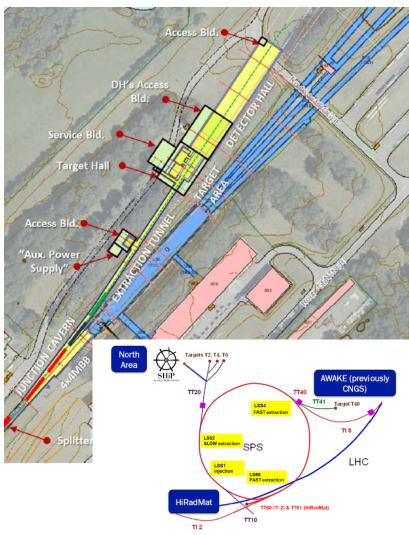
SHiP, a new beam dump facility at the SPS

J. Chauveau

GDR INF CERN 02 Feb 2018

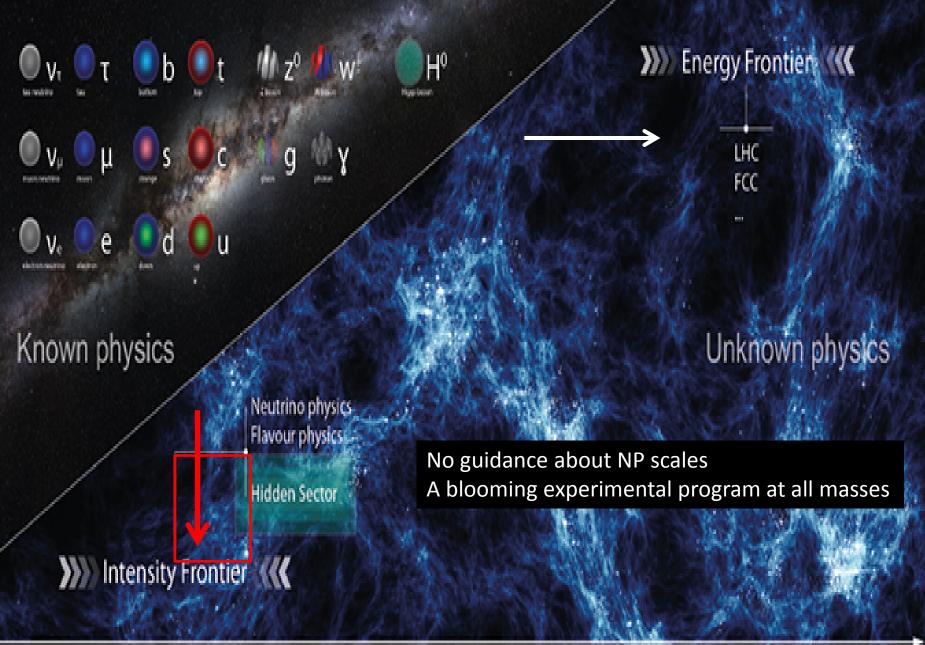
Search for Hidden Particles


What is SHiP ?

- Direct Search for Hidden Particles at the CERN SPS
- A General Purpose Experiment to exploit at the CERN SPS a new Beam Dump Facility
- A <u>Collaboration</u> of

16 countries, CERN & JINR49 institutes, 5 associate institutes

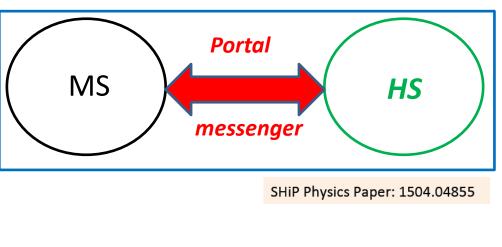
• Aim : data taking in Run-4 of the LHC

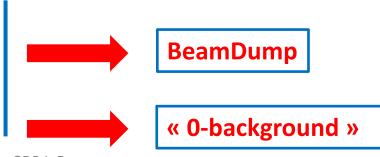

Technical Proposal ArXiv 1505.04956 + CERN-SPSC-2015-040 Physics Proposal S. Alekhin_2016_Rep._Prog._Phys._79_124201

Motivation

- Physics beyond the standard model
- The best prospects for MeV-GeV mass are at the SPS
 - Luminosity
 - Protons available
- Past experience
- Well suited to HEP labs (e.g. in France)

Energy Scale

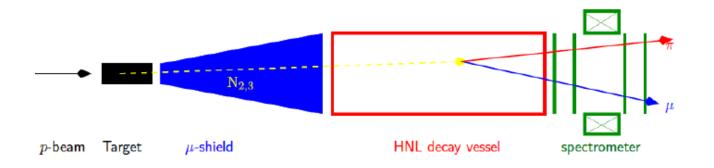

Outline

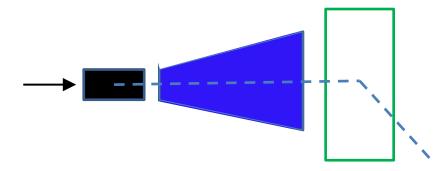


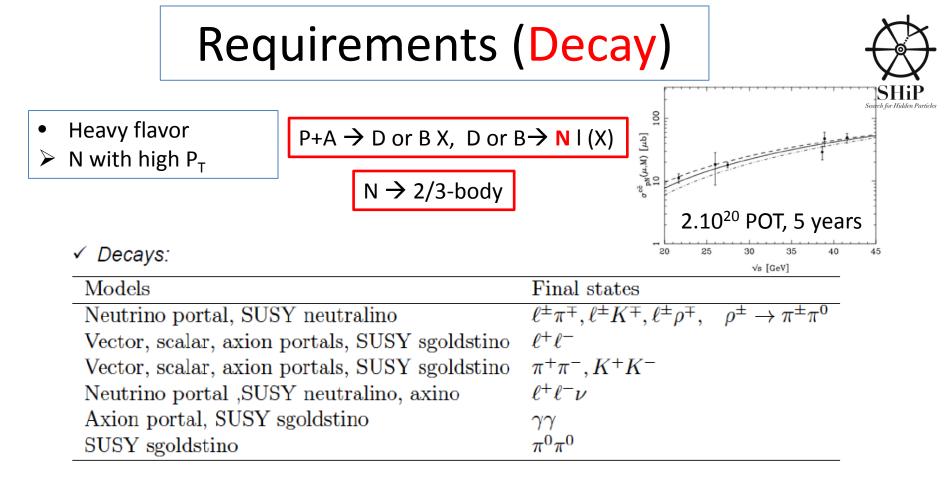
- Physics case, in search for a hidden sector
- Experimental methods
- SHiP history and prospects
- A new beam dump <u>facility</u> at the SPS
- The decay detector, dSHiP
- The interaction detector iSHip (vSHiP)
- Possible further use of the facility τ SHiP,...
- Outlook

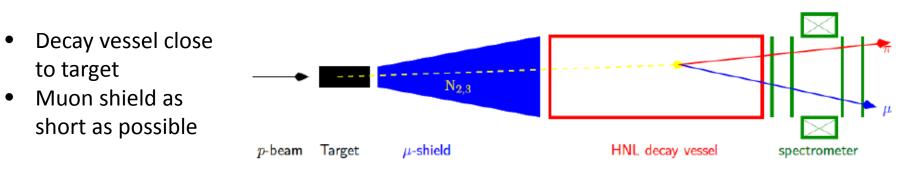
Hidden Sector

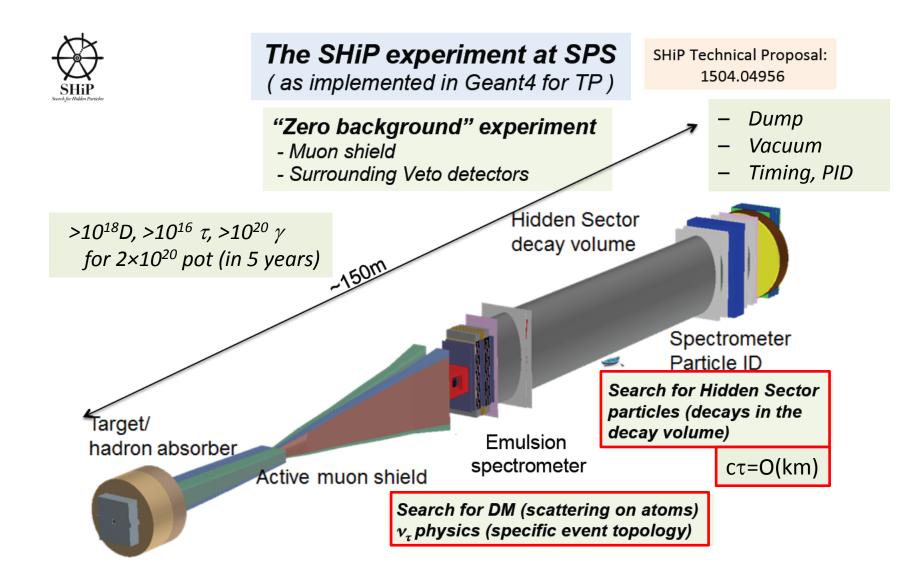
- A New Physics beyond the Standard Model must be there,
 At what scale ?
- To discover it, look for the messengers (portals) of new interactions between the SM fields and the hidden fields.
- Possible portals:
 - Neutrino, Vector, Scalar, Axial.
- If the messengers are light,
 a direct detection is possible
 - ➢ Via *decay* or *scattering*.
- Very feeble interactions
 - A source with high intensity
 - They easily traverse matter
 - They are long-lived
 - > Very rare events

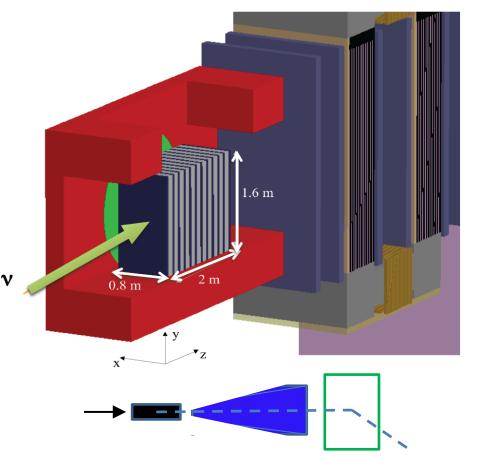

J. Chauveau GDR InF




Hidden Sector Portals


- Neutrino (HNL), vMSM
- Vector (U boson, dark photon)
- Scalar (extended Higgs sector)
- Axion-like particles ALP
- Others (SUSY,...)


Decay and interaction experiments



4

Requirements (Interaction)

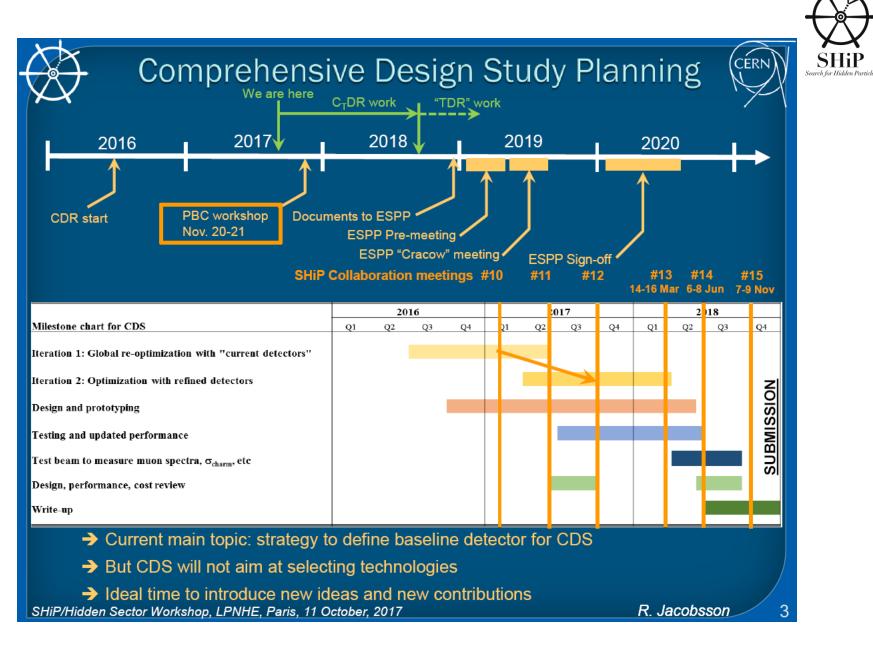
The ν_τ detector in the Technical Proposal

- Observe τ decays (1mm path) with high resolution
 ➢ Emulsions
- Electronic detection of tau decay prongs

 (timestamp, tracking to muon spectrometer)
 ➤ Target Tracker
- Dipole magnet
 - measure charges
- Muon spectrometer

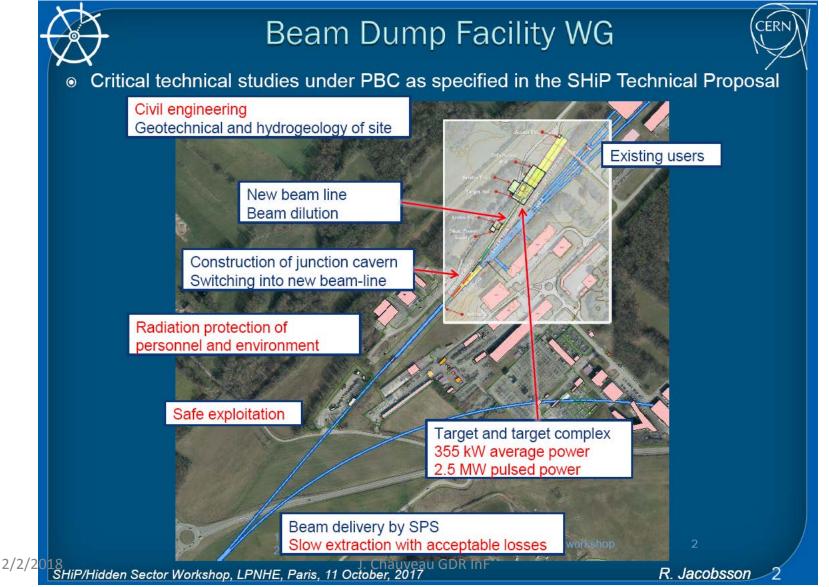
- Calendar
- The Beam Dump Facility
- The active muon shield
- The dSHiP
- The v/iSHiP
- Preparatory experiments

Cost (TP) and schedule (today)



Accelerator schedule	2015	2016	2017	2018	2019	2020		2021	20	22	2023	2024	2025	20	26	2027
LHC		Run 2		LS2		Run 3			LS3				Run 4			
SPS												NA stop	SPS stop			
					ESPF											
Detector			CDS	;	Prototyping	, design		Proc	luctio	n		1	Installation			
Milestones	TP			CDR			TE) <mark>r //</mark> Pr	R						CwB	Data taking
Facility						Integ	ratio	on							CwB	
Civil engineering						Pre-constr	uctio	on	Targe	et - Dete	ctor hall -	Beamline	Junction			
Infrastructure												Installation			Cwl Con	3: hmissioning
Beamline			CDS	5	Prototyping	, design		Т		Produc	tion		Installation		wit	n beam
Target complex			CDS	6	Prototyping	, design		D	F	^o roducti	on	Insta	llation			
Target			CDS	5	Prototyping	, design		R		F	roduction		nstallation			
									/							

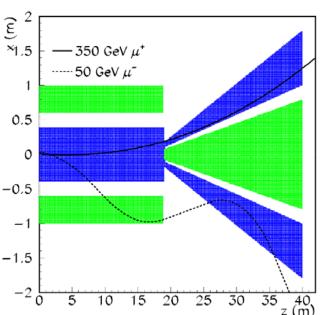
зi


Table 6.3: Breakdown of the cost of Item		<u>detectors.</u> MCHF)
Tau neutrino detector	COSt (11.6
Active neutrino target	6.8	
Fibre tracker	2.5	
Muon magnetic spectrometer	2.3	
Total detectors		58.7
Facility		135.8
Grand/#649ål		194.5

Hidden Sector detector		46.8
HS vacuum vessel	11.7	
Surround background tagger	2.1	
Upstream veto tagger	0.1	
Straw veto tagger	0.8	
Spectrometer straw tracker	6.4	
Spectrometer magnet	5.3	
Spectrometer timing detector	0.5	
Electromagnetic calorimeter	10.2	
Hadronic calorimeter	4.8	
Muon detector	2.5	
Muon iron filter	2.3	13
Computing and online system		0.2

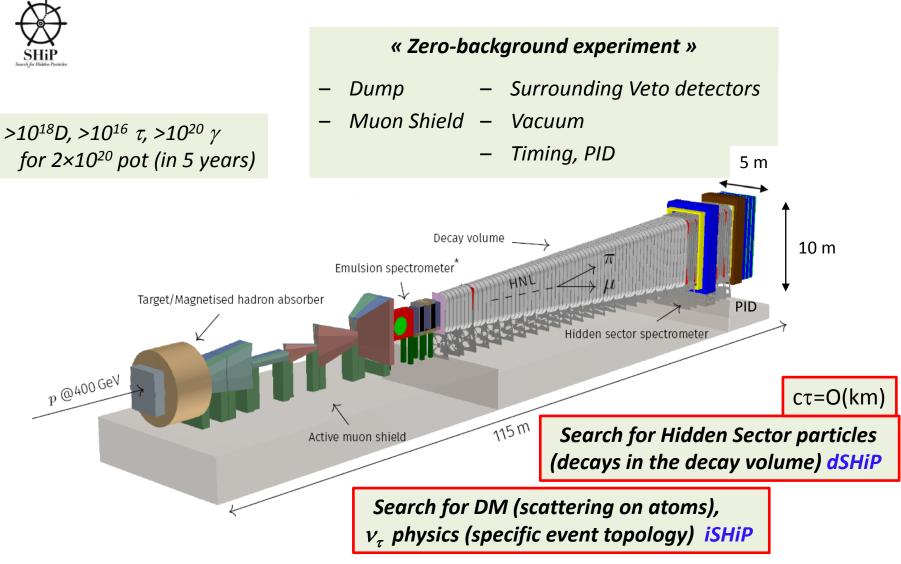
Beam Dump Facility

Beam Dump Facility



Muon Filter

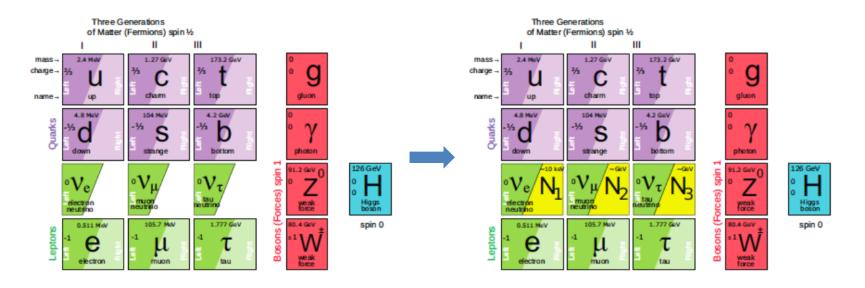
- ~10¹¹ muons/s mainly from meson decays. Too high a background!
- Must reduce the muon flux by at least 10⁴ while keeping the detector as close to the target as possible.
- Cannot be done realistically with passive shielding.


- Devise an active filter using a series of magnets to deflect the muons out of the acceptance of the spectrometer.
- Proof of principle L~30 m

A. Akmete et al 2017 JINST 12 P05011.

• Currently optimized using machine learning methods.

Reoptimization of the SHiP experiment

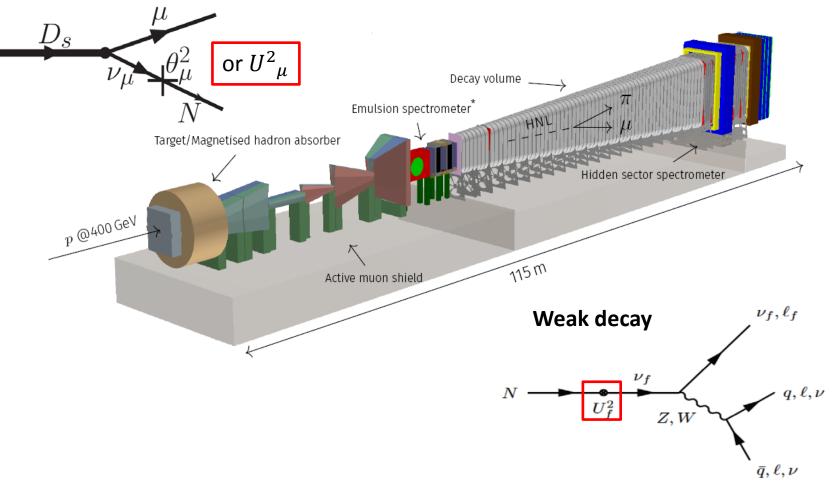

dSHiP

- Evolution of the detector design
 - closer to the target
 - pyramidal
- Use a neutrino portal model, the vMSM, to support the description of the design.
- Emphasize features needed by the ALP channel (calorimetry).
- Show physics reach of the unevolved detector, while working on an update this summer.

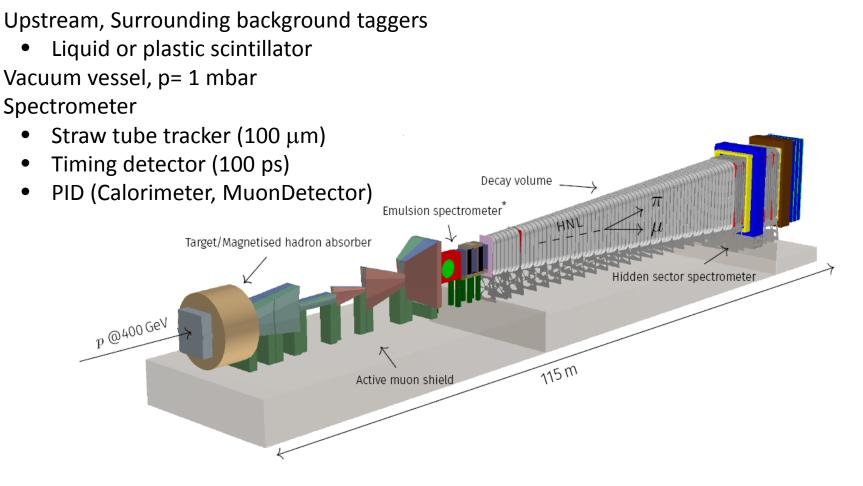
Neutrino portal observables: (Heavy Neutral Leptons)

vMSM (T.Asaka, M.Shaposhnikov PL B620 (2005) 17) explains all short comings of the SM at once by adding 3 HNL: N₁, N₂ and N₃

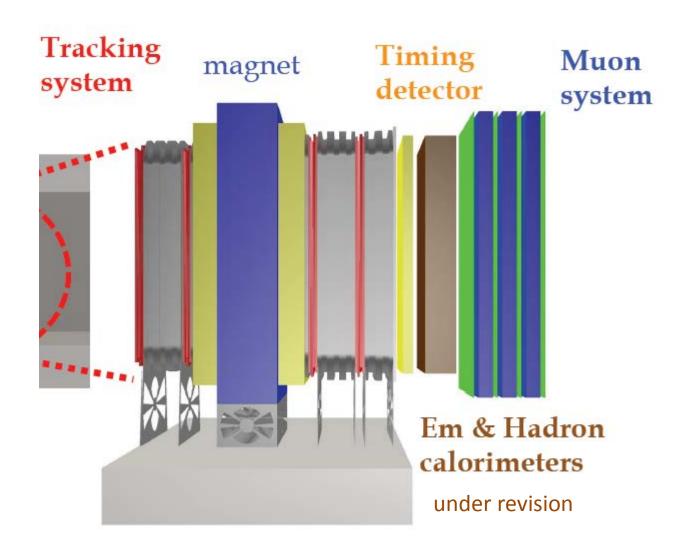
N = Heavy Neutral Lepton - HNL

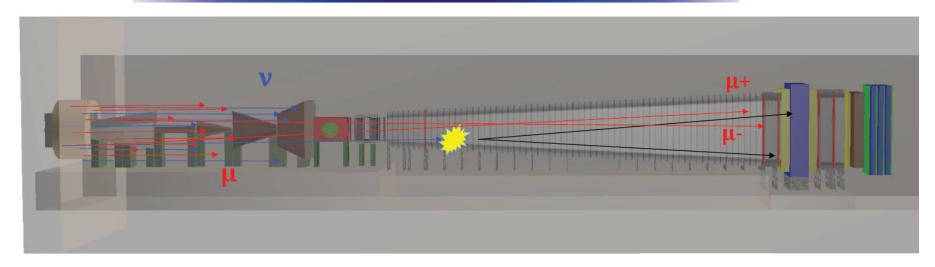

Role of N_1 with mass in keV region: dark matter Role of N_2 , N_3 with mass in 100 MeV – GeV region: "give" masses to neutrinos and produce baryon asymmetry of the Universe Role of the Higgs: give masses to quarks, leptons, Z and W and inflate the Universe.

HNL in dSHiP


(semi)leptonic heavy flavor decay

Production


HNL in dSHiP


Spectrometer

....Background, background, background.....

Two types of background expected:G. Lanfranchi at the LPNHE workshop October 11, 2017

1) neutrino and muon inelastic interactions with the detector material, namely with the decay vessel;

- \rightarrow mostly in-time tracks, not pointing backwards to the target;
- \rightarrow main detectors to reduce this background: VETO detectors (surrounding background tagger, Upstream Veto)

2) muon combinatorial background:

 \rightarrow mostly out-of-time tracks, not pointing backwards to the target

 \rightarrow main detectors to reduce this background: Timing Detector (and muon system with timing capabilities)

Background MC production of full SHiP exposure (5 yrs) in 2018 10 times more eventually

Sensitivity to HNL

Normal hierarchy

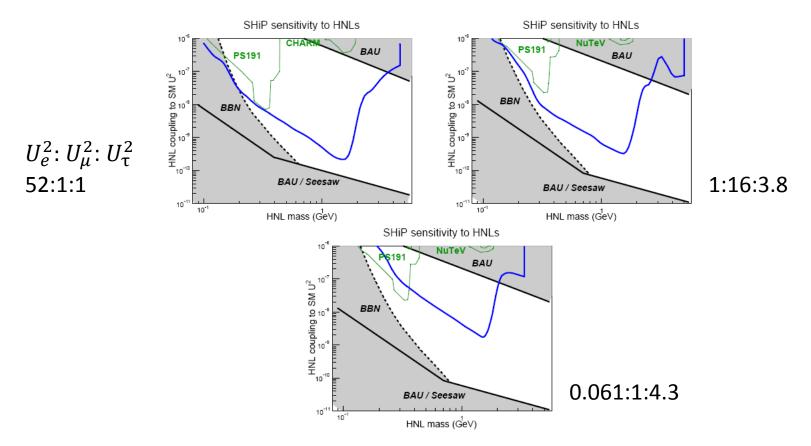
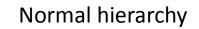
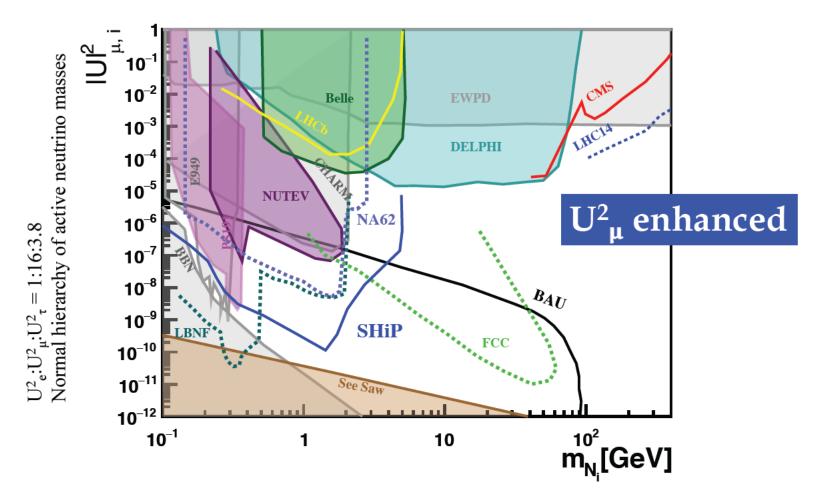




Figure 5.19: Sensitivity regions in the parameter space of the ν MSM, for three scenarios where U_e^2 , U_{μ}^2 and U_{τ}^2 dominate respectively (models I, II and III of Ref. [187]).

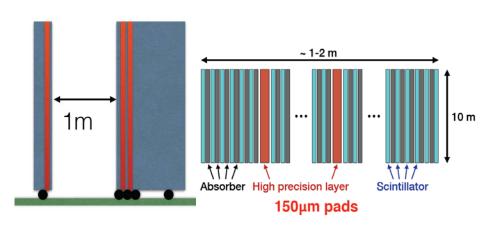
Sensitivity to HNL

Axion-like Particles (ALPs)

- Pseudoscalars from a spontaneously broken U(1) symmetry scale f_a
- Generalisation of the original axion.
- Couple to
 - gauge bosons (photons, gluons,...) and
 - ➤ fermions.
- Production at hadron Fixed Target experiments
 - Primakoff effect (γγ fusion),
 - B and K decays.

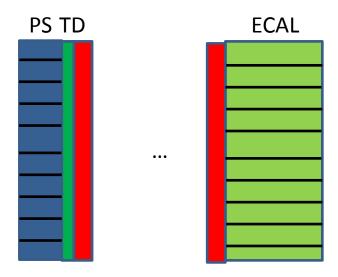
SHiP can look for

ALP → II (same technique as for previous cases)


> ALP $\rightarrow \gamma \gamma$, (f.s. unique to the ALP), an experimental challenge!

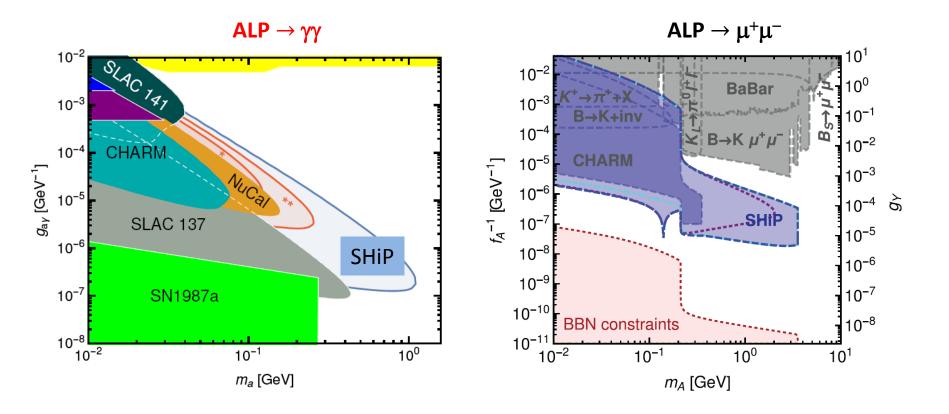
PID, timing

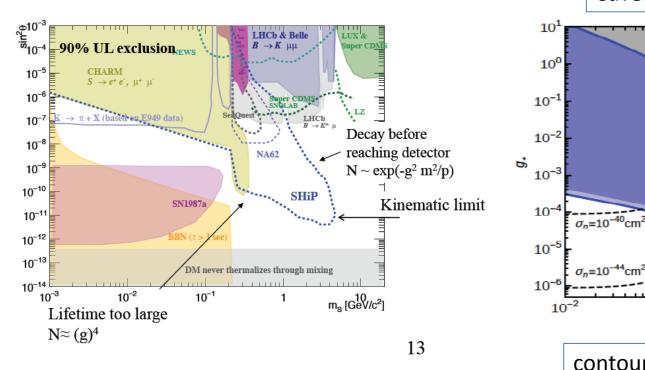
Evolve from the TP with a shashlik ECAL (+ HCAL) to a SplitCAL capable to track photons with mrad angular resolution.


SplitCAL (Cagliari, Mainz et al)

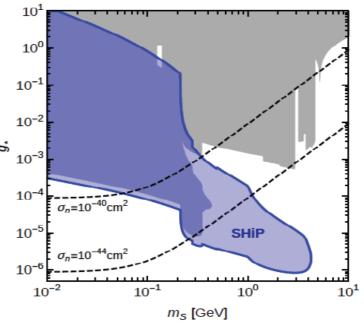
Baseline: Pb (Fe) + scintillator sampling with 3 precision layers

Alternate SplitCAL setup


Alternative setup: Preshower + tracking+ ECAL including (or not) timing.

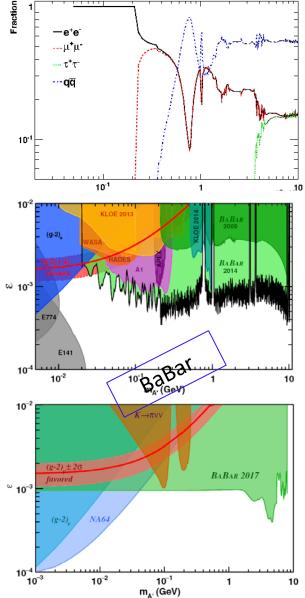


Sensitivity to ALPs



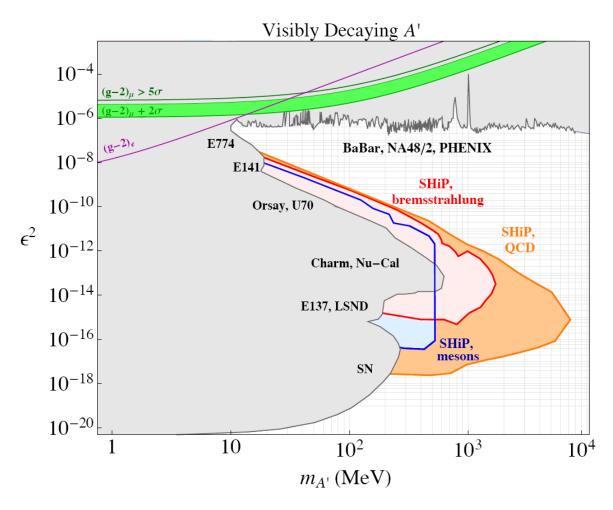
Scalar

Caveat about BR(S $\rightarrow \pi + \pi -)$

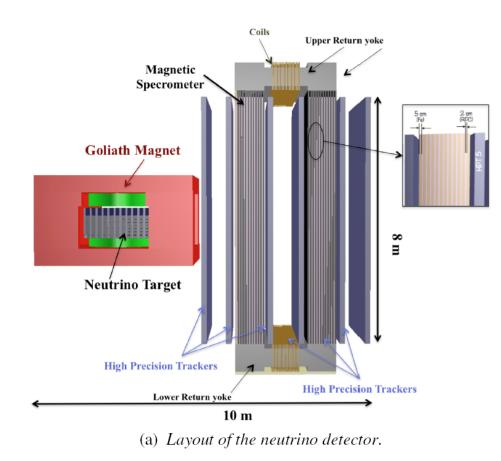

contours of constant DM nucleon cross section, assuming that S is the mediator between DM and nucleons

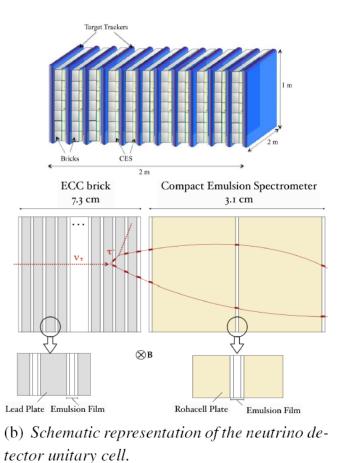
Dark Photon

- Gauge boson of new U(1)' the A', with MeV-GeV mass, P. Fayet PLB 95, 285(1980),...
- Kinetic mixing with γ, A' couples to electric charge with strength εe,
- Production by brems, meson decay, direct QCD
- A' couples to dark sector particles. Depending on its mass,
 - Visible decays
 - Invisible decays A' $\rightarrow \chi \chi$
- χ interact with electron or nuclei

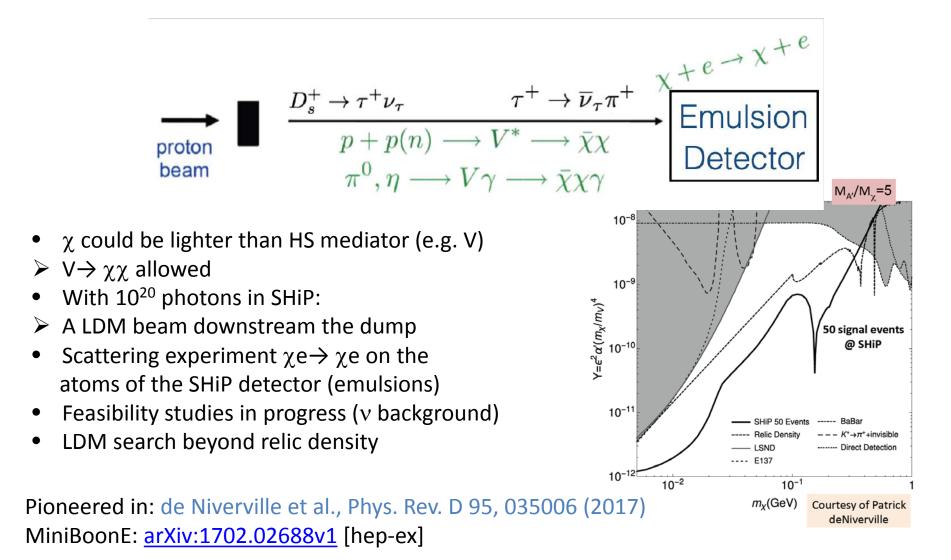


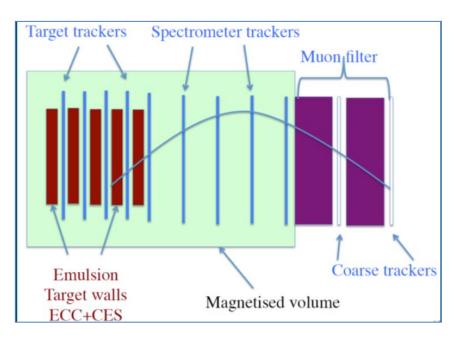
iSHiP

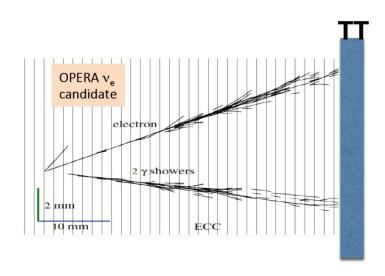



U boson/Dark Photon visible decays

v/iSHiP

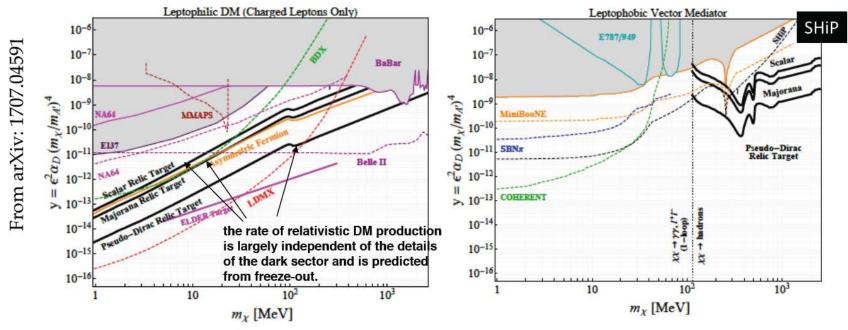



Scattering



Accelerator-based direct (L)DM search

v/iSHiP reoptimized for LDM scattering


New layout under study

Possible improvements:

- Analog readout of TT to provide calorimetric information
- Optimize the distance between consecutive TT planes (currently ~10X0)
- Use a combination of TT and ECC to measure electromagnetic and hadronic showers in the event
- Timing in the TT to 0.5 ns to fight v-background (if pulsed beam option)

LDM scattering

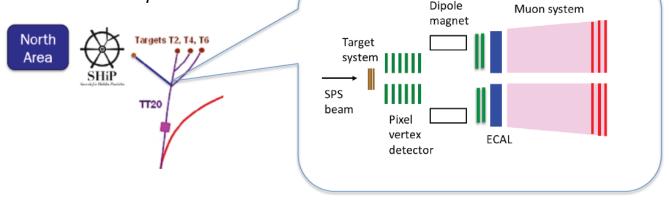
• Assuming a thermal origin of the DM (e.g. freeze-out), $\langle \sigma v \rangle_{annihilation}$ and $\sigma_{LDM-scatt}$ are governed by the same couplings conveniently compacted into the dimensionless parameter *y*.

> Accelerator produced LDM rather than from the galactic halo wind.

- Lepto-philic/phobic A', the latter only can be produced in SHiP.
- Work in progress

2/2/2018

Comparison with other experiments


HNL, scalar, ALP, dark photon decays

- > SHiP leading in the MeV-GeV ($< m_B$) range
 - Competing with NA62, SeaQuest
- > Above: FCC_ee, and ATLAS/CMS HL-LHC
- LDM
 - Scattering
 - Best in 20-200 MeV
 - Competing with COHERENT, BDX, SBne in the US
 - Missing mass/momentum/energy
 - ≻ not at SHiP
 - Belle-II, LDMX

τSHiP

Search for $\tau \rightarrow \mu\mu\mu$ (τ SHiP) at possible extension of SHiP facility Currently at the pre-EOI stage (see SHiP Physics Paper) τ SHiP is located upstream SHiP

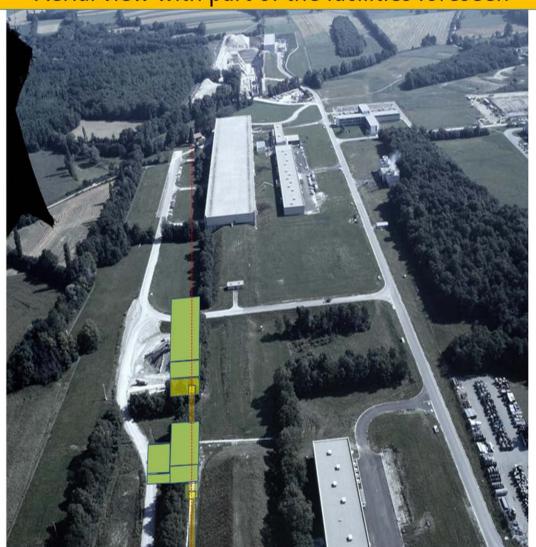
- ✓ Thin (~1mm thick) W target(s) $\rightarrow \tau$ -decay vertex in the air
- \checkmark ~ 5×10¹³ τ leptons produced in 5 years
- ✓ Backgrounds include
 - Combinatorial bckg., mainly from muons produced in em decays of $\eta, \rho, \omega, ...$
 - Bckg. from various semileptonic D decays, e.g. $D^+ \rightarrow \eta \mu^+ \nu$, $\eta \rightarrow \mu^+ \mu^-$
- ✓ Estimated sensitivity: UL on BR(τ →3 μ) better than 10⁻¹⁰ (SHiP Physics Paper)

BUT: Great improvements in detector technologies are required

Synergy with LHCb tracking and calorimetry for future upgrades

Journée SHiP/Physique du secteur caché du 11/10/2017

21


Summary and perspectives

- SHiP a general purpose detector at the new beam dump facility at the SPS in >2026.
- A rich physics case, constantly growing.
 - Best sensitivity to decays of Hidden Sector particles compared to experiments anticipated by then.
 - Key player for the detection of the interactions of « Light Dark Matter ».
 - Guaranteed physics : v_{τ} physics
- A reoptimization of the layout is underway for the CDS, input to the European Strategy. SHiP sensitivities will be revised by then.
- A major project in the review conducted within the PBC workshop.
- Detector elements are still to be defined conceptually.
- Technological choices for the TDR.
- There is room for other experiments in the facility.
- A good time to join (phenomenology, simulation, R&D).

Extra

Aerial view with part of the facilities foreseen

SHIP Search for Hidden Particles

Signature	Physics	Backgrounds	Cuts
$\pi^-\mu^+, K^-\mu^+$	HNL,NEU	$K_L^0 \rightarrow \pi^- \mu^+ \nu_\mu$	IP,TI,PID(μπ) P,IP,NΓ
$\pi^-\pi^0\mu^+$	${\rm HNL}(\to \rho^- \mu^+)$	$ \begin{array}{c} K^0_L \to \pi^- \mu^+ \nu_\mu (+\pi^0) \ , \\ K^0_L \to \pi^- \pi^+ \pi^0 \end{array} $	P,IP,NT,TI, P,IP,NT,PID $(\pi\mu)$
π^-e^+, K^-e^+	HNL, NEU	$K_L^0 \rightarrow \pi^- e^+ \nu_e$	P,IP,NT
$\pi^-\pi^0 e^+$	$\mathrm{HNL}(\to \rho^- \epsilon^+)$	$ \begin{array}{l} K^0_L \rightarrow \pi^- e^+ \nu_e, \\ K^0_L \rightarrow \pi^- \pi^+ \pi^0 \end{array} $	$\mathbf{P}\!,\!\mathbf{IP}\!,\!\mathbf{NT}\!,\!\mathbf{TI}\!,\!\mathbf{PID}(\pi e)$
$\mu^-e^+{\rm +MM}$	${\rm HNL, HP}(\to \tau\tau)$	$ \begin{array}{l} K^0_L \rightarrow \pi^- \mu^+ \nu_\mu \ , \\ K^0_L \rightarrow \pi^- e^+ \nu_e \end{array} $	P,NT, PID($\pi\mu,\pi e)$
$\mu^-\mu^+ {\rm +MM}$	${\rm HNL, HP}(\to \tau\tau)$	RDM, $K_L^0 \rightarrow \pi^- \mu^+ \nu_\mu$	TI P,NT, $PID(\pi\mu)$
$\mu^-\mu^+$	DP,PNGB,HP		TI,IP P,NT, IP, $PID(\pi\mu)$
$\mu^-\mu^+\gamma$	CS	$ \begin{array}{l} K^0_L \rightarrow \pi^-\pi^+\pi^0, \\ K^0_L \rightarrow \pi^-\mu^+\nu_\mu(+\pi^0) \end{array} $	P,IP,NT, PID($\pi\mu$),TI,VP
e^-e^++MM	HNL,HP	$K_L^0 \rightarrow \pi^- e^+ \nu_e$	P,NT, PID(πe)
e^-e^+	DP,PNGB,HP	$K_L^0 \rightarrow \pi^- e^+ \nu_e$	P,IP,NT, $PID(\pi e)$
π ⁻ π ⁺	DP,PNGB,HP	$\begin{array}{l} K^0_L \rightarrow \pi^- \mu^+ \nu_\mu \ , \\ K^0_L \rightarrow \pi^- e^+ \nu_e \ , \\ K^0_L \rightarrow \pi^- \pi^+ \pi^0 , \\ K^0_L \rightarrow \pi^- \pi^+ \end{array}$	$\begin{array}{c} \operatorname{PID}(\mu\pi), \operatorname{IP} \\ \operatorname{P,NT}, \operatorname{PID}(e\pi), \operatorname{IP} \\ \operatorname{POA, IP} \end{array}$
$\pi^-\pi^+ + MM$	$\begin{array}{l} \text{DP,PNGB,} \\ \text{HP}(\rightarrow \tau \tau), \\ \text{HS,HNL}(\rightarrow \rho^0 \nu) \end{array}$	$\begin{array}{l} K^0_L \rightarrow \pi^- \mu^+ \nu_\mu \ , \\ K^T_L \rightarrow \pi^- e^+ \nu_e \ , \\ K^T_L \rightarrow \pi^- \pi^+ \pi^0 \ , \\ K^T_L \rightarrow \pi^- \pi^+ , K^0_S \rightarrow \pi^- \pi^+ , \Lambda \rightarrow p \pi \end{array}$	$\begin{array}{l} \operatorname{PID}(\mu\pi),\\ \operatorname{PiD}(e\pi),\\ \operatorname{PiNT}_{'\text{POA}}^{'} \end{array}$
K ⁺ K ⁻	DP,PNGB, HP	$\begin{array}{l} K^0_L \rightarrow \pi^- \mu^+ \nu_\mu \ , \\ K^0_L \rightarrow \pi^- e^+ \nu_e \ , \\ K^0_L \rightarrow \pi^- \pi^+ \pi^0 \ , \\ K^0_L \rightarrow \pi^- \pi^+ , K^0_S \rightarrow \pi^- \pi^+ , \Lambda \rightarrow p \pi \end{array}$	P,NT, $\mathrm{PID}(\pi\mu,\pi e),\mathrm{IP}$
$\pi^+\pi^-\pi^0$	DP,PNGB,HP, HNL $(\eta\nu)$	$K^0_L \to \pi^-\pi^+\pi^0$	P,IP,NT
$\pi^+\pi^-\pi^0\pi^0$	DP,PNGB,HP	$K^0_L \rightarrow \pi^-\pi^+\pi^0(+\pi^0)$	P,IP,NT,TI
$\pi^+\pi^-\pi^0\pi^0\pi^0$	$PNGB(\rightarrow \pi \pi \eta)$	-	-
$\pi^+\pi^-\gamma\gamma$	$\mathrm{PNGB}(\to\pi\pi\eta)$	$K_L^0 \rightarrow \pi^- \pi^+ \pi^0$	P, IP, NT, $M(\gamma\gamma)$
$\pi^+\pi^-\pi^+\pi^-$	DP,PNGB,HP	-	-
$\pi^+\pi^-\mu^+\mu^-$	HSU	-	-
$\pi^+\pi^-e^+e^-$	HSU	-	-
$\mu^+\mu^-\mu^+\mu^-$	HSU	-	-
$\mu^+\mu^-e^+e^-$	HSU	-	-

Experiment	Machine	Type	$E_{beam} \; (GeV)$	Detection	Mass range (GeV)	Sensitivity	First beam	Ref.		
Future US initiatives										
BDX CEBAF @ JLab electron BD 2.1-11 DM scatter $0.001 < m_{\chi} < 0.1$ $y \gtrsim 10^{-13}$ 2019+ [211, 212]										
COHERENT	SNS @ ORNL	proton BD	1	DM scatter	$m_{\chi} < 0.06$	$y \gtrsim 10$ $y \gtrsim 10^{-13}$	started	[211, 212] [213, 214]		
DarkLight	LERF @ JLab	electron FT	0.17	MMass (& vis.)	$0.01 < m_{A'} < 0.08$	$\epsilon^2 \gtrsim 10^{-6}$	started	[215]		
LDMX	DASEL @ SLAC	electron FT	4 (8)*	MMomentum	$m_{\chi} < 0.4$	$\epsilon^2 \gtrsim 10^{-14}$	2020+	[216]		
MMAPS	Synchr @ Cornell	positron FT	4 (8)	MMass	$m_{\chi} < 0.4$ $0.02 < m_{A'} < 0.075$		2020+ 2020+	[217]		
SBN	BNB @ FNAL	proton BD	8	DM scatter	$m_{\chi} < 0.4$	$v \sim 10^{-12}$ $y \sim 10^{-12}$	2020+ 2018+	[217] [218, 219]		
SeaQuest	MI @ FNAL	proton FT	120	vis. prompt	$m_{\chi} < 0.4$ $0.22 < m_{A'} < 9$	$\epsilon^2 \gtrsim 10^{-8}$	2013+	[220]		
Deaguest	MI @ FIAL	proton r r	120	vis. disp.	$m_{A'} < 2$	$\epsilon^2 \sim 10^{-14} - 10^{-8}$		[220]		
							I			
			Future	international	initiatives					
Belle II	SuperKEKB @ KEK	e^+e^- collider	~ 5.3	MMass (& vis.)	$0 < m_{\chi} < 10$	$\epsilon^2 \gtrsim 10^{-9}$	2018	[203]		
MAGIX	MESA @ Mami	electron FT	0.105	vis.	$0.01 < m_{A'}^{2} < 0.060$		2021-2022	[205]		
PADME	DAΦNE @ Frascati	positron FT	0.550	MMass	$m_{A'} < 0.024$	$\epsilon^2 \gtrsim 10^{-7}$	2018	[206, 207]		
SHIP	SPS @ CERN	proton BD	400	DM scatter	$m_{\chi} < 0.4$	$y \gtrsim 10^{-12}$	2026 +	[208, 209]		
VEPP3	VEPP3 $@$ BINP	positron FT	0.500	MMass	$0.005 < m_{A'} < 0.022$		2019-2020	[210]		
			Current	and completed	l initiatives					
			ourrom	and complete						
APEX	CEBAF @ JLab	electron FT	1.1 - 4.5	vis.	$0.06 < m_{A'} < 0.55$	$\epsilon^2 \gtrsim 10^{-7}$	2018-2019	[197, 198]		
BABAR	PEP-II @ SLAC	e^+e^- collider	~ 5.3	vis.	$0.02 < m_{A'} < 10$	$\epsilon^2 \gtrsim 10^{-7}$	done	[191, 229, 230]		
Belle	KEKB @ KEK	e^+e^- collider	~ 5.3	vis.	$0.1 < m_{A'} < 10.5$	$\epsilon^2 \gtrsim 10^{-7}$	done	[231]		
HPS	CEBAF @ JLab	electron FT	1.1 - 4.5	vis.	$0.015 < m_{A^\prime} < 0.5$	$\epsilon^2 \sim 10^{-7**}$	2018-2020	[232]		
NA/64	SPS @ CERN	electron FT	100	MEnergy	$m_{A'} < 1$	$\epsilon^2 \gtrsim 10^{-10}$	started	[186]		
MiniBooNE	BNB @ FNAL	proton BD	8	DM scatter	$m_\chi < 0.4$	$y \gtrsim 10^{-9}$	done	[188]		
TREK	K^+ beam @ J-PARC	K decays	0.240	vis.	N/A	N/A	done	[201, 202]		

TABLE II: Summary table of current light DM experiments and future proposals. The sensitivities are quoted either for the kinetic mixing or the variable y, whichever is most relevant (see the text and the corresponding figures for more detailed predictions). The range quoted for experiments sensitive to both visible and invisible decays refers to the invisible case. Starting dates are subject to variations. *Legend:* beam dump (BD), fixed target (FT), dark matter scattering (DM scatter), missing mass (MMass), missing momentum (MMomentum), missing energy (MEnergy), prompt/displaced visible decays (vis). *Notes:* *LDMX beam energy is 4 GeV for phase I, and could be upgraded to 8 GeV for phase II. **Sensitivity to displaced vertices under study.

28

J. Chauveau GDR InF

	<e></e>	Beam dump	<e></e>	CC DIS
$N_{\nu_{\mu}}$	1.4	4.4×10^{18}	29	1.7×10^{6}
N_{v_e}	3	$2.1 imes 10^{17}$	46	2.5×10^5
$N_{V\tau}$	9	3.1×10^{15}	59	7.4×10^3
$N_{\overline{v}_{\mu}}$	1.5	$2.8 imes 10^{18}$	28	6.7×10^{5}
$N_{\overline{v}_e}$	4	1.6×10^{17}	46	$9.0 imes 10^4$
$N_{\overline{v}_{\tau}}$	8	3.1×10^{15}	58	3.7×10^{3}

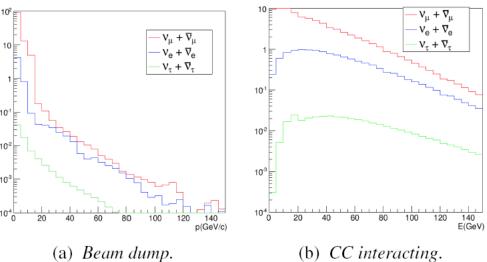
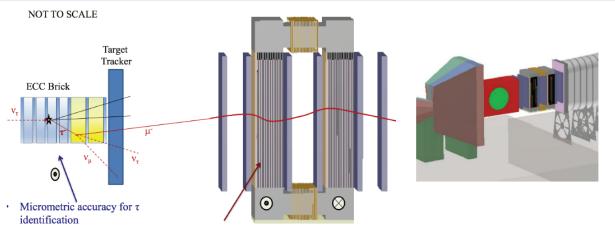



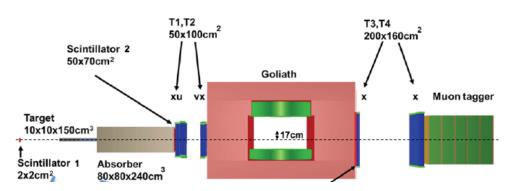
Table 2: Integrated neutrino yield for 2×10^{20} p.o.t. for the different neutrino flavors: at the beam dump (left) and CC DIS interactions (right). Energies are in GeV.

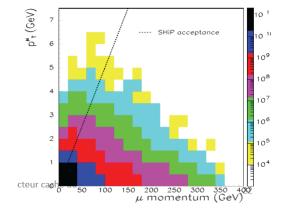
Figure 5: Energy spectra of the three neutrino flavors at the beam dump (a) and of CC interactions in the neutrino target(c). The total number of neutrinos is normalized to 100.

The v_{τ} Detector (Scattering)

ТΡ

- Only 9 v_{τ} events recorded to date
- \overline{v}_{τ} yet to be discovered
- $v_{\tau} / \overline{v}_{\tau}$ cross sections to be measured
- Charm physics with τ 's
- Proton structure functions
- Large $\nu_{e}\,\text{flux}$ to measure charm production And also,
- Probe LFUV comparing v_{μ} and v_{τ} CC events ? to be further studied.

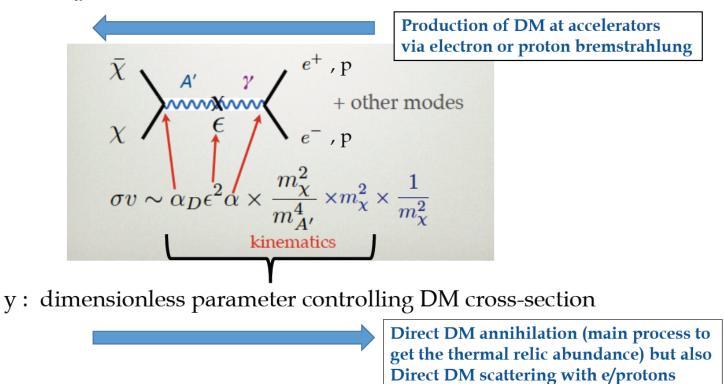

H. Liu, A. Rashed, A. Datta 1505.04594, Phys. Rev. D 92, 073016 (2015)


decay channel		ν_{τ}		$\overline{\nu}_{ au}$			
	N^{exp}	N^{bg}	R	N^{exp}	N^{bg}	R	
$ au o \mu$	570	30	19	290	140	2	
$\tau \to h$	990	80	12	500	380	1.3	
$\tau \to 3h$	210	30	$\overline{7}$	110	140	0.8	
total	1770	140	13	900	660	1.4	

Preparatory experiments

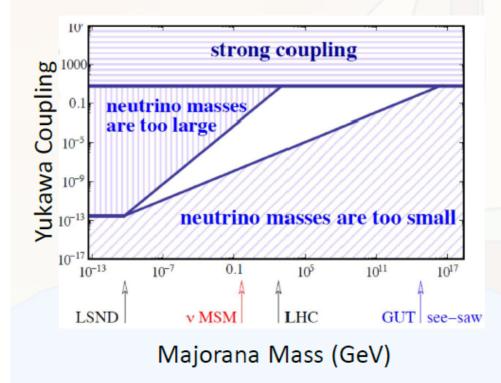
- **2018 Eol-016 to SPSC**. Measurement of the muon flux
 - replica of SHiP target, 10^{11} p.o.t

 $d^2\sigma$ 2018-21 Eol-017 to SPSC Measure charm to validate dEdŋ cascade enhancement by factor 2-3.


 5×10^7 p.o.t. or 1000 charm pairs

Vector Portal : connection to Light Dark Matter (and thermal origin target)

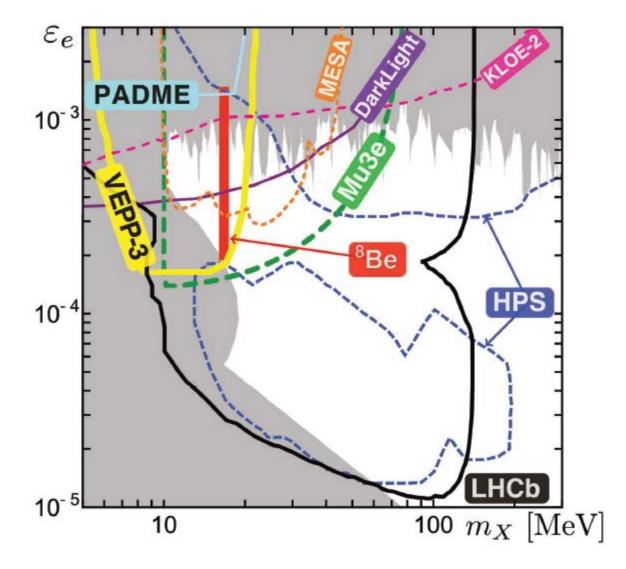
SHiP


If $m_{A'} > 2 m_{\chi}$ the Dark Photon can decay also to DM with a coupling α_D

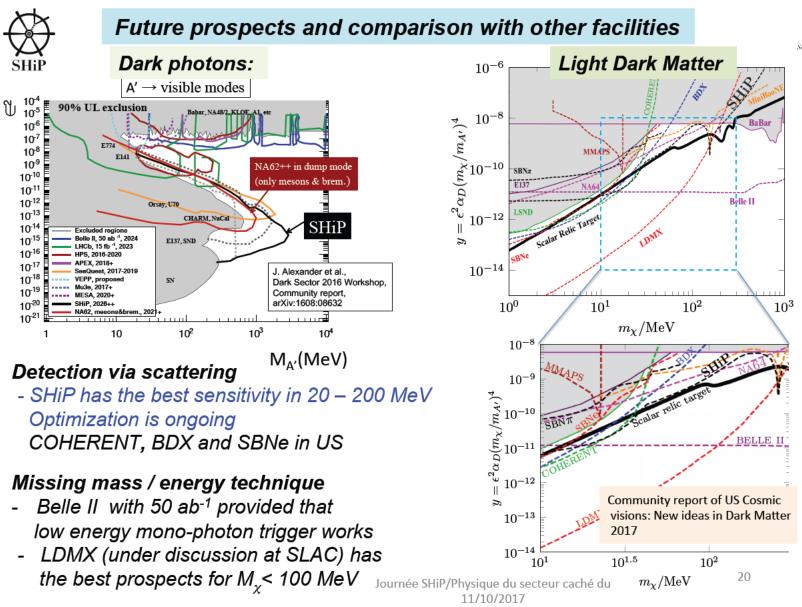
Sterile neutrino masses

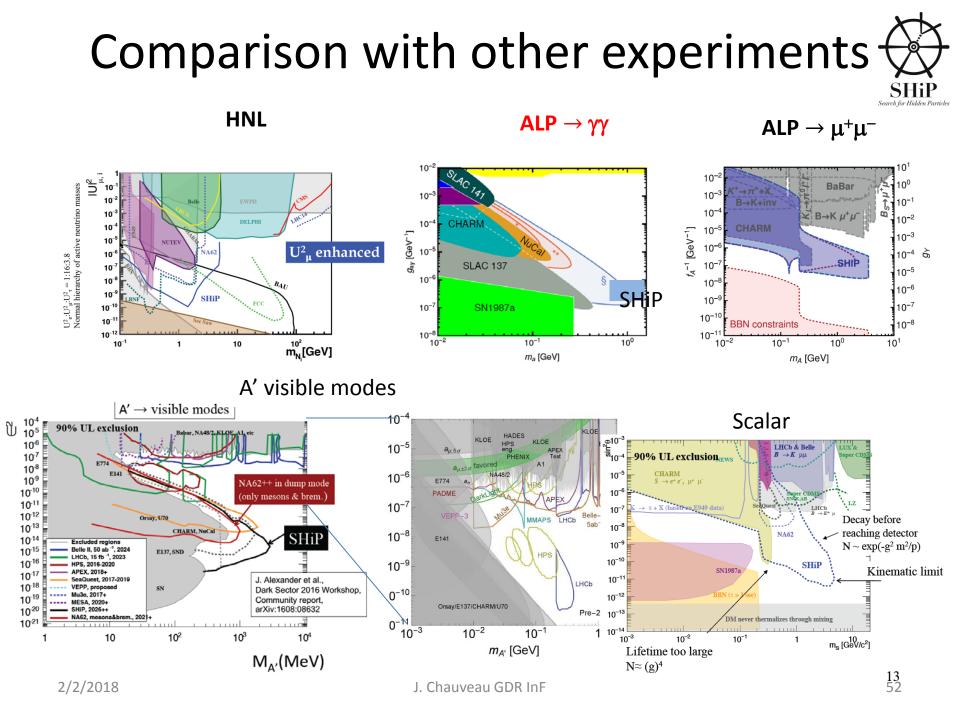
Seesaw formula $m_D \sim Y_{I\alpha} < \phi >$ and $m_\nu = \frac{m_D^2}{M}$

- Assuming $m_{
 u} = 0.1 \mathrm{eV}$
- if $Y \sim 1$ implies $M \sim 10^{14} {\rm GeV}$
- if $M_N \sim 1 {
 m GeV}$ implies $Y_{\nu} \sim 10^{-7}$


remember $Y_{top} \sim 1$. and $Y_e \sim 10^{-6}$

If we want to explain the smallness of neutrino masses (in a natural way) the mass of sterile neutrinos should be at least at the GeV scale


08/10/2015 - CERN


Elena Graverini, on behalf of the SHiP collaboration

France in SHiP

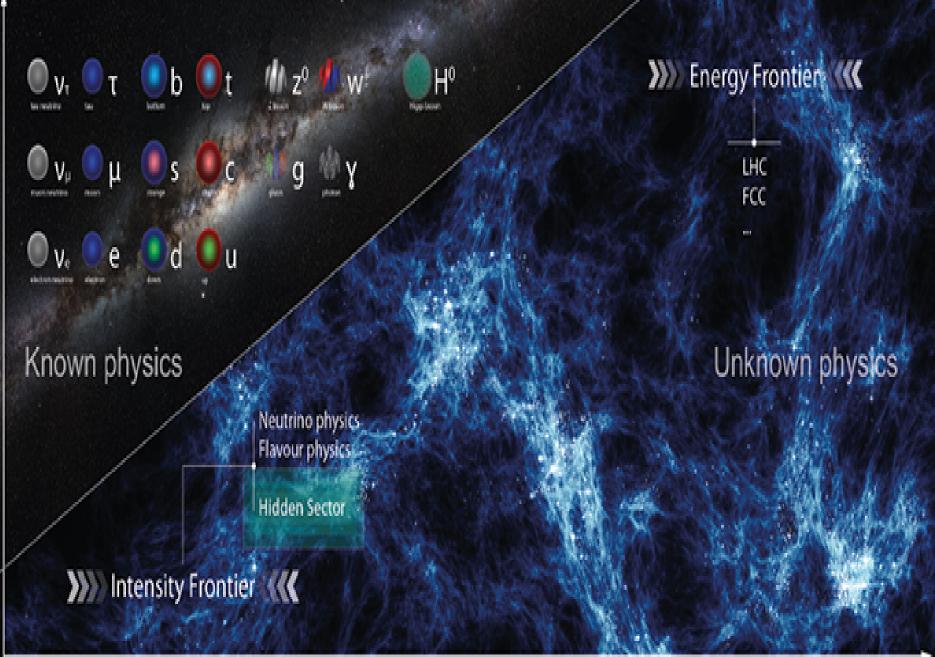
- LPNHE
- LAL

common electronics definition

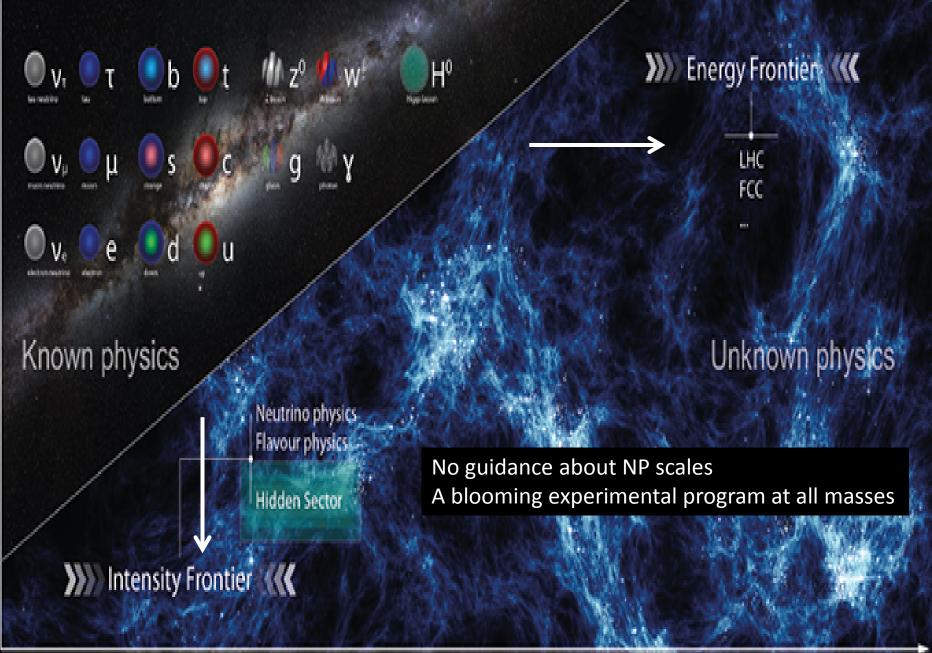
- IRFU not before 2021 μM in the TT of iSHiP
- Schedule parallel to HL-LHC projects

> about time to seize the opportunity

- The GDR InF SHIP experime
 - SHiP experiment: <u>http://ship.web.cern.ch/ship/</u>
 - Journee ShiP/Physique du Secteur Cache LPNHE October 11, 2017
 - <u>Electronics workshop</u> October 25, 2017
 - <u>Colloquium on Physics Landscape in 10 years</u> November 9, 2017
 - Physics beyond Colliders workshop: <u>http://pbc.web.cern.ch/</u>

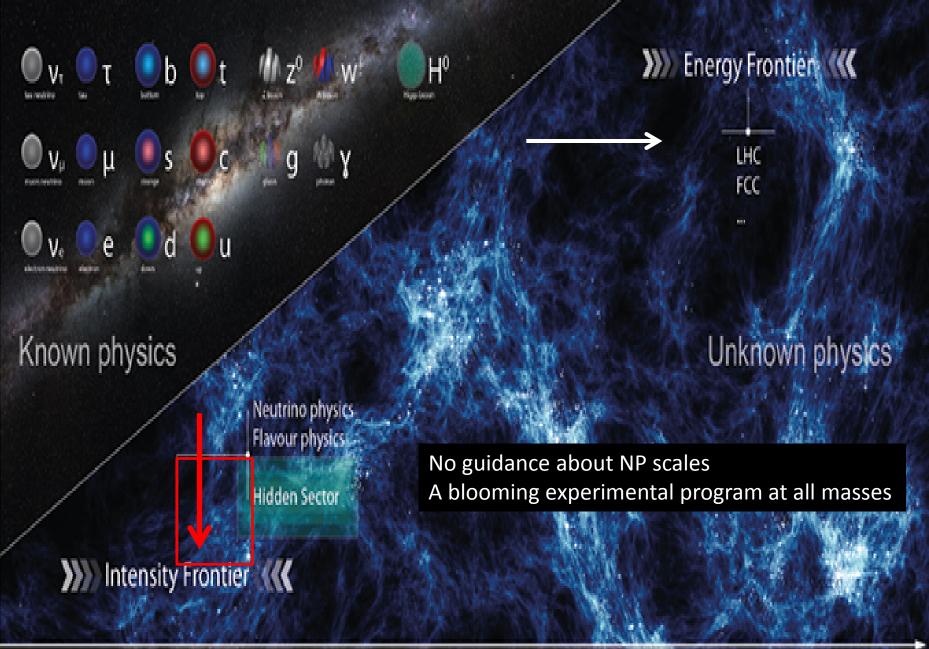


Evidence for BSM physics


With the Higgs boson, the Standard Model (SM) is a complete framework, succesfully predictive, consistent up to the Planck scale.

However fundamental questions are not addressed:

- Neutrino masses and oscillations
- Baryon asymmetry in the Universe
- Dark matter
- Why no strong CP violation?
- Dark energy
- Inflation



J. Chauveau GDR InF

J. Chauveau GDR InF

Energy Scale

History

- Path towards approval
 - 2013/10 EOI
 - 2014/12 Collaboration formed
 - 2015/04 Technical and Physics proposals
 - 2016/01&03 SPSC and RB recommendations
 - CDS (Conceptual Design Study)
 - PBC (Physics Beyond Colliders workshop)
 - European Strategy
- <=5 yr Construction
- 2026 commissionning
- 2027 data taking for 5 yrs

Cost (TP) and schedule (today)

Accelerator schedule	2015	2016	2017	2018	2019	2020		2021	2	022	2023	2024	2025		2026	2027
LHC		F	Run 2		L	S2				Run 3			LS3			Run 4
SPS												NA stop	SPS stop	C		
					ESPF	D C										
Detector			CDS	S	Prototyping	j, design		Pro	ductio	on			Installation			
Milestones	TP			CDR			T) <mark>r //</mark> Pf	RR						Cw	<mark>B</mark> Data taking
Facility						Integ	gratio	on							Cw	B
Civil engineering						Pre-const	ucti	on	Targ	et - Dete	ector hall -	Beamline	Junctior	า	_	
Infrastructure												Installation	l.			vB: ommissioning
Beamline			CD	S	Prototyping	j, design		Т		Produ	ction		Installation		w	ith beam
Target complex			CDS	S	Prototyping	j, design		D		Produc	tion	Insta	Illation			
Target			CD:	S	Prototyping	j, design		R			Production	n	Installation			

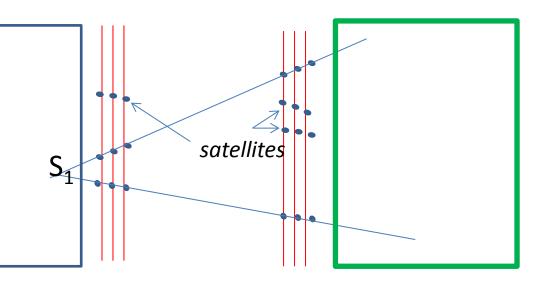
Table 6.3: Breakdown of the cost of Item		<u>P detectors.</u> (MCHF)
Tau neutrino detector		11.6
Active neutrino target	6.8	
Fibre tracker	2.5	
Muon magnetic spectrometer	2.3	
Total detectors		58.7
Facility		135.8
Grand ^{2/} tø#al		194.5

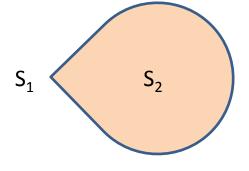
Hidden Sector detector		46.8
HS vacuum vessel	11.7	
Surround background tagger	2.1	
Upstream veto tagger	0.1	
Straw veto tagger	0.8	
Spectrometer straw tracker	6.4	
Spectrometer magnet	5.3	
Spectrometer timing detector	0.5	
Electromagnetic calorimeter	10.2	
Hadronic calorimeter	4.8	
Muon detector	2.5	
Muon iron filter	2.3	59
Computing and online system	0.2	

Alternate SplitCal Design

with DT, EB...

Measure 2 points (S₁, S₂) across a base *L* with $\sigma \sim L/1000$.

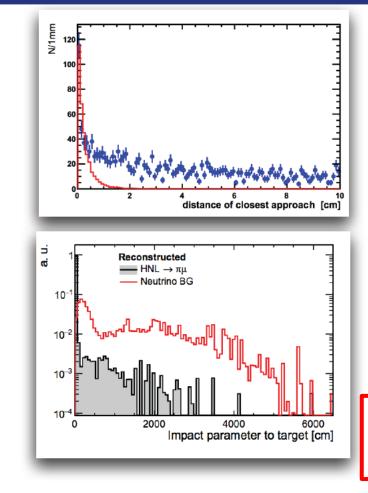

- S₁ the location of the 1st pair
- S₂ the position of the shower maximum or...
- The hard part is to measure S₁
- Use tracking (TPC, μM, straws?..)


Need simulation

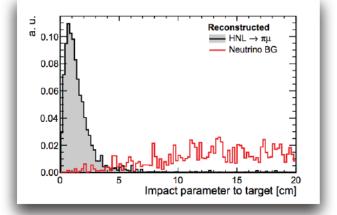
- Reconstruct 3D track candidates
- Clean them/remove satellites using
 - energy of clusters,
 - angles

2/2/2018

• Vertex to get S₁.



Universität Zürich[™]


Physik-Institut

Kinematic Selection

Nico Serra - CERN Theory Institute

Very simple selection reduces the bkg to only a few in 5 years:

- Fiducial volume
- DOCA
- IP wrt target
- Vetos

Realistic to reach 0.1 expected bkg events for exclusive channels we have been studying so far

February 2017

Signal yield

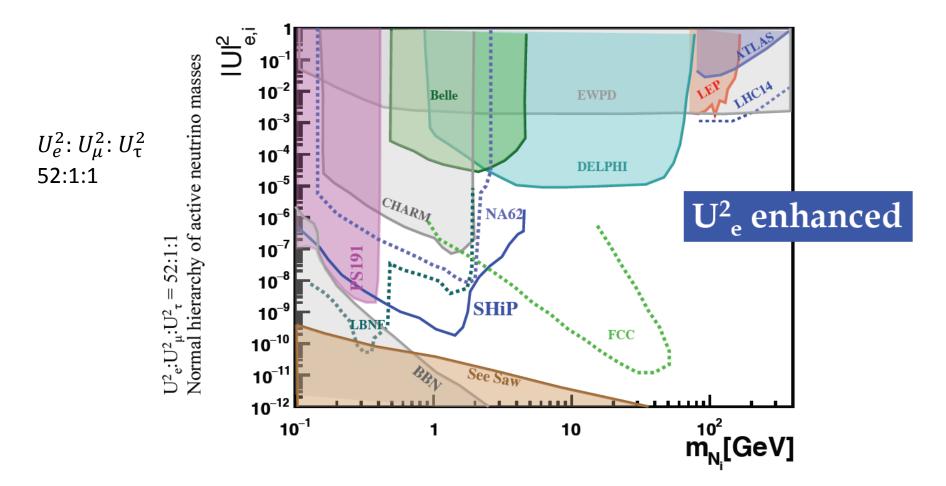
 $N(\text{p.o.t}) = 2 \cdot 10^{20}$ $n(HNL) = N(\text{p.o.t}) \times \chi(pp \to HNL) \times \mathcal{P}_{\text{vtx}} \times \mathcal{A}_{\text{tot}}(HNL \to \text{visible})$ $\chi(pp \to HNL) = 2\sum_{q=c,b} \chi(pp \to q\bar{q}) \times \text{Br}(q \to HNL) \times U^{2}$ $U^{2} = U^{2}_{e} + U^{2}_{\mu} + U^{2}_{\tau}$

 $\chi =$ total HNL production rate per proton interaction in Mo target

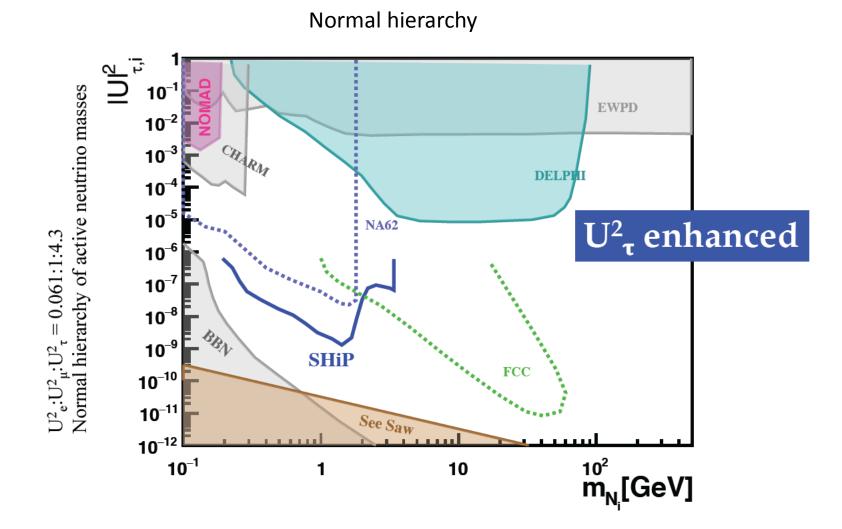
$$\begin{split} \chi(pp \to c\bar{c}) &= 1.7 \cdot 10^{-3} \\ \chi(pp \to b\bar{b}) &= 1.6 \cdot 10^{-7} \end{split}$$

TP estimates. Expect >1.5 enhancement because of the reinteractions.

 $\mathcal{P}_{\rm vtx}$ $$\ensuremath{\mathsf{Probability}}\xspace$ for an HNL with given mass and couplings to decay within SHiP fiducial volume


 $\mathcal{A}_{\rm tot}(\mathit{HNL} \rightarrow {\rm visible}) = \sum_{i={\rm visible \ channel}} \mathcal{BR}(\mathit{HNL} \rightarrow i) \times \mathcal{A}(i) \quad \begin{array}{l} {\rm Acceptance} \\ {\rm for \ all \ final \ states} \end{array}$

Typically
$$P_{vtx} \times A_{tot} \times \varepsilon_{selection} \sim 10^{-6} \left(\frac{U^2}{10^{-8}}\right) or \sim 100 \times U^2$$


Sensitivity to HNL

Normal hierarchy

Sensitivity to HNL

2/2/2018