

Constraining black hole formation models with gravitational-wave observations

Irina Dvorkin

Max Planck Institute for Gravitational Physics (AEI, Potsdam)

CERN TH Workshop, May 18, 2018

Black holes observed with gravitational waves

Black holes observed with gravitational waves

- How do black holes form?
- How do black hole binaries form and evolve?

Black holes observed with gravitational waves

- How do black holes form?
- How do black hole binaries form and evolve?
- What are the properties of the stellar progenitors of the black holes observed in GW?
- What are the galactic environments of the stellar progenitors?

Black hole

Stellar evolution

Mass loss by stellar winds
 Core collapse SN / direct collapse to a BH

• Explosion mechanism

Stellar evolution

- Mass loss by stellar winds
- Core collapse SN / direct collapse to a BH
 - Explosion mechanism

Remnant mass = f(stellar mass, metallicity, rotation, ?)

Stellar evolution

- Mass loss by stellar winds
- Core collapse SN / direct collapse to a BH
 - Explosion mechanism

Remnant mass = f(stellar mass, metallicity, rotation, ?)

Stellar evolution

- Mass loss by stellar winds
- Core collapse SN / direct collapse to a BH
 - Explosion mechanism

Remnant mass = (stellar mass, metallicity, rotation, ?)

[Ertl et al. (2016); Sukhbold et al. (2016)]

[Ugliano et al. (2012)]

30

35

25 ZAMS Mass $[M_{\odot}]$

20

Pair-instability supernovae

Pair-instability supernovae

Table 1 Final evolution of stars of different initial mass³

Mass at birth (solar masses)	Helium core mass (solar masses)	Compact remnant	Event
10–95	2–40	Neutron star, black hole	Ordinary supernova
95–130	40–60	Neutron star, black hole	Pulsational pair- instability supernova
130–260	60–137	Explosion, no remnant	Pair-instability supernova
>260	>137	Black hole	?

Pair-instability supernovae

Table 1 Final evolution of stars of different initial mass³

Mass at birth (solar masses)	Helium core mass (solar masses)	Compact remnant	Event
10–95	2–40	Neutron star, black hole	Ordinary supernova
95–130	40–60	Neutron star, black hole	Pulsational pair- instability supernova
130–260	60–137	Explosion, no remnant	Pair-instability supernova
>260	>137	Black hole	?

Pair-instability supernovae and pulsational pair-instability

Pulsations may cause an overabundance of BHs at ~35 Msun

[Talbot & Thrane (2018)]

Stellar evolution

- Mass loss by stellar winds
- Core collapse SN / direct collapse to a BH
 - Explosion mechanism

Remnant mass = f(stellar mass, **metallicity**, rotation)

[Fryer et al. (2012)]

Stellar evolution

- Mass loss by stellar winds
- Core collapse SN / direct collapse to a BH
 - Explosion mechanism

Remnant mass = f(stellar mass, **metallicity**, rotation)

Evolution of stellar binary

• Common envelope

Stellar evolution

- Mass loss by stellar winds
- Core collapse SN / direct collapse to a BH
 - Explosion mechanism

Remnant mass = f(stellar mass, **metallicity**, rotation)

Evolution of stellar binary

Common envelope

Other channels:

- PopIII stars
- Dynamic binary formation in dense stellar clusters

Stellar evolution

- Mass loss by stellar winds
- Core collapse SN / direct collapse to a BH
 - Explosion mechanism

Remnant mass = f(stellar mass, **metallicity**, rotation)

Evolution of stellar binary

Common envelope

Other channels:

- PopIII stars
- Dynamic binary formation in dense stellar clusters
- Primordial black holes

What we can observe:

- Masses
- Spins
- Redshifts

What we need to constrain:

- Black hole formation scenario
- Specific model parameters

What we can observe:

- Masses
- Spins
- Redshifts

What we need to constrain:

- Black hole formation scenario
- Specific model parameters

[Lamberts et al. (2016); Belczynski et al. (2016; 2017), Mapelli et al. (2017); Zevin et al. (2017); Schneider et al. (2017); Kovetz et al. (2017); Hotokezaka & Piran (2017); Fishbach & Holz (2017); ID et al. (2018), ...]

What we can observe:

- Masses
- Spins
- Redshifts

What we need to constrain:

- Black hole formation scenario
- Specific model parameters

[Lamberts et al. (2016); Belczynski et al. (2016; 2017), Mapelli et al. (2017); Zevin et al. (2017); Schneider et al. (2017); Kovetz et al. (2017); Hotokezaka & Piran (2017); Fishbach & Holz (2017); ID et al. (2018), ...]

Constraining the position and width of the pulsational PISN peak with 200 events

Constraints on the branching ratio of two models: 'Field' vs. 'Cluster'

[Zevin et al. (2016)]

Detection rates Log[Mo⁻² yr⁻¹]

[**ID** et al. (2018)]

Detection rates Log[Mo⁻² yr⁻¹]

Stellar-origin black holes

PBH-like toy model

[**ID** et al. (2018)]

Detection rates Log[Mo⁻² yr⁻¹] per unit redshift

 \mathcal{B}

[**ID** et al. (2018)]

Detection rates Log[Mo⁻² yr⁻¹] per unit redshift

Constraining model parameters:

- 100 detections
- 500 detections

 β = Log[Fraction of BHs that merge within Hubble time] γ = Slope of time delay distribution

$$P_{\rm d}(t_{\rm delay}) \propto t_{\rm delay}^{-\gamma}$$

Studying the host galaxies of GW events

'Heavy' BHs are formed in low-mass low-metallicity galaxies

[Schneider et al. (2017)]

[Lamberts et al. (2016)]

What we can observe:

- Masses
- Spins
- Redshifts

What we need to constrain:

- Black hole formation scenario
- Specific model parameters

[Lamberts et al. (2016); Belczynski et al. (2016; 2017), Mapelli et al. (2017); Zevin et al. (2017); Schneider et al. (2017); Kovetz et al. (2017); Hotokezaka & Piran (2017); Fishbach & Holz (2017); ID et al. (2018), ...]

What are the expectations for BH spins?

[Schroeder et al. (2018)]

[See also: Kushnir et al. (2016); Hotokezaka & Piran et al. (2017); Zaldarriaga et al. (2018); Qin et al. (2018)]

What we can observe:

- Masses
- Spins
- Redshifts

What we need to constrain:

- Black hole formation scenario
- Specific model parameters

[Lamberts et al. (2016); Belczynski et al. (2016; 2017), Mapelli et al. (2017); Zevin et al. (2017); Schneider et al. (2017); Kovetz et al. (2017); Hotokezaka & Piran (2017); Fishbach & Holz (2017); ID et al. (2018), ...]

[ET Design Study; ET-0106C-10]

Gravitational-wave signal from unresolved sources:

$$\Omega_{\rm gw}(f) = \frac{f}{\rho_c c^2} \int dM_c dz \frac{d^2 n}{dM_c dz} \frac{dE}{df}$$

Gravitational-wave signal from unresolved sources:

$$\Omega_{\rm gw}(f) = \frac{f}{\rho_c c^2} \int dM_c dz \frac{d^2 n}{dM_c dz} \frac{dE}{df}$$

[Abbott et al. (2017)]

Gravitational-wave signal from unresolved sources:

$$\Omega_{\rm gw}(f) = \frac{f}{\rho_c c^2} \int dM_c dz \frac{d^2 n}{dM_c dz} \frac{dE}{df}$$

[**ID** et al. (2016)]

Constraints on PBH abundance with LIGO O1

PBH model as in Sasaki et al. (2016)

[Wang et al. (2018)]

Stochastic background from subsolar BHs

[Wang et al. (2018)]

Anisotropic background: [In analogy with the cosmic infrared background]

Energy density in gravitational waves at each point in the sky:

$$\Omega(f,\Theta) = \Omega_{\alpha}(\Theta) \left(\frac{f}{f_{\text{ref}}}\right)^{\alpha}$$

Upper limits from LIGO O1 (90% CL) [Abbott et al. (2017)]

First predictions of anisotropic background from binary BH mergers:

Anisotropic part: $\delta\Omega_{\scriptscriptstyle \mathrm{GW}}({\pmb e},\nu_{\scriptscriptstyle \mathrm{O}})$

[Cusin, Pitrou, Uzan (2017a;b)]

Decomposition of the angular correlation function: $C_\ell(\nu_{\rm O}) = \frac{2}{\pi} \int {\rm d}k \, k^2 |\delta\Omega_\ell(k,\nu_{\rm O})|^2$

First predictions of anisotropic background from binary BH mergers:

Anisotropic part: $\delta\Omega_{\scriptscriptstyle \mathrm{GW}}({\pmb e},\nu_{\scriptscriptstyle \mathrm{O}})$

[Cusin, Pitrou, Uzan (2017a;b)]

Decomposition of the angular correlation function: $C_{\ell}(\nu_{\rm O}) = \frac{2}{\pi} \int \mathrm{d}k \, k^2 |\delta\Omega_{\ell}(k,\nu_{\rm O})|^2$

[Cusin, ID, Pitrou, Uzan (2018)]

Conclusions

What can we say about the black hole formation scenario?

Individual merger events

- ▶ Mass distribution: need O(100) events to constrain stellar models, but single detections in interesting mass limits (subsolar mass or the PISN gap) may suffice
- Spin distribution: possibly need O(10) but measurement is difficult
- Redshift: need to wait for LIGO Voyager and Einstein Telescope

Stochastic background

Amplitude may already constrain the fraction of PBHs

Anisotropies in the stochastic background

Potentially very informative but detection will take some years...

[**ID** et al. (2016)]

$$\begin{split} \delta\Omega_{\ell}(k,\nu_{\mathrm{O}}) &= \frac{\nu_{\mathrm{O}}}{4\pi\rho_{c}} \int_{\eta_{*}}^{\eta_{\mathrm{O}}} \mathrm{d}\eta\,\mathcal{A}(\eta,\nu_{\mathrm{O}}) \left[\left(4\Phi_{k}(\eta) + b\delta_{\mathrm{m,k}}(\eta) + (b-1)3\mathcal{H}\frac{v_{k}(\eta)}{k} \right) j_{\ell}(k\Delta\eta) - 2kv_{k}(\eta)j_{\ell}'(k\Delta\eta) \right] \\ &+ \frac{\nu_{\mathrm{O}}}{4\pi\rho_{c}} \int_{\eta_{*}}^{\eta_{\mathrm{O}}} \mathrm{d}\eta\,\mathcal{B}(\eta,\nu_{\mathrm{O}}) \left[-\Phi_{k}(\eta)j_{\ell}(k\Delta\eta) + kv_{k}(\eta)j_{\ell}'(k\Delta\eta) \right] \\ &+ \frac{\nu_{\mathrm{O}}}{4\pi\rho_{c}} \int_{\eta_{*}}^{\eta_{\mathrm{O}}} \mathrm{d}\eta \left[6\mathcal{A}(\eta,\nu_{\mathrm{O}}) - 2\mathcal{B}(\eta,\nu_{\mathrm{O}}) \right] \int_{\eta}^{\eta_{\mathrm{O}}} \mathrm{d}\tilde{\eta}\Phi_{k}'(\tilde{\eta})j_{\ell}(k\Delta\tilde{\eta}) \,. \end{split}$$

[Cusin et al. (2017a;b)]

First predictions of anisotropic background from binary BH mergers:

Anisotropic part: $\delta\Omega_{\scriptscriptstyle \mathrm{GW}}({m e}, \nu_{\scriptscriptstyle \mathrm{O}})$

[Cusin, Pitrou, Uzan (2017a;b)]

Decomposition of the angular correlation function: $C_\ell(\nu_{\rm O}) = \frac{2}{\pi} \int {\rm d}k \, k^2 |\delta\Omega_\ell(k,\nu_{\rm O})|^2$

Cross-correlations with galaxy number counts:

[Cusin, ID, Pitrou, Uzan (2018)]

[Sasaki et al. (2016)]

Fraction of DM in the form of PBH