Kaon physics

GDR-InF Workshop: The Future of the Intensity Frontier CERN, 2 February 2018

Matthew Moulson INFN Frascati

moulson@Inf.infn.it

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Outline

- 1. A few words on V_{us}
- 2. Rare kaon decays
 - *K_s* measurements and LHCb
- **3.** $K \rightarrow \pi v v$
 - Aside: $K \rightarrow \pi v v$ and Re $\varepsilon' / \varepsilon$
- 4. $K \rightarrow \pi v v$: NA62
- 5. $K \rightarrow \pi v v$: KOTO and KLEVER
- 6. Outlook and summary

V_{us} , CKM unitarity, gauge universality

At present, first-row condition gives most precise test of CKM unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2_{\approx 2 \times 10^{-5}} \sim |V_{ud}|^2 + |V_{us}|^2 \equiv \mathbf{1} - \Delta_{CKM}$$

From $0^+ \rightarrow 0^+$ nuclear β decays: **From** $K_{\ell 3}$ and $K_{\mu 2}$ decays: $2|V_{ud}|\delta V_{ud} = 0.0004$ $2|V_{us}|\delta V_{us} = 0.0003$

Sensitive to new physics at 10-TeV scale

Model independent effective-theory approach

Effective Lagrangian for $\mu \sim 1 \text{ GeV}$ with general set of dim-6 operators giving rise to (semi)leptonic transitions Dach Cirigliano, González-Alonso, Jenkins '10 González-Alonso, Camalich '16 $\mathscr{L}_{d^{j} \to u^{i} \ell \bar{\nu}}^{\text{eff}} = \mathscr{L}_{d^{j} \to u^{i} \ell \bar{\nu}}^{\text{eff}, \text{SM}} + \frac{v^{2}}{\Lambda^{2}} \mathscr{L}_{d^{j} \to u^{i} \ell \bar{\nu}}^{\text{eff}, \text{NP}}$

(90% CL)

Consider the **flavor-blind** limit (or similar: minimal flavor violation, etc.) New physics appears as a small difference between $G_{\rm CKM}$ and G_{μ}

$$\Delta_{\rm CKM} = 2 \frac{v^2}{\Lambda^2} (-\alpha_{\varphi\ell}^{(3)} + \alpha_{\varphi q}^{(3)} - \alpha_{\ell q}^{(3)} + \alpha_{\ell \ell}^{(3)}) = \frac{G_{\rm CKM}}{G_{\mu}} - 1$$

For $\Delta_{\rm CKM}$ known to ~ 0.5 × 10⁻³

Determination of $V_{\mu s}$ from $K_{\ell 3}$ data

 $\Gamma(K_{\ell 3(\gamma)}) = \frac{C_K^2 G_F^2 m_K^5}{102\pi^3} S_{\rm EW} |V_{us}|^2 |f_+^{K^0 \pi^-}(0)|^2$ with $K \in \{K^+, K^0\}$; $\ell \in \{e, \mu\}$, and: C_{κ}^{2} 1/2 for K^+ , 1 for K^0

 $S_{\rm FW}$ Universal SD EW correction (1.0232)

Inputs from experiment:

 $\Gamma(K_{\ell^{3}(\gamma)})$

Rates with well-determined treatment of radiative decays:

- Branching ratios
- Kaon lifetimes

 $I_{K\ell}(\{\lambda\}_{K\ell})$

Integral of form factor over phase space: λ s parameterize evolution in t

- K_{ρ_3} : Only λ_+ (or λ_+', λ_+'')
- $K_{\mu3}$: Need λ_+ and λ_0

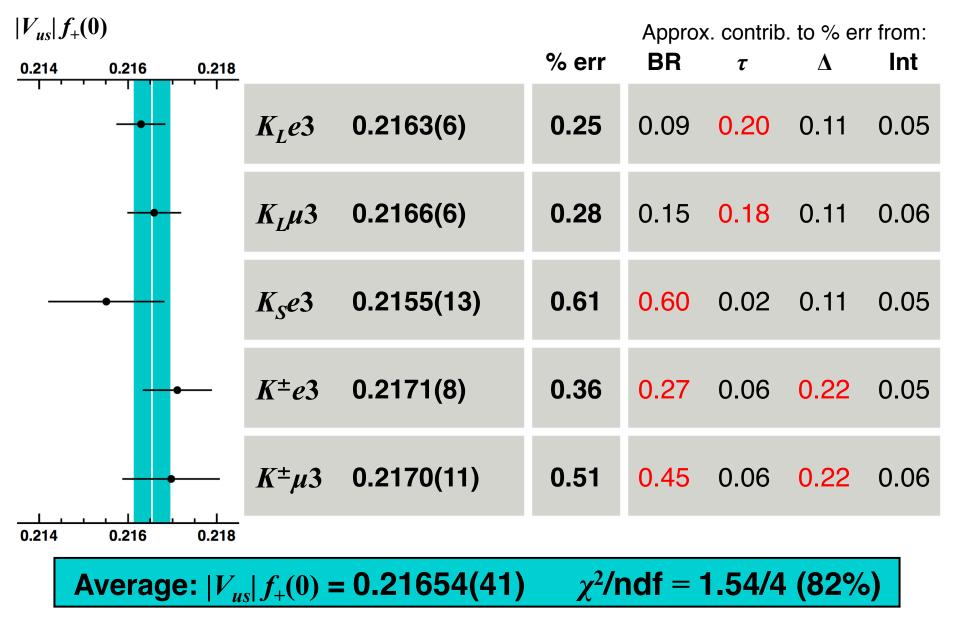
Х

$$I_{K\ell}(\lambda_{K\ell}) \left(1 + 2\Delta_{K}^{SU(2)} + 2\Delta_{K\ell}^{EM}\right)$$

Inputs from theory:

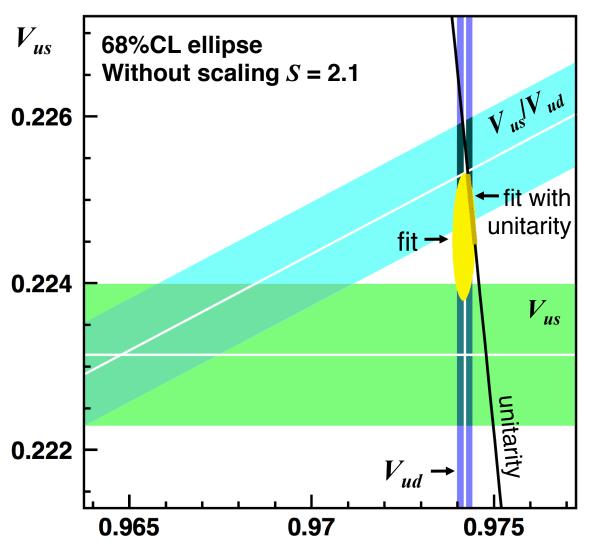
 $f_{+}^{K^{0}\pi^{-}}(0)$

 $\Delta_{K}^{SU(2)}$


 $\Delta_{K\ell}^{EM}$

- Hadronic matrix element (form factor) at zero momentum transfer (t = 0)
- Form-factor correction for SU(2) breaking
 - Form-factor correction for long-distance EM effects

Hadronic constants from lattice QCD See 2017 FLAG review


Data from BNL865, ISTRA+, KLOE,

$|V_{us}| f_{+}(0)$ from world data: Update

V_{us} and CKM unitarity: All data

 $N_f = 2+1+1$: Fit to results for $|V_{ud}|$, $|V_{us}|$, $|V_{us}|/|V_{ud}|$ $f_+(0) = 0.9704(32)$, $f_K/f_{\pi} = 1.1933(27)$

 $|V_{ud}| = 0.97420(21)$ $|V_{us}| = 0.2231(9)$ $|V_{us}|/|V_{ud}| = 0.2308(6)$

Fit results, no constraint

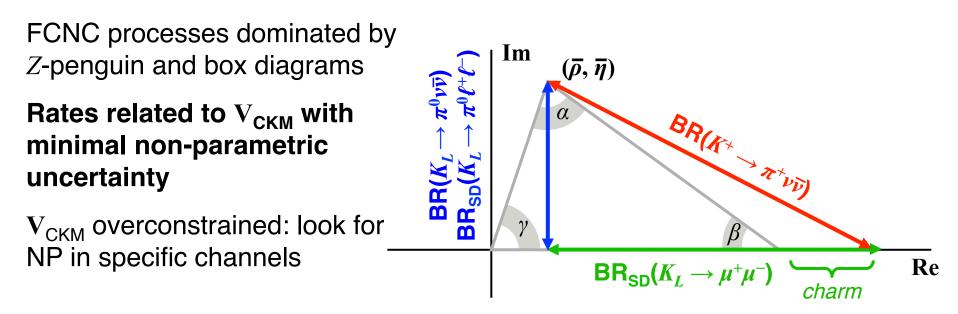
$$V_{ud} = 0.97418(21)$$

 $V_{us} = 0.2246(5)$
 $\chi^2/ndf = 4.2/1 (3.9\%)$
 $\Delta_{CKM} = -0.0007(5)$
 -1.1σ

With scale factor S = 2.1 $V_{ud} = 0.97418(43)$ $V_{us} = 0.2246(10)$

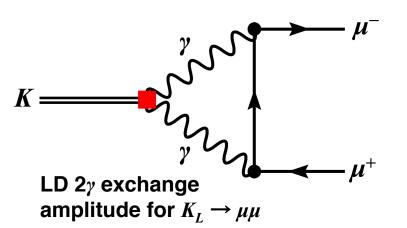
Kaon physics - M. Moulson (Frascati) - GDR-InF Workshop - CERN, 2 February 2018

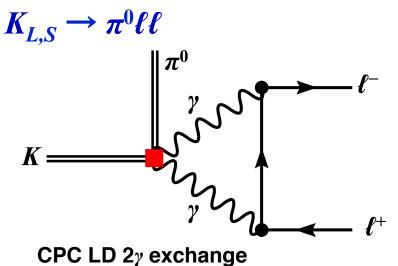
Experimental outlook for V_{us}


- Uncertainty on V_{us} still (slightly) dominated by hadronic constants Continuing to see impressive progress on the lattice!
- Good prospects for new round of experimental results to reduce uncertainty on $|V_{us}| f_{+}(0)$ from current 0.18% to ~0.12% within 5 years

NA48/2	<i>K</i> ⁺ BRs and form factors
→ NA62	Runs through 2018
ISTRA+	<i>K</i> ⁺ BRs and form factors
→ OKA	Runs through 2018
KLOE	Can measure all observables: BRs, τ s, FFs: K^{\pm} , K_L , K_S
→ KLOE-2	Runs until 03/2018: 2.4 fb ⁻¹ KLOE + 5 fb ⁻¹ KLOE-2 data
LHCb	Proven capability to measure K_S decays to muons Can LHCb measure BR($K_S \rightarrow \pi \mu v$) to < 1% in Run II?
KEK-246	Main focus is BR($K_{e2}/K_{\mu 2}$)
→ TREK E-36	KEK-246 measured BR($K_{\mu 3}/K_{e3}$) and K_{e3} FF

Rare kaon decays


Decay	$\Gamma_{\rm SD}/\Gamma$	Theory err.*	SM BR $\times 10^{11}$	Exp. BR × 10 ¹¹
$K_L \rightarrow \mu^+ \mu^-$	10%	30%	79 ± 12 (SD)	684 ± 11
$K_L ightarrow \pi^0 e^+ e^-$	40%	10%	35 ± 10	< 28 [†]
$K_L o \pi^0 \mu^+ \mu^-$	30%	15%	14 ± 3	< 38†
$K^+ \rightarrow \pi^+ \nu \overline{ u}$	90%	4%	8.4 ± 1.0	17 ± 11
$K_L ightarrow \pi^0 v \overline{v}$	>99%	2%	3.4 ± 0.6	< 2600†


*Approx. error on LD-subtracted rate excluding parametric contributions [†]90% CL

Rare K_L and K_S decays

 $K_{L,S} \rightarrow \mu\mu$

amplitude for $K_L \rightarrow \pi^0 \ell \ell$

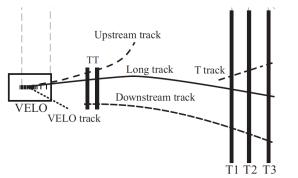
LD amplitude from 2γ exchange dominant

 $BR_{SM}(K_S \rightarrow \mu^+ \mu^-) = (5.2 \ 1.5) \ 10^{-12}$

- Significant uncertainty from unknown sign of interference between K_L and K_S amplitudes
- Measurement of K_S BR improves accuracy of theory prediction for K_L BR
- NP contribution to BR($K_S \rightarrow \mu^+ \mu^-$) could be as high as 10⁻¹¹

Theoretical uncertainties from LD physics

- SD CPV amplitude: γ/Z exchange
- LD CPC amplitude from 2γ exchange
- LD indirect CPV amplitude: $K_L \rightarrow K_S$

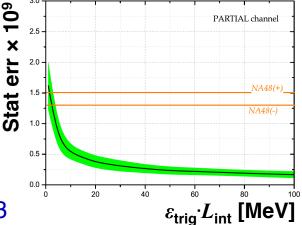

Probes helicity suppression in FCNC decays Can look for LFU violation, like for $B \rightarrow K\ell\ell$

Rare K_S decays with LHCb

- 10¹³ K_s/fb⁻¹ produced in LHCb acceptance
- Use only "long tracks" to reconstruct *K*_S

40% decay in VELO region

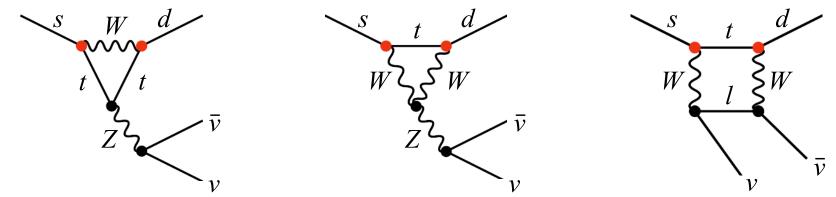
- Main limitation: HW trigger eff = 2.5%
- Good μ identification and μμ mass resolution


 $K_{S} \rightarrow \mu\mu$ BR < 0.8 × 10⁻⁹ (CL90) 3 fb⁻¹ 2011-12 data EPJC 77 (2017) Combinatorial bkg $\pi^{+}\pi^{-}$ mis-ID 10^{-1} $\pi^{+}\pi^{-}$ mis-ID 10^{-1}

 $K_S \rightarrow \pi^0 \mu \mu$ LHCb Pub 2016-017

Sensitivity study:

- TIS selection
- π^0 not required


Improvement on NA48/1 result is possible in Run 3

NA48/1 PLB599 (2004) BR($K_S \rightarrow \pi^0 \mu \mu$) = (2.9^{+1.5}_{-1.2} ± 0.2) × 10⁻⁹

$K \rightarrow \pi v \bar{v}$ in the Standard Model

FCNC processes dominated by *Z*-penguin and box amplitudes:

Extremely rare decays with rates very precisely predicted in SM:

- Hard GIM mechanism + pattern of CKM suppression $(V_{ts}^* V_{td})$
- No long-distance contributions from amplitudes with intermediate photons
- Hadronic matrix element obtained from $BR(K_{e3})$ via isospin rotation

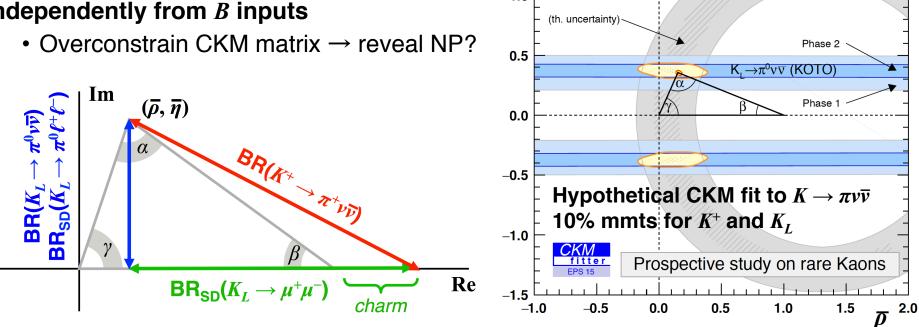
	SM predicted rates Buras et al, JHEP 1511*	Experimental status
$K^+ \rightarrow \pi^+ \nu \overline{\nu}$	BR = (8.4 ± 1.0) × 10 ⁻¹¹	BR = (17.3 $^{+11.5}_{-10.5}$) × 10 ⁻¹¹ Stopped <i>K</i> ⁺ , 7 events observed BNL 787/949, PRD79 (2009)
$K_L \rightarrow \pi^0 v \overline{v}$	BR = (3.4 ± 0.6) × 10 ⁻¹¹	BR < 2600 × 10⁻¹¹ 90%CL KEK 391a, PRD81 (2010)

* Tree-level determinations of CKM matrix elements

Kaon physics - M. Moulson (Frascati) - GDR-InF Workshop - CERN, 2 February 2018

$K \rightarrow \pi v \bar{v}$ and the unitarity triangle

Dominant uncertainties for SM BRs are from CKM matrix elements


$$BR(K^{+} \to \pi^{+} v \bar{v}) = (8.39 \pm 0.30) \times 10^{-11} \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^{2.8} \cdot \left[\frac{\gamma}{73.2^{\circ}}\right]^{0.74}$$
Buras et al.,

$$JHEP \ 1511$$

$$BR(K_{L} \to \pi^{0} v \bar{v}) = (3.36 \pm 0.05) \times 10^{-11} \cdot \left[\frac{|V_{ub}|}{3.88 \times 10^{-3}}\right]^{2} \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^{2} \cdot \left[\frac{\sin \gamma}{\sin 73.2^{\circ}}\right]^{2}$$

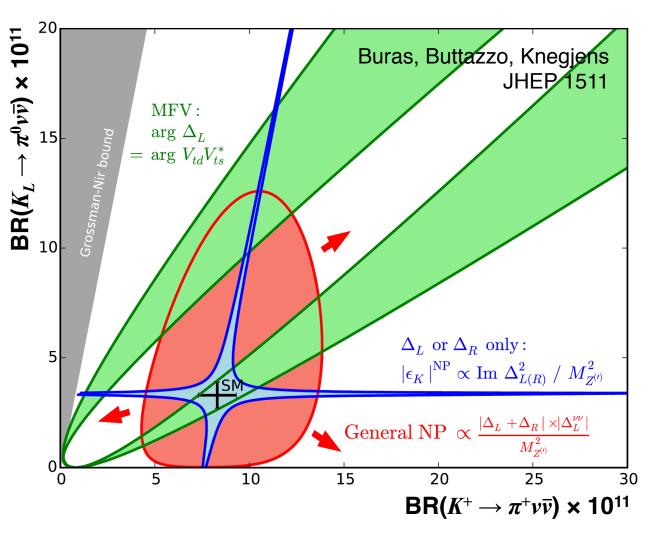
Intrinsic theory uncertainties ~ few percent

Measuring both K^+ and K_L BRs can determine the unitarity triangle independently from *B* inputs

1.5

1.0

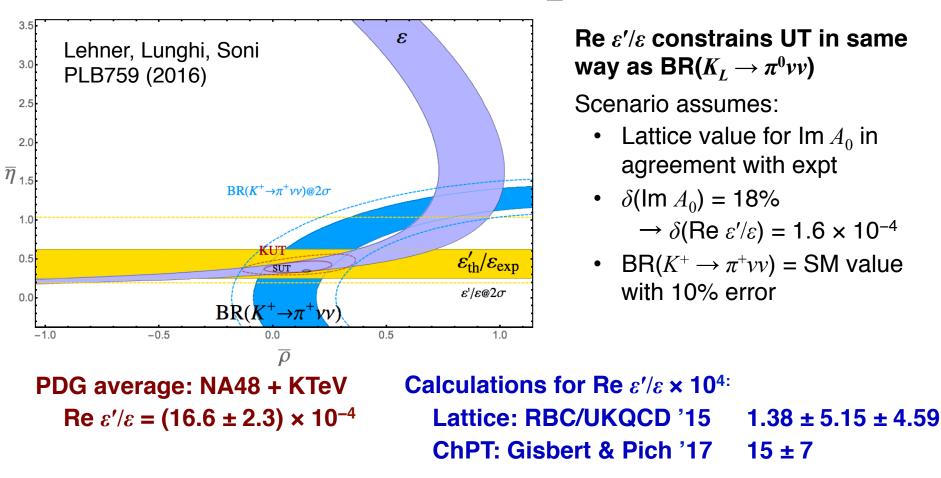
excluded area has CL > 0.95


n

Kaon physics – M. Moulson (Frascati) – GDR-InF Workshop – CERN, 2 February 2018

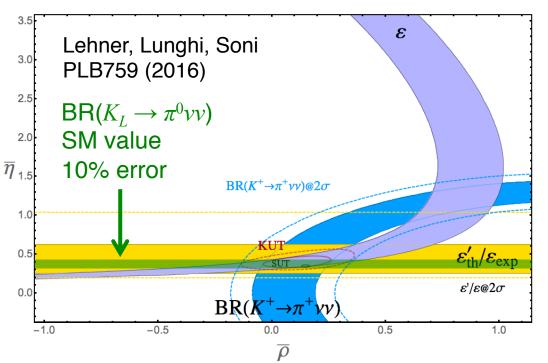
 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (NA62)

$K \rightarrow \pi v \bar{v}$ and new physics


New physics affects BRs differently for K^+ and K_L channels Measurements of both can discriminate among NP scenarios

- Models with CKM-like flavor structure

 Models with MFV
- Models with new flavorviolating interactions in which either LH or RH couplings dominate
 - –Z/Z' models with pure LH/RH couplings
 - Littlest Higgs with
 T parity
- Models without above constraints
 Dendell Sundrum
 - -Randall-Sundrum


Re ε'/ε vs BR($K_L \rightarrow \pi^0 \nu \nu$)

RBC/UKQCD value is 2.1σ lower than experimental value:

- Dominant uncertainty is lattice spacing (single spacing for A_0)
- Claim: Uncertainty ~10% of experimental value can be reached in ~5 years!
- Results with 2nd lattice spacing should be available sooner

Re $\varepsilon' / \varepsilon$ vs BR($K_L \rightarrow \pi^0 \nu \nu$)

Re ε'/ε constrains UT in same way as BR($K_L \rightarrow \pi^0 vv$)

Scenario assumes:

- Lattice value for Im A₀ in agreement with expt
- $\delta(\operatorname{Im} A_0) = 18\%$ $\rightarrow \delta(\operatorname{Re} \varepsilon' / \varepsilon) = 1.6 \times 10^{-4}$
- BR($K^+ \rightarrow \pi^+ vv$) = SM value with 10% error

Does this impact the attractiveness as an observable of BR($K_L \rightarrow \pi^0 vv$)?

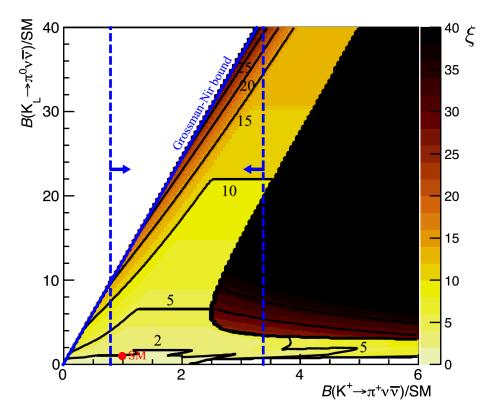
Re ε'/ε is dominated by systematics

$$R = \frac{\mathrm{BR}(K_L \to \pi^0 \pi^0)}{\mathrm{BR}(K_S \to \pi^0 \pi^0)} \cdot \frac{\mathrm{BR}(K_S \to \pi^+ \pi^-)}{\mathrm{BR}(K_L \to \pi^+ \pi^-)} \approx 1 - 6 \operatorname{Re} \varepsilon' / \varepsilon$$

- Can *R* ever be measured to ~0.06% for $\delta(\text{Re }\varepsilon'/\varepsilon) \sim 1 \times 10^{-4}$?
- A 10% mmt of BR($K_L \rightarrow \pi^0 v v$) offers better constraint on UT

Kaon physics - M. Moulson (Frascati) - GDR-InF Workshop - CERN, 2 February 2018

$K \rightarrow \pi v \overline{v}$ and other kaon observables


What about constraints from Re ε'/ε , ε_K , Δm_K , $K_L \rightarrow \mu \mu$?

Particular interest in NP scenarios to explain difference between experimental and lattice QCD values for Re ε'/ε

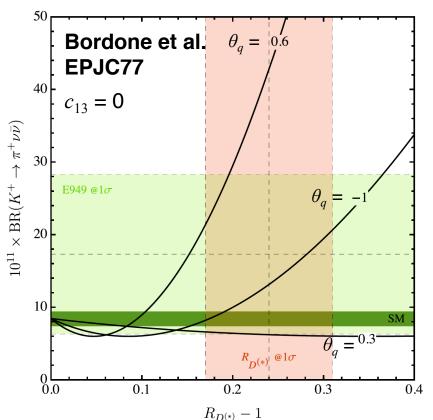
Example: Endo et al. PLB771 (2017)

General Z scenario with modified couplings, $\Lambda = 1$ TeV

- Because of interference between SM and NP amplitudes, if all constraints satisfied including "discrepancy" in Re ε'/ε : BR($K \rightarrow \pi vv$) ~ 0.5 SM BR
- Particularly in simplified scenarios: LH, RH, LRS
- With moderate tuning (cancellation of interference terms to 10%), large values for BR($K \rightarrow \pi vv$) are possible

$K \rightarrow \pi v \overline{v}$ and other flavor observables

New ideas relating $K \rightarrow \pi v v$ to *B*-sector LFU anomalies:


 $R_{K}, P_{5}': \mu/e \text{ LFU in } B \to K\ell\ell, B \to K^{*}\ell\ell$ $R_{D(*)}: \tau/(\mu, e) \text{ LFU in } B \to D^{(*)}\ell\nu$

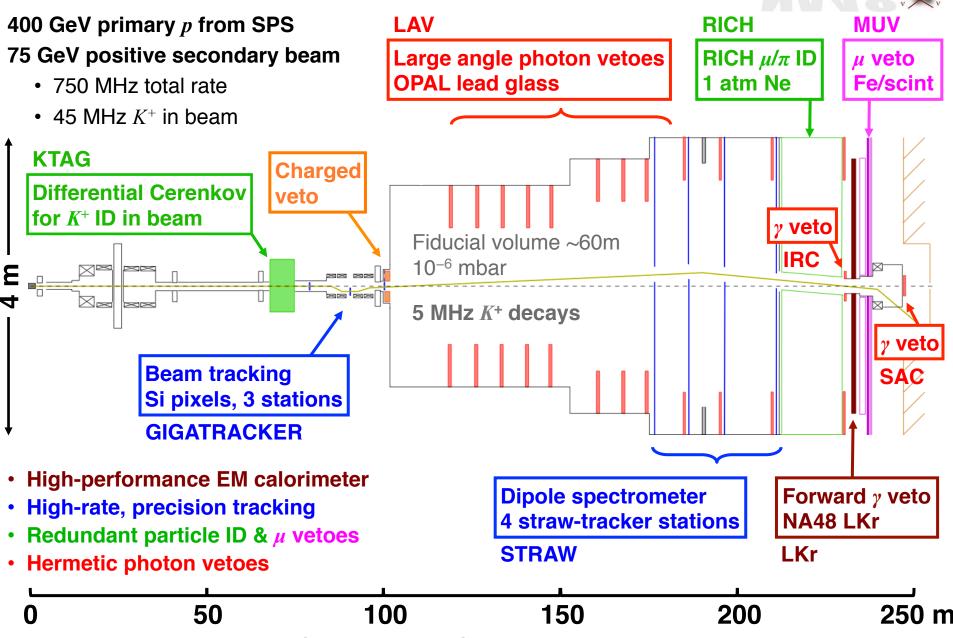
Coherent explanation from NP coupled predominantly to 3rd generation LH quarks and leptons, e.g., mediated by vector leptoquark

- Di Luzio et al. PRD 96 (2017)
- Buttazzo et al. JHEP 1711

EFT studies suggest large effect for $K \rightarrow \pi v v$

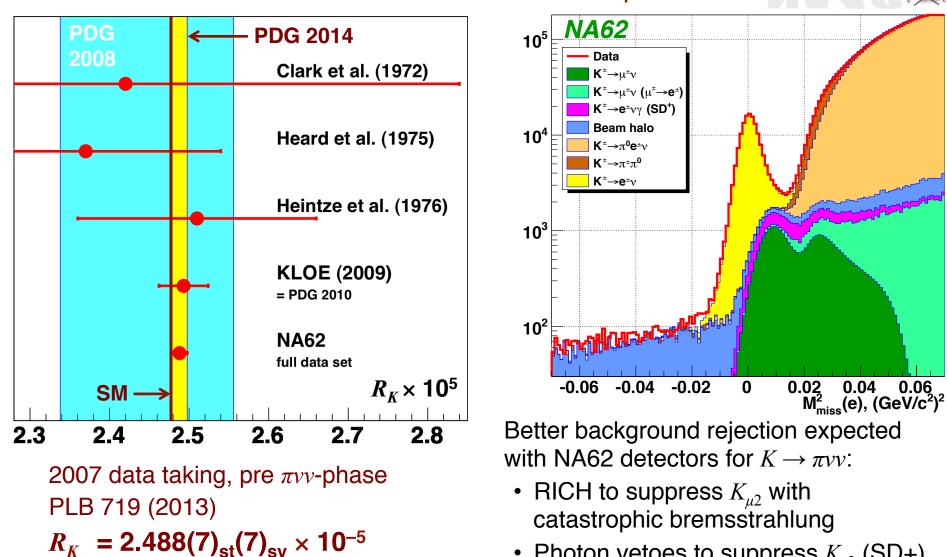
• Bordone et al. EPJC77 (2017)

$$\mathcal{B}(B \to D^{(*)}\tau\bar{\nu}) = \mathcal{B}(B \to D^{(*)}\tau\bar{\nu})_{\mathrm{SM}} \left| 1 + R_0 \left(1 - \theta_q e^{-i\phi_q} \right) \right|^2$$


$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = 2\mathcal{B}(K_L \to \pi^0 \nu_e \bar{\nu}_e)_{\rm SM} + \mathcal{B}(K_L \to \pi^0 \nu_\tau \bar{\nu}_\tau)_{\rm SM} \left| 1 - \frac{R_0 \,\theta_q^2 (1 - c_{13})}{(\alpha/\pi)(X_{\rm t}/s_{\rm w}^2)} \right|^2$$

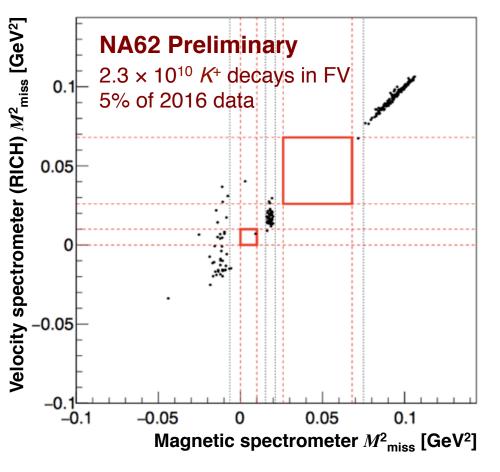
 $R_0 = \frac{1}{\Lambda^2} \frac{1}{\sqrt{2}G_F}$

The NA62 experiment at the CERN SPS


The NA62 experiment at the SPS **NA62**

Kaon physics – M. Moulson (Frascati) – GDR-InF Workshop – CERN, 2 February 2018

NA62- R_{K} result for $\Gamma(K_{e2})/\Gamma(K_{u2})$


- Photon vetoes to suppress $K_{e2\nu}(SD+)$
- Straw chambers in vacuum to reduce MS and improve M^2_{miss} resolution

Kaon physics – M. Moulson (Frascati) – GDR-InF Workshop – CERN, 2 February 2018

 $= 2.488(10) \times 10^{-5}$

0.4% overall precision

Status and outlook for $K^+ \rightarrow \pi^+ \nu \nu$

Preliminary results: 2016 data First physics run with full detector

NA 6

Expected backgrounds

$\pi^+\pi^0$	0.035
μv	0.024
$\pi^+\pi^+\pi^-$	0.003

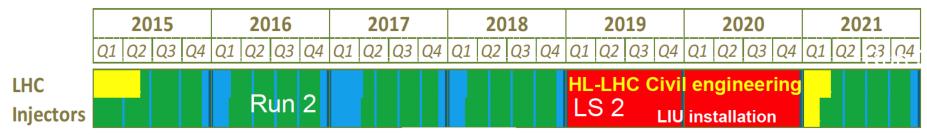
Ongoing evaluation of contributions from upstream decays, radiative decays and beam interactions

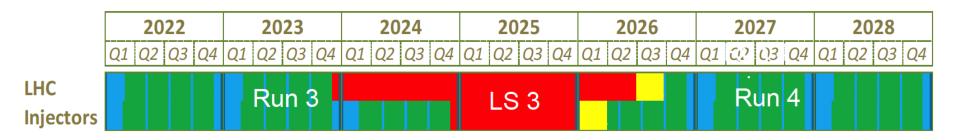
With all 2016 data, SM sensitivity (BR $\sim 10^{-10}$) reached

Results from full 2016 data set will be presented in spring 2018

30 weeks of data taking per year for 2017-2018 Processing of 2017 data in progress

Assuming running is as smooth as in 2017, by the end of 2018 NA62 will reach a sensitivity of 20-30 SM $K^+ \rightarrow \pi^+ vv$ events


Fixed target runs at the SPS


2021 (Run 3): • NA62 will continue data taking for $K^+ \rightarrow \pi^+ vv$ O(100) SM events – measure BR to 10%

• Searches for hidden particles in beam-dump mode Dark photons, ALPs, heavy neutrinos, scalars...

2026 (Run 4): Turn focus to measurement of BR($K_L \rightarrow \pi^0 v v$)?

F. Bordry, presentation to HEPAP, Dec 2015

Kaon physics - M. Moulson (Frascati) - GDR-InF Workshop - CERN, 2 February 2018

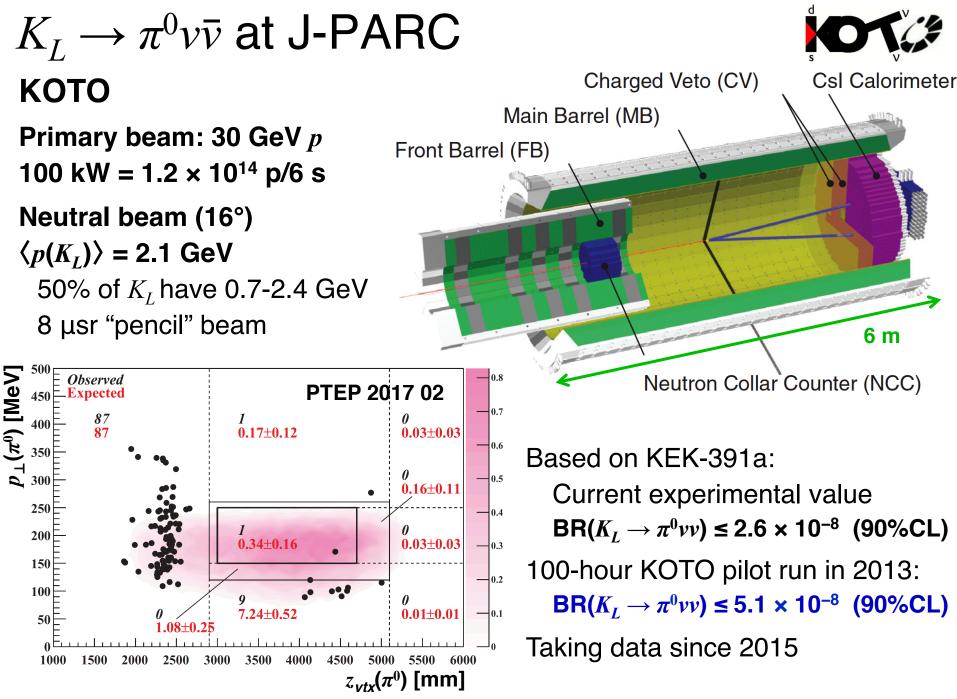
$K_L \rightarrow \pi^0 v \bar{v}$: Experimental issues

Essential signature: 2γ with unbalanced p_{\perp} + nothing else!

All other K_L decays have $\ge 2 \text{ extra } \gamma \text{s or } \ge 2 \text{ tracks to veto}$ Exception: $K_L \rightarrow \gamma \gamma$, but not a big problem since $p_\perp = 0$

K_L momentum generally is not known $M(\gamma\gamma) = m(\pi^0)$ is the only sharp kinematic constraint

Generally used to reconstruct vertex position

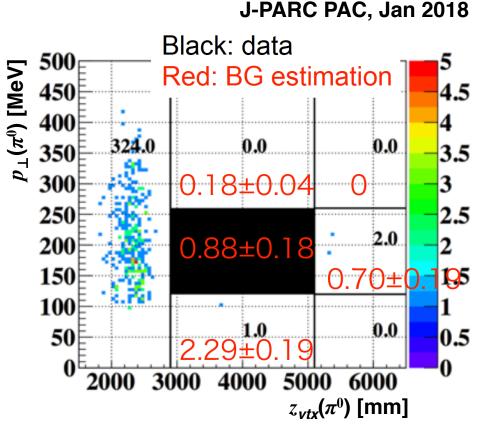

Main backgrounds:

veio	• 1			
0	R_1		γ_2	
			R_2	
K _L				
m^2	-2FF	(1	(0, 0, 0)	

$$m_{\pi^0}^2 = 2E_1 E_2 \left(1 - \cos\theta\right)$$

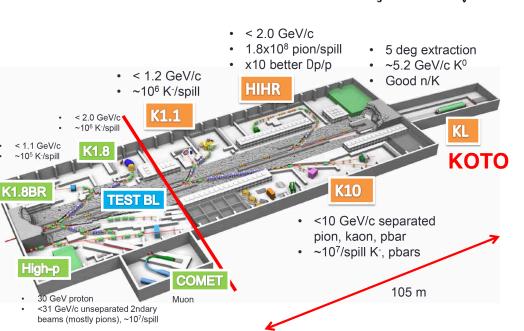
$$R_1 \approx R_2 \equiv R = \frac{d\sqrt{E_1 E_2}}{m_{\pi^0}}$$

Mode	BR	Methods to suppress/reject
$K_L ightarrow \pi^0 \pi^0$	8.64 × 10 ⁻⁴	γ vetoes, π^0 vertex, p_\perp
$K_L \rightarrow \pi^0 \pi^0 \pi^0$	19.52%	γ vetoes, π^0 vertex, p_\perp
$K_L \rightarrow \pi e \nu(\gamma)$	40.55%	Charged particle vetoes, π ID, γ vetoes
$\Lambda \to \pi^0 n$		Beamline length, p_{\perp}
$n + gas \rightarrow X\pi^0$		High vacuum decay region

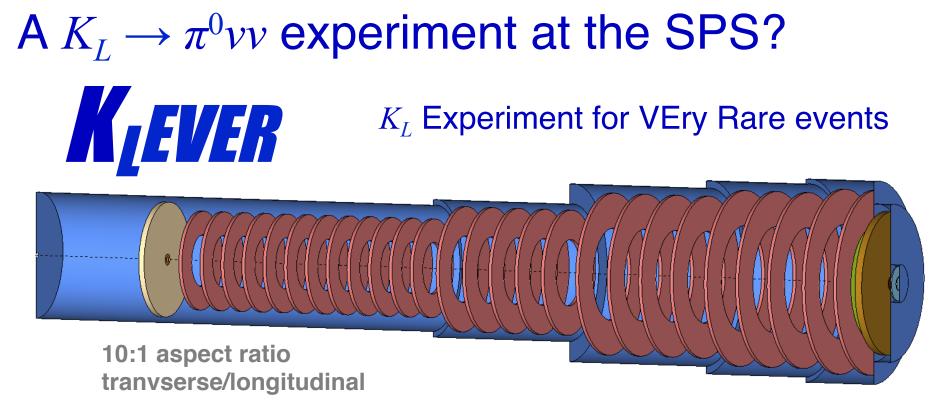

Kaon physics – M. Moulson (Frascati) – GDR-InF Workshop – CERN, 2 February 2018

$$K_L \rightarrow \pi^0 v \bar{v}$$
 at J-PARC

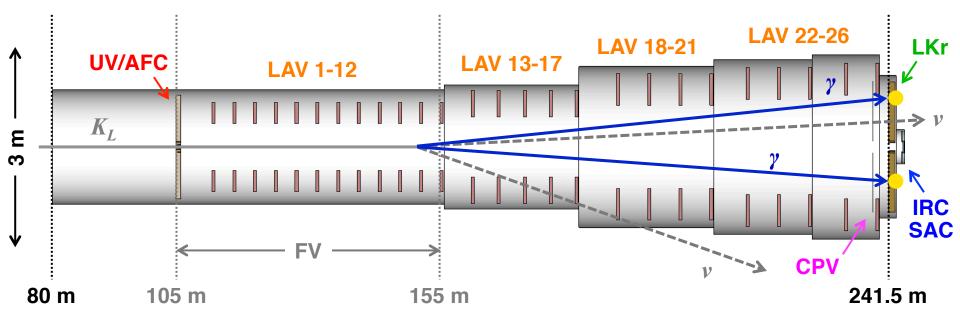
Current status:


- Reached 44 kW of slow-extracted beam power in 2017
- Preliminary results, all 2015 data: SES = 1.2 × 10⁻⁹ Expected bkg = 0.9 ± 0.2 events Signal box not yet unblinded Bkg estimate still under study
- With all 2015-2017 data, expected sensitivity below Grossman-Nir limit
- In 2018 beam power will increase to 50 kW
- Continuing program of upgrades to reduce background: New barrel veto (2016), both-end readout for CsI crystals (2018)
- Expect to reach SM sensitivity by 2021

 $K_{I} \rightarrow \pi^{0} v \bar{v}$ at J-PARC


KOTO Step-2 upgrade:

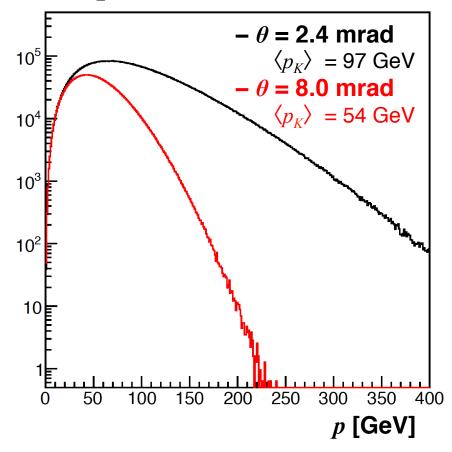
- Increase beam power to >100 kW
- New neutral beamline at 5° $\langle p(K_L) \rangle = 5.2 \text{ GeV}$
- Increase FV from 2 m to 11 m Complete rebuild of detector
- Requires extension of hadron hall


Strong intention to upgrade to O(100) event sensitivity over long term:

- No official Step 2 proposal yet (plan outlined in 2006 KOTO proposal)
- Scaling from 2006 estimates: ~10 SM evts/yr per 100 kW beam power
- Exploring possibilities for machine & detector upgrades to further increase sensitivity
- Indicative timescale: data taking starting 2025?

- High-energy experiment: Complementary approach to KOTO
- Photons from K_L decays boosted forward
 - Makes photon vetoing easier veto coverage only out to 100 mrad
- Roughly same vacuum tank layout and fiducial volume as NA62
- Possible to re-use LKr calorimeter, NA62 experimental infrastructure?
- Target sensitivity: 60 $K_L \rightarrow \pi^0 v v$ events at SM BR, with *S*/*B* = 1

An experiment to measure $K_L \rightarrow \pi^0 v \bar{v}$


Main detector/veto systems:

- **UV/AFC** Upstream veto/active final collimator
- LAV1-26 Large-angle vetoes (26 stations)
 - LKr NA48 liquid krypton calorimeter
- **IRC/SAC** Small-angle vetoes
 - **CPV** Charged particle veto

Beam and intensity requirements

Beam parameters:

- 400 GeV p on 400 mm Be target
- Production at θ = 8.0 mrad:
 - As much K_L production as possible
 - Low ratio of $(K_L \text{ in FV})/n$
 - Reduce *A* production and soften momentum spectrum
- Solid angle $\Delta \theta = 0.4$ mrad
 - Large $\Delta \theta$ = high KL flux
 - Tight beam collimation improves background rejection
 - 1.6 x 10-5 KL in beam/pot

Required total proton flux = 5 \times 10^{19} pot

10¹⁹ pot/year (= 100 eff. days) E.g.: 2 × 10¹³ ppp/16.8 s

Probability for decay inside FV $\sim 2\%$ Acceptance for decays occurring in FV $\sim 10\%$ 50-60 detected $K_L \rightarrow \pi^0 v v \text{ evts/yr}$

Neutral beam simulation

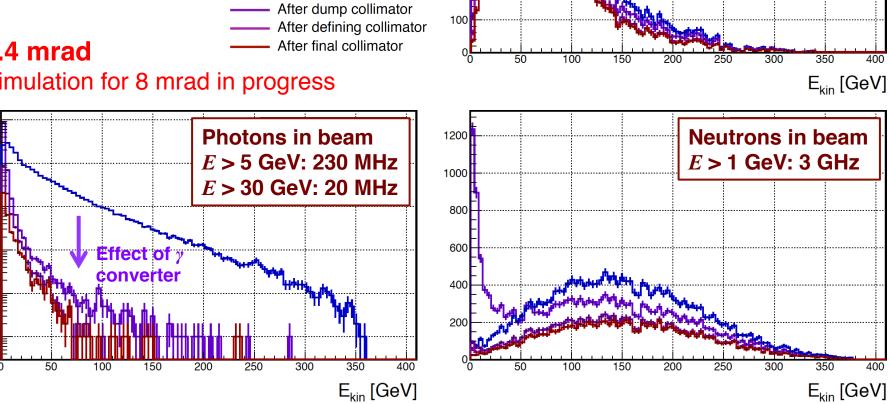
 K_{I} in beam: 280 MHz

35% scattered by converter

Geant4 simulation of beamline

- 3 collimators, $\Delta \theta = 0.3$ mrad
- 30-mm Ir photon converter in dump collimator qen

10⁵


10⁴

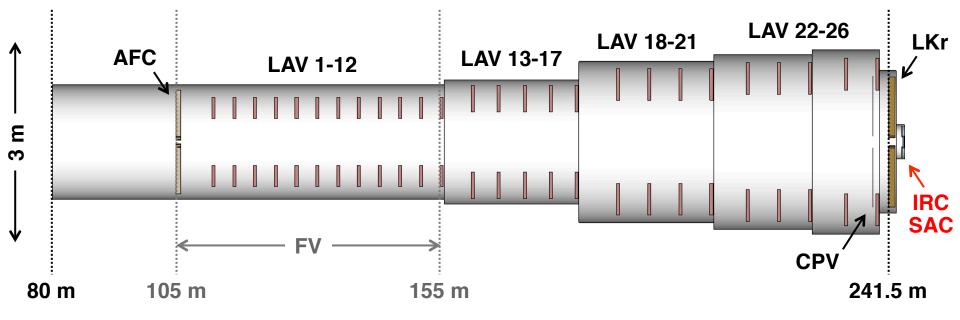
10³

10²

10

Simulation for 8 mrad in progress

400


200

Kaon physics – M. Moulson (Frascati) – GDR-InF Workshop – CERN, 2 February 2018

After absorber

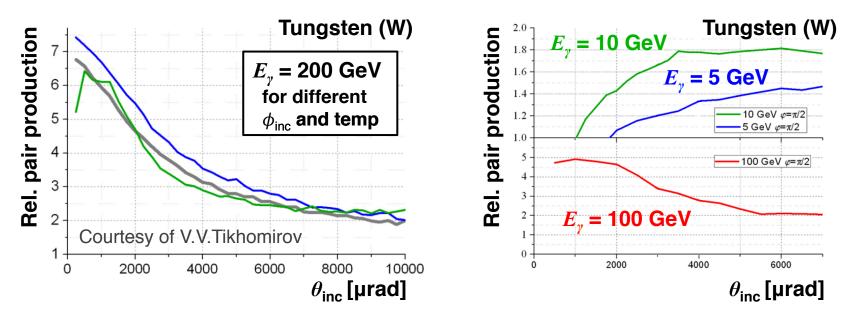
Small-angle photon vetoes

Small-angle photon veto systems (IRC, SAC)

- Reject high-energy γ s from $K_L \rightarrow \pi^0 \pi^0$ escaping through beam hole
- Must be insensitive as possible to 3 GHz of beam neutrons

Beam comp.	Rate (MHz)	Req. 1 – ε
γ, E > 5 GeV	230	10 ⁻²
γ, <i>E</i> > 30 GeV	20	10 ⁻⁴
n	3000	-

Baseline solution:


• Tungsten/silicon-pad sampling calorimeter with crystal metal absorber

Kaon physics – M. Moulson (Frascati) – GDR-InF Workshop – CERN, 2 February 2018

Efficient γ conversion with crystals

Coherent effects in crystals enhance pair-conversion probability

Use coherent effects to obtain a converter with large effective λ_{int}/X_0 :

1. Beam photon converter in dump collimator

Effective at converting beam γ s while relatively transparent to K_L

2. Absorber material for small-angle calorimeter (SAC)

Must be insensitive as possible to ~GHz of beam neutrons while efficiently vetoing high-energy γ s from K_L decays

Status and timeline

Project timeline – target dates:

2017-2018	 Project consolidation and proposal Beam test of crystal pair enhancement Consolidate design
2019-2021	Detector R&D
2021-2025	 Detector construction Possible K12 beam test if compatible with NA62
2024-2026	Installation during LS3
2026-	Data taking beginning Run 4

- KLEVER is actively seeking new collaborators!
- Expression of Interest to the SPSC is under preparation in context of Physics Beyond Colliders initiative

Summary and outlook

Good progress from lattice and prospects for new experimental results to improve 1^{st} -row unitarity test from V_{us}

LHCb has demonstrated unprecedented sensitivity for rare K_S decays

 $K \rightarrow \pi v v$ is a uniquely sensitive indirect probe for high mass scales

• Need precision measurements of both K^+ and K_L decays

NA62 will improve on current knowledge of BR($K^+ \rightarrow \pi^+ vv$) in short term, ultimately reaching ~100 event sensitivity

KOTO will reach SM sensitivity to BR($K_L \rightarrow \pi^0 vv$) by 2021

Preliminary design studies indicate that an experiment to measure BR($K_L \rightarrow \pi^0 vv$) can be performed at the SPS in Run 4 (2026-2029)

- Many issues still to be addressed!
- Expected sensitivity: ~ 60 SM events with $S/B \sim 1$
- Comparable in precision to KOTO Step 2, with complementary technique (high vs. low energy) and different systematics

Additional information

GDR-InF Workshop: The Future of the Intensity Frontier CERN, 2 February 2018

Matthew Moulson INFN Frascati

moulson@Inf.infn.it

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

High-intensity neutral beam issues

 $10^{19} \text{ pot/yr} \times 5 \text{ years} \rightarrow 2 \times 10^{13} \text{ ppp/16.8s} = 6 \times \text{ increase relative to NA62}$ Feasibility/cost study a primary goal of our involvement in Conventional Beam WG

Preliminary analysis of critical issues by Secondary Beams & Areas group

Issue	Approach
Extraction losses	Good results on ZS losses and spill quality from SPS Losses & Activation WG (SLAWG) Slow extraction workshop, 9-11 November: https://indico.cern.ch/event/639766/
Beam loss on T4	Vertical by-pass to increase transmission to T10
Equipment protection	Possibly use SIS interlock to stop extraction during P0Survey reaction time
Ventilation in ECN3	Need to understand better current safety margin May need comprehensive ventilation system upgrade
ECN3 beam dump	Significantly improved for NA62 Need to understand better current safety margin
Background fluxes	Detailed simulations getting started