left|\mathrm{K}_{+}\right\rangle$is the state filtered by the decay into $\pi \pi\left(\pi^{+} \pi^{+}\right.$or $\left.\pi^{0} \pi^{0}\right)$, a pure $\mathrm{CP}=+1$ state; analogously $\left|\mathrm{K}_{-}\right\rangle$is the state filtered by the decay into $3 \pi^{0}$, a pure $\mathrm{CP}=-1$ state. Their orthogonal states correspond to the states which cannot decay into $\pi \pi$ or $3 \pi^{0}$, defined, respectively, as

$$
\begin{array}{rlrl}
\left|\widetilde{\mathrm{K}}_{-}\right\rangle & \equiv \widetilde{\mathrm{N}}_{-}\left[\left|\mathrm{K}_{\mathrm{L}}\right\rangle-\eta_{\pi \pi}\left|\mathrm{K}_{\mathrm{S}}\right\rangle\right] \\
\left|\widetilde{\mathrm{K}}_{+}\right\rangle & \equiv \widetilde{\mathrm{N}}_{+}\left[\left|\mathrm{K}_{\mathrm{S}}\right\rangle-\eta_{3 \pi^{0}}\left|\mathrm{~K}_{\mathrm{L}}\right\rangle\right] & \eta_{\pi \pi} & =\frac{\langle\pi \pi| T\left|\mathrm{~K}_{\mathrm{L}}\right\rangle}{\langle\pi \pi| T\left|\mathrm{~K}_{\mathrm{S}}\right\rangle} \\
\left\{\mathrm{K}_{+}, \widetilde{\mathrm{K}}_{-}\right\} \quad\left\{\widetilde{\mathrm{K}}_{+}, \mathrm{K}_{-}\right\} & \eta_{3 \pi^{0}} & =\frac{\left\langle 3 \pi^{0}\right| T\left|\mathrm{~K}_{\mathrm{S}}\right\rangle}{\left\langle 3 \pi^{0}\right| T\left|\mathrm{~K}_{\mathrm{L}}\right\rangle}
\end{array}
$$

Even though the decay products are orthogonal, the filtered $\left|\mathrm{K}_{+}\right\rangle$and $\left|\mathrm{K}_{-}\right\rangle$ states can still be non-orthoghonal.

$$
\begin{aligned}
& \text { Condition of orthoghonality: } \\
& \qquad \eta_{\pi \pi}+\eta_{3 \pi^{0}}^{\star}=\epsilon_{L}+\epsilon_{S}^{\star}
\end{aligned} \xrightarrow{\text { Neglecting direct CP violation } \varepsilon^{\prime}} \begin{array}{lll}
& \left|\mathrm{K}_{+}\right\rangle & \equiv\left|\widetilde{\mathrm{K}}_{+}\right\rangle \\
& \left|\mathrm{K}_{-}\right\rangle & \equiv\left|\widetilde{\mathrm{K}}_{-}\right\rangle
\end{array}
$$

Definition of states

We need two orthogonal bases:

1) $\left|\mathrm{K}^{0}\right\rangle$ and $\left|\bar{K}^{0}\right\rangle$ assuming $\Delta S=\Delta Q$ rule identified by their $\pi l v$ decay (I^{+}or I^{-})
2) $\left|K_{+}\right\rangle$and $\left|K_{-}\right\rangle$(* not to be confused with charged kaons K^{+}and K^{-})

Let us also consider the states $\left|\mathrm{K}_{+}\right\rangle,\left|\mathrm{K}_{-}\right\rangle$defined as follows: $\left|\mathrm{K}_{+}\right\rangle$is the state filtered by the decay into $\pi \pi\left(\pi^{+} \pi^{+}\right.$or $\left.\pi^{0} \pi^{0}\right)$, a pure $\mathrm{CP}=+1$ state; analogously $\left|\mathrm{K}_{-}\right\rangle$is the state filtered by the decay into $3 \pi^{0}$, a pure $\mathrm{CP}=-1$ state. Their orthogonal states correspond to the states which cannot decay into $\pi \pi$ or $3 \pi^{0}$, defined, respectively, as

$$
\therefore \begin{array}{rlrl}
\left|\widetilde{\mathrm{K}}_{-}\right\rangle & \equiv \widetilde{\mathrm{N}}_{-}\left[\left|\mathrm{K}_{\mathrm{L}}\right\rangle-\eta_{\pi \pi}\left|\mathrm{K}_{\mathrm{S}}\right\rangle\right] \\
\left|\widetilde{\mathrm{K}}_{+}\right\rangle & \equiv \widetilde{\mathrm{N}}_{+}\left[\left|\mathrm{K}_{\mathrm{S}}\right\rangle-\eta_{3 \pi^{0}}\left|\mathrm{~K}_{\mathrm{L}}\right\rangle\right. & \eta_{\pi \pi} & =\frac{\langle\pi \pi| T\left|\mathrm{~K}_{\mathrm{L}}\right\rangle}{\langle\pi \pi| T\left|\mathrm{~K}_{\mathrm{S}}\right\rangle} \\
\left\{\mathrm{K}_{+}, \widetilde{\mathrm{K}}_{-}\right\} \quad\left\{\widetilde{\mathrm{K}}_{+}, \mathrm{K}_{-}\right\} & \eta_{3 \pi^{0}} & =\frac{\left\langle 3 \pi^{0}\right| T\left|\mathrm{~K}_{\mathrm{S}}\right\rangle}{\left\langle 3 \pi^{0}\right| T\left|\mathrm{~K}_{\mathrm{L}}\right\rangle}
\end{array}
$$

Even though the decay products are orthogonal, the filtered $\left|\mathrm{K}_{+}\right\rangle$and $\left|\mathrm{K}_{-}\right\rangle$ states can still be non-orthoghonal.
Condition of orthoghonality:

$$
\left.\begin{array}{l}
\text { ondition of orthoghonality: } \\
\eta_{\pi \pi}+\eta_{3 \pi^{0}}^{\star}=\epsilon_{L}+\epsilon_{S}^{\star}
\end{array} \quad \xrightarrow{\text { Neglecting direct } \mathrm{CP} \text { violation } \varepsilon^{\prime}} \begin{array}{l}
\left|\mathrm{K}_{+}\right\rangle \\
\equiv\left|\widetilde{\mathrm{K}}_{+}\right\rangle \\
\left|\mathrm{K}_{-}\right\rangle
\end{array} \overline{\equiv\left|\widetilde{\mathrm{K}}_{-}\right\rangle}\right\rangle
$$

Direct test of CPT symmetry in neutral kaon transitions

CPT symmetry test

Reference			$\mathcal{P} \mathcal{T}$-conjugate	
Transition	Decay products		Transition	Decay products
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\left(\ell^{-}, \pi \pi\right)$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\left(3 \pi^{0}, \ell^{-}\right)$	
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\left(\ell^{-}, 3 \pi \pi^{0}\right)$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\left(\pi \pi, \ell^{-}\right)$	
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\left(\ell^{+}, \pi \pi\right)$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\left(3 \pi \pi^{0}, \ell^{+}\right)$	
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\left(\ell^{+}, 3 \pi \pi^{0}\right)$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\left(\pi \pi, \ell^{+}\right)$	

One can define the following ratios of probabilities:

$$
\begin{aligned}
& R_{1, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\mathrm{~K}_{+}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right] / P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{+}(\Delta t)\right] \\
& R_{2, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right] / P\left[\mathrm{~K}_{-}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right] \\
& R_{3, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\mathrm{~K}_{+}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right] / P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{+}(\Delta t)\right] \\
& R_{4, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right] / P\left[\mathrm{~K}_{-}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right]
\end{aligned}
$$

Any deviation from $\mathrm{R}_{\mathrm{i}, \mathrm{CPT}}=1$ constitutes a violation of CPT-symmetry

[^0]
Direct test of symmetries with neutral kaons

Reference	T-conjugate	$C P$-conjugate	$C P T$-conjugate
$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$
$\mathrm{~K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{~K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$
$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$
$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$
$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{~K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\mathrm{~K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}^{0}$
$\overline{\mathrm{~K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}^{0}$
$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$
$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$
$\mathrm{~K}_{+} \rightarrow \mathrm{K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{+}$
$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{+}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{-}$
$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{-}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$

Direct test of symmetries with neutral kaons

Conjugate= reference

Reference	T-conjugate	$C P$-conjugate	CPT-conjugate
$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$		$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$
$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	\sim_{n}^{0}
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\underline{V}}^{0}$, K
$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\sim \sim$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}$
$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	$K_{i} \quad \mathrm{~V}$, K	
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	\underline{K}	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$
$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	\boldsymbol{V}	$\mathrm{K}_{+} \rightarrow \mathrm{K}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	$\underline{\mathrm{K}}$	\underline{V}	$\mathrm{K} \xrightarrow{\text { r }}$

Direct test of symmetries with neutral kaons

Conjugate= reference

Reference	T-conjugate	$C P$-conjugate	CPT-conjugate
$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{m} \rightarrow \mathrm{m}$	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$
$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	${ }^{-1}$
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\underline{K}^{0} \quad \overline{\mathbb{K}}^{0}$	$\mathrm{K}^{0} \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{V}}^{0}$, K^{0}
$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\underline{\mathrm{n}} \mathrm{m}$	4	$\xrightarrow{+1}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	4	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	\pm	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	K^{0}	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{z}} 0$
$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	\bar{T}^{-0}	$\underline{\square}$	
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	K	-	$\underline{1}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$		$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$		$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	
$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$		\underline{H}	
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$		\underline{V}	
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	\underline{Y}	\underline{Y}	K

Direct test of symmetries with neutral kaons

Conjugate=	Reference	T-conjugate	$C P$-conjugate	CPT-conjugate
reference	$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$		$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$
	$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \longrightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{K}}^{0} \longrightarrow \mathrm{~K}^{0}$	n^{-0}
	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$
	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$
already in the	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\bar{K}^{0}-\bar{W}^{0}$	$\bar{K}^{0} \quad \bar{K}^{0}$	$\overline{\underline{V}}^{0} \quad V^{0}$
table with	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\xrightarrow{\text { min }}$		$\mathrm{m} \rightarrow$
reference	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\underline{\square}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}$
	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\underline{0}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$
	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	K^{0} K	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\underline{V}}^{0}$, K
	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{H}^{0}}$	$\underline{-1}$	H^{0}
	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	K, K	\underline{K}	K, I
Two identical	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K} \rightarrow \mathrm{K}_{+}$	K	$K \rightarrow K_{4}$
conjugates	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	V^{0}	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	- $\mathrm{H}^{\text {O- }}$
for one reference	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	動	$4-\Psi{ }^{0}$	$\mathrm{H}^{0} \mathrm{H}$
	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	\underline{K}	$V \quad V$	$\underline{1}$
	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	\underline{V}	\underline{V}	K IV

Direct test of symmetries with neutral kaons

Quantum entanglement as a tool

- The in<->out states inversion required in a DIRECT test of CPT (or T) can be performed exploiting the properties of the quantum entanglement.
- In maximally entangled systems the complete knowledge of the system as a whole is encoded in the state, no information on single subsystems is available.
- Once a measurement is performed on one subsystem, then the information is immediately transferred to its partner, which is prepared in the orthogonal state
- At a ϕ-factory: $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \phi\right) \sim 3 \mathrm{mb} ; \mathrm{W}=\mathrm{m}_{\phi}=1019.4 \mathrm{MeV} \mathrm{BR}\left(\phi \rightarrow \mathrm{K}^{0} \underline{K}^{0}\right) \sim 34 \%$ $\sim 10^{6} / \mathrm{pb}^{-1} \mathrm{KK}$ pairs produced in an antisymmetric quantum state with $\mathrm{JPC}^{\mathrm{JP}}=1^{--}$:

Entanglement in neutral kaon pairs

-EPR correlations at a ϕ-factory can be exploited to study transitions involving orthogonal "CP states" K_{+}and K_{-}

$$
\begin{aligned}
|i\rangle & =\frac{1}{\sqrt{2}}\left[\left|K^{0}(\vec{p})\right\rangle\left|\bar{K}^{0}(-\vec{p})\right\rangle-\left|\bar{K}^{0}(\vec{p})\right\rangle\left|K^{0}(-\vec{p})\right\rangle\right] \\
& =\frac{1}{\sqrt{2}}\left[\left|K_{+}(\vec{p})\right\rangle\left|K_{-}(-\vec{p})\right\rangle-\left|K_{-}(\vec{p})\right\rangle\left|K_{+}(-\vec{p})\right\rangle\right]
\end{aligned}
$$

-decay as filtering measurement -entanglement -> preparation of state

Entanglement in neutral kaon pairs

-EPR correlations at a ϕ-factory can be exploited to study transitions involving orthogonal "CP states" K_{+}and K_{-}

Entanglement in neutral kaon pairs

-EPR correlations at a ϕ-factory can be exploited to study transitions involving orthogonal "CP states" K_{+}and K_{-}

-decay as filtering measurement -entanglement -> preparation of state

Entanglement in neutral kaon pairs

-EPR correlations at a ϕ-factory can be exploited to study transitions involving orthogonal "CP states" K_{+}and K_{-}

-decay as filtering measurement -entanglement -> preparation of state

$K_{-} \rightarrow \bar{K}^{0} \quad$ CPT-conjugated process

Entanglement in neutral kaon pairs

-EPR correlations at a ϕ-factory can be exploited to study transitions involving orthogonal "CP states" K_{+}and K_{-}

$\|i\rangle$	$=\frac{1}{\sqrt{2}}\left[\left\|K^{0}(\vec{p})\right\rangle\left\|\bar{K}^{0}(-\vec{p})\right\rangle-\left\|\bar{K}^{0}(\vec{p})\right\rangle\left\|K^{0}(-\vec{p})\right\rangle\right]$
	$=\frac{1}{\sqrt{2}}\left[\left\|K_{+}(\vec{p})\right\rangle\left\|K_{-}(-\vec{p})\right\rangle-\left\|K_{-}(\vec{p})\right\rangle\left\|K_{+}(-\vec{p})\right\rangle\right]$

-decay as filtering measurement -entanglement -> preparation of state

Note: CP and T conjugated process

$$
\bar{K}^{0} \rightarrow K_{-} \quad K_{-} \rightarrow K^{0}
$$

Direct test of CPT symmetry in neutral kaon transitions

Two observable ratios of double decay intensities

$$
\begin{aligned}
R_{2, \mathrm{CPT}}^{\exp }(\Delta t) & \equiv \frac{I\left(\ell^{-}, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi \pi, \ell^{-} ; \Delta t\right)} \\
R_{4, \mathrm{CPT}}^{\exp }(\Delta t) & \equiv \frac{I\left(\ell^{+}, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi \pi, \ell^{+} ; \Delta t\right)}
\end{aligned}
$$

with $\mathrm{D}_{\text {CPT }}$ constant

Explicitly in standard Wigner Weisskopf approach for $\Delta t>0$:

$$
\begin{aligned}
R_{2, \mathrm{CPT}}^{\exp }(\Delta t) & =\frac{P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\mathrm{~K}_{-}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right]} \times D_{\mathrm{CPT}} \\
& \simeq|1-2 \delta|^{2}\left|1+2 \delta e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathrm{CPT}}
\end{aligned}
$$

$$
\begin{aligned}
R_{4, \mathrm{CPT}}^{\exp }(\Delta t) & =\frac{P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\mathrm{~K}_{-}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right]} \times D_{\mathrm{CPT}} \\
& \simeq|1+2 \delta|^{2}\left|1-2 \delta e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathrm{CPT}}
\end{aligned}
$$

For comparison the ratio of survival probabilities: Vanishes for $\Delta \Gamma->0$

$$
\begin{aligned}
\frac{I\left(\ell^{-}, \ell^{+} ; \Delta t\right)}{I\left(\ell^{+}, \ell^{-} ; \Delta t\right)} & =\frac{P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right]}{P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right]} \\
& \simeq|1-4 \delta|^{2}\left|1+\frac{8 \delta}{1+e^{+i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}}\right|^{2}
\end{aligned} \begin{aligned}
& \text { As an illustration of the different } \\
& \text { sensitivity: it vanishes up to } \\
& \text { second order in CPTV and } \\
& \text { decoherence parameters } \alpha, \beta, \gamma \\
& \text { (Ellis, Mavromatos et al. PRD 1996) }
\end{aligned}
$$

Impact of the approximations

In general K_{+}and K_{-} (and K0 and KO) can be non-orthogonal

Direct CP (CPT) violation

$$
\eta_{\pi \pi}=\epsilon_{L}+\epsilon_{\pi \pi}^{\prime}
$$

$$
\eta_{3 \pi^{0}}=\epsilon_{S}+\epsilon_{3 \pi^{0}}^{\prime}
$$

CPT cons. and CPT viol. $\Delta S=\Delta Q$ violation

$$
x_{+}, x_{-}
$$

Orthoghonal
bases $\quad\left\{\mathrm{K}_{+}, \widetilde{\mathrm{K}}_{-}\right\} \quad\left\{\widetilde{\mathrm{K}}_{+}, \mathrm{K}_{-}\right\} \quad\left\{\widetilde{\mathrm{K}}_{0}, \mathrm{~K}_{\overline{0}}\right\}$ and $\left\{\widetilde{\mathrm{K}}_{\overline{0}}, \mathrm{~K}_{0}\right\}$

Explicitly for $\Delta t>0$:

$$
\begin{aligned}
R_{2, \mathrm{CPT}}^{\exp }(\Delta t) & =\frac{P\left[\widetilde{\mathrm{~K}}_{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\widetilde{\mathrm{~K}}_{-}(0) \rightarrow \mathrm{K}_{\overline{0}}(\Delta t)\right]} \times D_{\mathrm{CPT}} \\
& =\left|1-2 \delta+2 x_{+}^{\star}-2 x_{-}^{\star}\right|^{2}\left|1+\left(2 \delta+\epsilon_{3 \pi^{0}}^{\prime}-\epsilon_{\pi \pi}^{\prime}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathrm{CPT}}
\end{aligned}
$$

$$
R_{4, \mathrm{CPT}}^{\exp }(\Delta t)=\frac{P\left[\widetilde{\mathrm{~K}}_{\overline{0}}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\widetilde{\mathrm{~K}}_{-}(0) \rightarrow \mathrm{K}_{0}(\Delta t)\right]} \times D_{\mathrm{CPT}}
$$

$$
=\left|1+2 \delta+2 x_{+}+2 x_{-}\right|^{2}\left|1-\left(2 \delta+\epsilon_{3 \pi^{0}}^{\prime}-\epsilon_{\pi \pi}^{\prime}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathrm{CPT}}
$$

Impact of the approximations

$$
\begin{aligned}
\frac{R_{2, \mathrm{CPT}}^{\exp }(\Delta t)}{R_{4, \mathrm{CPT}}^{\exp }(\Delta t)} & \simeq\left(1-8 \Re \delta-8 \Re x_{-}\right)\left|1+2\left(\eta_{3 \pi^{0}}-\eta_{\pi \pi}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \\
& =\left(1-8 \Re \delta-8 \Re x_{-}\right)\left|1+2\left(2 \delta+\epsilon_{3 \pi^{0}}^{\prime}-\epsilon_{\pi \pi}^{\prime}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2}
\end{aligned}
$$

The double ratio constitutes one of the most robust observables for the proposed CPT test. In the limit $\Delta \mathrm{t}>\mathrm{T}_{\mathrm{S}}$ it exhibits a pure and genuine CPT violating effect, even without assuming negligible contaminations from direct $C P$ violation and/or $\Delta S=\Delta Q$ rule violation.

$$
\mathrm{DR}_{\mathrm{CPT}}=\begin{array}{ll}
\frac{R_{2, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}{R_{4, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}=1-8 \Re \delta-8 \Re x_{-} \\
\text {CLEANEST CPT } \\
\text { OBSERVABLE }!
\end{array}
$$

There exists a connection with charge semileptonic asymmetries of K_{S} and K_{L}

$$
\mathrm{DR}_{\mathrm{CPT}}=\frac{R_{2, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}{R_{4, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}=\frac{1+A_{L}}{1-A_{L}} \times \frac{1-A_{S}}{1+A_{S}} \simeq 1+2\left(A_{L}-A_{S}\right)
$$

Impact of the approximations

$$
\begin{aligned}
\frac{R_{2, \mathrm{CPT}}^{\exp }(\Delta t)}{R_{4, \mathrm{CPT}}^{\exp }(\Delta t)} & \simeq\left(1-8 \Re \delta-8 \Re x_{-}\right)\left|1+2\left(\eta_{3 \pi^{0}}-\eta_{\pi \pi}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \\
& =\left(1-8 \Re \delta-8 \Re x_{-}\right)\left|1+2\left(2 \delta+\epsilon_{3 \pi^{0}}^{\prime}-\epsilon_{\pi \pi}^{\prime}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2}
\end{aligned}
$$

The double ratio constitutes one of the most robust observables for the proposed CPT test. In the limit $\Delta \mathrm{t} \geqslant \mathrm{T}_{\mathrm{S}}$ it exhibits a pure and genuine CPT violating effect, even without assuming negligible contaminations from direct $C P$ violation and/or $\Delta S=\Delta Q$ rule violation.

$$
\mathrm{DR}_{\mathrm{CPT}}=\begin{aligned}
& \left.\frac{R_{2, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}{R_{4, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}=1-8 \Re \delta-8 \Re x_{-} \quad \begin{array}{l}
\text { CLEANEST CPT } \\
\text { OBSERVABLE! }
\end{array}\right]
\end{aligned}
$$

There exists a connection with semileptonic charge asymmetries of K_{S} and K_{L}

$$
\mathrm{DR}_{\mathrm{CPT}}=\frac{R_{2, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}{R_{4, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}=\frac{1+A_{L}}{1-A_{L}} \times \frac{1-A_{S}}{1+A_{S}} \simeq 1+2\left(A_{L}-A_{S}\right)
$$

The KLOE detector at the Frascati ϕ-factory DAФNE

Integrated luminosity (KLOE)

Total KLOE $\int \mathcal{L} \mathrm{dt} \sim 2.5 \mathrm{fb}^{-1}$
(2001-05) $\rightarrow \sim 2.5 \times 10^{9} \mathrm{~K}_{S} \mathrm{~K}_{\mathrm{L}}$ pairs

Lead/scintillating fiber calorimeter drift chamber
4 m diameter $\times 3.3 \mathrm{~m}$ length helium based gas mixture

KLOE-2 at DAФNE

LYSO Crystal w SiPM Low polar angle

Tungsten / Scintillating Tiles w SiPM Quadrupole Instrumentation

KLOE-2 run

KLOE-2 goal accomplished: L acquired $>5 \mathrm{fb}^{-1} \Rightarrow$ L delivered $>\sim 6.2 \mathrm{fb}^{-1}$

KLOE-2 run

KLOE-2 goal accomplished: L acquired $>5 \mathrm{fb}^{-1} \Rightarrow$ L delivered $>\sim 6.2 \mathrm{fb}^{-1}$

KLOE-2 data-taking closing ceremony

30 March 2018 INFN - Laboratori Nazionali di Frascati

- delivered: $6.8 \mathrm{fb}^{-1}$
acquired: $5.5 \mathrm{fb}^{-1}$

KLOE-2 run

KLOE-2 goal accomplished: L acquired > $5 \mathrm{fb}^{-1} \Rightarrow$ L delivered $>\sim \mathbf{~} 6.2 \mathrm{fb}^{-1}$

List of KLOE CP/CPT tests with neutral kaons

Mode	Test	Param.	KLOE measurement
$\mathrm{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}$	CP	BR	$(1.963 \pm 0.012 \pm 0.017) \times 10^{-3}$
$\mathrm{K}_{\mathrm{S}} \rightarrow 3 \pi^{0}$	CP	BR	$<2.6 \times 10^{-8}$
$\mathrm{K}_{\text {S }} \rightarrow$ Jev	CP	$\mathrm{A}_{\text {S }}$	$(1.5 \pm 10) \times 10^{-3}$
$\mathrm{K}_{\text {S }} \rightarrow$ Jev	CPT	$\operatorname{Re}\left(\mathbf{x}_{-}\right)$	$(-0.8 \pm 2.5) \times 10^{-3}$
$\mathrm{K}_{\text {S }} \rightarrow$ Jev	CPT	$\operatorname{Re}(\mathrm{y})$	$(0.4 \pm 2.5) \times 10^{-3}$
All $K_{\text {S.L }}$ BRs, η 's etc... (unitarity)	$\begin{gathered} \mathrm{CP} \\ \mathrm{CPT} \end{gathered}$	$\begin{aligned} & \operatorname{Re}(\varepsilon) \\ & \operatorname{Im}(\delta) \end{aligned}$	$\begin{gathered} (159.6 \pm 1.3) \times 10^{-5} \\ (0.4 \pm 2.1) \times 10^{-5} \end{gathered}$
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	α	$(-10 \pm 37) \times 10^{-17} \mathrm{GeV}$
$\mathrm{K}_{\mathbf{S}} \mathrm{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	β	$(1.8 \pm 3.6) \times 10^{-19} \mathrm{GeV}$
$\mathrm{K}_{\mathbf{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	γ	$\begin{gathered} (0.4 \pm 4.6) \times 10^{-21} \mathrm{GeV} \\ \text { compl. pos. hyp. } \\ (0.7 \pm 1.2) \times 10^{-21} \mathrm{GeV} \end{gathered}$
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	$\operatorname{Re}(\omega)$	$(-1.6 \pm 2.6) \times 10^{-4}$
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	$\operatorname{Im}(\omega)$	$(-1.7 \pm 3.4) \times 10^{-4}$
$\mathrm{K}_{\mathbf{S}} \mathrm{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	$\Delta \mathrm{a}_{0}$	$(-6.2 \pm 8.8) \times 10^{-18} \mathrm{GeV}$
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	$\Delta \mathrm{a}_{\mathrm{z}}$	$(-0.7 \pm 1.0) \times 10^{-18} \mathrm{GeV}$
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	$\Delta \mathrm{a}_{\mathrm{x}}$	$(3.3 \pm 2.2) \times 10^{-18} \mathrm{GeV}$
$\mathbf{K}_{\text {S }} \mathbf{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	$\Delta \mathrm{a}_{\mathrm{Y}}$	$(-0.7 \pm 2.0) \times 10^{-18} \mathrm{GeV}$

K_{S} semileptonic charge asymmetry

K_{S} and K_{L} semileptonic charge asymmetry

CPTV in $\Delta \mathrm{S}=\Delta \mathrm{Q} \quad \uparrow_{\Delta \mathrm{S} \neq \Delta \mathrm{Q} \text { decays }}^{\uparrow}$
$A_{S, L} \neq 0$ signals $C P$ violation
$A_{S} \neq A_{L}$ signals CPT violation
$\mathrm{A}_{\mathrm{L}}=(\mathbf{3 . 3 2 2} \pm \mathbf{0 . 0 5 8} \pm \mathbf{0 . 0 4 7}) \times \mathbf{1 0}^{-\mathbf{3}}$
KTEV PRL88,181601(2002)

$$
A_{S}=(1.5 \pm 9.6 \pm 2.9) \times 10^{-3}
$$

KLOE PLB 636(2006) 173
Data sample: L=410 pb-1

K_{S} semileptonic charge asymmetry

$$
|i\rangle \propto\left[\left|K_{S}\right\rangle\left|K_{L}\right\rangle-\left|K_{L}\right\rangle\left|K_{S}\right\rangle\right]
$$

\boldsymbol{K}_{S} tagged by \boldsymbol{K}_{L} interaction in EmC Efficiency ~ 30\% (largely geometrical)

- Pure K_{S} sample selected exploiting entanglement
- $\mathrm{L}=1.6 \mathrm{fb}^{-1}$; $\sim 4 \times$ statistics w.r.t. previous measurement
- Pre-selection: 1 vtx close to IP with $\mathrm{M}_{\text {inv }}(\pi, \pi)<\mathrm{M}_{\mathrm{K}}$ $+\mathrm{K}_{\mathrm{L}}$ crash
- PID with time of flight technique

$$
\begin{aligned}
& \delta_{t}(X)=\left(t_{c l}-T_{0}\right)-\frac{L}{c \beta(X)} \quad ; \quad X=e, \pi \\
& \delta_{t}(X, Y)=\delta_{t}(X)_{1}-\delta_{t}(Y)_{2}
\end{aligned}
$$

K_{S} semileptonic charge asymmetry

- Fit of $\mathrm{M}^{2}(e)$ distribution varying MC normalizations of signal and bkg contributions
- Control sample:
$\mathrm{K}_{\mathrm{L}}->$ лev close to IP tagged by $\mathrm{K}_{\mathrm{s}}->\pi^{0} \pi^{0}$
- track to EMC cluster and TOF efficiency correction from data c.s.

K_{S} semileptonic charge asymmetry

Data sample: $\mathrm{L}=1.7 \mathrm{fb}^{-1}$ KLOE (2018)

$$
A_{S}=(-4.8 \pm 5.6 \pm 2.6) \times 10^{-3}
$$

Combination KLOE(2006)+KLOE (2018)

$$
A_{S}=(-3.8 \pm 5.0 \pm 2.6) \times 10^{-3}
$$

arXiv:1806.08654 [hep-ex] JHEP accepted on JHE It will improve the CPT test (Im)) using Bell-Steinberger relationship with KLOE-2 data: $\delta \mathrm{A}_{S}($ stat $) \rightarrow \sim 3 \times 10^{-3}$

K_{S} semileptonic charge asymmetry

Data sample: $\mathrm{L}=1.7 \mathrm{fb}^{-1}$ KLOE (2018)

$$
A_{S}=(-4.8 \pm 5.6 \pm 2.6) \times 10^{-3}
$$

Combination KLOE(2006)+KLOE (2018)

$$
A_{S}=(-3.8 \pm 5.0 \pm 2.6) \times 10^{-3}
$$

arXiv:1806.08654 [hep-ex] JHEP accepted on JHE It will improve the CPT test (Im δ) using Bell-Steinberger relationship with KLOE-2 data: $\delta \mathrm{A}_{S}($ stat $) \rightarrow \sim 3 \times 10^{-3}$

K_{S} semileptonic charge asymmetry

Data sample: $\mathrm{L}=1.7 \mathrm{fb}^{-1}$ KLOE (2018)

$$
A_{S}=(-4.8 \pm 5.6 \pm 2.6) \times 10^{-3}
$$

Combination KLOE(2006)+KLOE (2018)

$$
A_{S}=(-3.8 \pm 5.0 \pm 2.6) \times 10^{-3}
$$

arXiv:1806.08654 [hep-ex] JHEP accepted on It will improve the CPT test (Im δ) using Bell-Steinberger relationship with KLOE-2 data: $\delta \mathrm{A}_{\mathrm{s}}($ stat $) \rightarrow \sim 3 \times 10^{-3}$

K_{S} semileptonic charge asymmetry

Data sample: $\mathrm{L}=1.7 \mathrm{fb}^{-1}$ KLOE (2018)

$$
A_{S}=(-4.8 \pm 5.6 \pm 2.6) \times 10^{-3}
$$

Combination KLOE(2006)+KLOE (2018)

$$
A_{S}=(-3.8 \pm 5.0 \pm 2.6) \times 10^{-3}
$$

arXiv:1806.08654 [hep-ex] JHEP accepted on It will improve the CPT test (Im δ) using Bell-Steinberger relationship with KLOE-2 data: $\delta \mathrm{A}_{\mathrm{s}}($ stat $) \rightarrow \sim 3 \times 10^{-3}$

Direct test of T and CPT in neutral kaon transitions

- First test of T and CPT in transitions with neutral kaons ($\mathrm{L}=1.7 \mathrm{fb}^{-1}$)
- $\phi \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi e^{ \pm} \mathrm{v} 3 \pi^{0}$ and $\pi^{+} \pi^{-} \pi e^{ \pm} \mathrm{v}$
- Selection efficiencies estimated from data with 4 independent control samples

T test

$$
\begin{aligned}
& R_{2, T}(\Delta t)=\frac{P\left[K^{0}(0) \rightarrow K_{-}(\Delta t)\right]}{P\left[K_{-}(0) \rightarrow K^{0}(\Delta t)\right]} \\
& R_{2, T}\left(\Delta t \gg \tau_{S}\right)=1-4 \Re \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& R_{4, T}(\Delta t)=\frac{P\left[\bar{K}^{0}(0) \rightarrow K_{-}(\Delta t)\right]}{P\left[K_{-}(0) \rightarrow \bar{K}^{0}(\Delta t)\right]} \\
& R_{4, T}\left(\Delta t \gg \tau_{S}\right)=1+4 \Re \varepsilon
\end{aligned}
$$

Direct test of T and CPT in neutral kaon transitions

CPT test
$R_{2, C P T}(\Delta t)=\frac{P\left[K^{0}(0) \rightarrow K_{-}(\Delta t)\right]}{P\left[K_{-}(0) \rightarrow \bar{K}^{0}(\Delta t)\right]}$
$R_{4, C P T}(\Delta t)=\frac{P\left[\bar{K}^{0}(0) \rightarrow K_{-}(\Delta t)\right]}{P\left[K_{-}(0) \rightarrow K^{0}(\Delta t)\right]}$
(L=1.7 fb-1)

$D R_{C P T}=\frac{R_{2, C P T}\left(\Delta t \gg \tau_{S}\right)}{R_{4, C P T}\left(\Delta t \gg \tau_{S}\right)}=1-8 \Re \delta-8 \Re x_{-}$
$\mathrm{DR}_{\mathrm{CPT}}$ is the cleanest CPT observable; $\mathrm{DR}_{\mathrm{CPT}} \neq 1$ implies CPT violation.
KLOE-2 can reach a precision $<1 \%$.
There exists a connection between $\mathrm{DR}_{\mathrm{CPT}}$ and the $\mathrm{A}_{\mathrm{S}, \mathrm{L}}$ charge asymmetries :

$$
D R_{C P T}=1+2\left(A_{L}-A_{S}\right)
$$

Using KTeV result on A_{L} and KLOE on A_{S} :
$D R_{C P T}=1.016 \pm 0.011$ (preliminary)

Conclusions

- The entangled neutral kaon system at a ϕ-factory is an excellent laboratory for the study of discrete symmetries and fundamental principles of QM.
- It is the ideal place to directly test discrete symmetries, and in particular CPT, in transition processes for the first time between neutral kaon states.
- The proposed CPT test is model independent, fully robust, and very clean. Possible spurious effects are well under control, e.g. direct $C P$ violation, $\Delta S=\Delta Q$ rule violation, decoherence effects.
- The KLOE-2 experiment at the upgraded DAFNE completed its data-taking at the end of March 2018 collecting $L=5.5 \mathrm{fb}^{-1}$.
- The KLOE+KLOE-2 data sample ($\sim 8 \mathrm{fb}^{-1}$) is worldwide unique for typology and statistical relevance.
- New measurement of the K_{S} semileptonic charge asymmetry (accepted on JHEP)
- First test of T and CPT in neutral kaon transitions: analysis in advanced phase; the connection of the CPT test with $A_{S, L}$ opens new interesting possibilities.
- At KLOE-2 the test can reach a statistical sensitivity of $\mathrm{O}\left(10^{-3}\right)$ on the new observables.

Spare slides

Entanglement in neutral kaon pairs from ϕ

$|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]$

EPR correlation:
no simultaneous decays $(\Delta t=0)$ in the same final state due to the fully destructive quantum interference

Both kaons decay in the same final state:

$$
f_{1}=f_{2}=\pi^{+} \pi^{-}
$$

$\Delta t / \tau_{\mathrm{S}}$

$\phi \rightarrow K_{\mathrm{S}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$$
\begin{gathered}
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right] \\
I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t\right)=\frac{N}{2}\left[\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\right|^{2}+\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle\right|^{2}\right. \\
\left.-2 \mathfrak{R}\left(\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle^{*}\right)\right]
\end{gathered}
$$

$\phi \rightarrow K_{\mathrm{S}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$$
\begin{gathered}
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right] \\
I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t\right)=\frac{N}{2}\left[\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\right|^{2}+\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle\right|^{2}\right. \\
\left.-\left(1-\zeta_{00}\right) \cdot 2 \mathfrak{R}\left(\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle^{*}\right)\right]
\end{gathered}
$$

$\phi \rightarrow K_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$\phi \rightarrow K_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$\phi \rightarrow K_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$$
\begin{aligned}
& |i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right] \\
& I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t\right)=\frac{N}{2}\left[\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\right|^{2}+\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle\right|^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bertlmann, Grimus, Hiesmayr PR D60 (1999) } 114032 \\
& \text { Bertlmann, Durstberger, Hiesmayr PRA } 68012111 \text { (2003) } \\
& \text { KLOE result: PLB 642(2006) 315, FP } 40 \text { (2010) } 852 \\
& \zeta_{0 \overline{0}}=\left(1.4 \pm 9.5_{\text {STAT }} \pm 3.8_{\mathrm{SYST}}\right) \times 10^{-7} \\
& \text { The most precise test in an entangled system }
\end{aligned}
$$

[^0]: J. Bernabeu, A.D.D., P. Villanueva, JHEP 10 (2015) 139

