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Motivation



We’re not that alone...

There are lots of compact objects:

• BNS: 1540+3200
−1220Gpc−3 yr−1

[Abbott et al., 2017]

• BBH: 9− 240Gpc−3 yr−1

[Abbott et al., 2016a]

How do we distinguish between

primordial and astrophysical

populations?

• [Kovetz et al., 2017]

LIGO/Frank Elavsky/Northwestern
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Lightest known compact objects

• Black Holes: limited by Chandrasekahr mass

• Small white dwarfs are stable

• Some models get around that

[Shandera et al., 2018, Kouvaris et al., 2018]

• Neutron stars: Stable down to ∼ .09M� [Potekhin et al., 2013],

verified down to 1.1M� [Martinez et al., 2015]

• EOS is still a mystery (for the moment)

• New physics: ??
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Dark matter

• Previous work

• 1970s: Hawking, Chapline

• 1990s: Thorne, Ioka,

microlensing collaborations

• today: many of you!

• ‘Tightly constrained’

• Microlensing surveys

disagreed–new way to probe the

same region
[Carr et al., 2016]
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Sub-solar mass search advantages

Any result is exciting

• Detection: new physics, PBH and better understanding of early

universe

• Absolutely nothing: constraints on models of PBH dark matter,

better understanding of early universe

If astrophysical and primordial populations are disjoint in this mass range,

this search provides an easy way to identify primordially formed black

holes.
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Analysis Techniques



Matched Filtering

Optimal method for maximizing SNR in Gaussian noise

Obtain a complex snr by correlating expected signals, hi (f ), with the

data, d(f ):

zi (t) = xi (t) + iyi (t) = 4

∫ ∞
0

df
h̃∗i (f )d̃(f )

Sn(f )
e2πift (1)

Requires a comprehensive set of templates, {hi} [Messick et al., 2017].
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Template banks

• Extends from 0.19M� − 2.0M�

• Uses non-spinning waveforms

• Generated from flow = 45 Hz

• Set a maximum ‘mismatch’

between an arbitrary signal and

the nearest template

• Bank becomes denser at low

mass
[Abbott et al., 2016a]
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Template banks pt. 2

Lower mass =⇒ denser template placement

[Owen and Sathyaprakash, 1999]

N ∼ m
−8/3
min (2)

0.1−8/3 ∼ 500 times as many templates per order of magnitude in mass

LIGO is sensitive to binaries with components ∼ .01M� at extra-galactic

distances

• Would require O(103) more templates
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Time samples

Time in band (seconds)

Binary mass From 45 Hz 30 Hz* 15 Hz**

(30M�, 30M�) < 1 < 1 ∼ 2

(1.0M�, 1.0M�) ∼ 30 ∼ 100 ∼ 600

*used in stellar mass O1 searches

**LIGO’s lower limit in sensitive frequency
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Time samples

Time in band (seconds)

Binary mass From 45 Hz 30 Hz* 15 Hz**

(30M�, 30M�) < 1 < 1 ∼ 2

(1.0M�, 1.0M�) ∼ 30 ∼ 100 ∼ 600

(.2M�, .2M�) ∼ 500 ∼ 1400 ∼ 9000

(.01M�, .01M�) ∼ 70, 000 ?? ??

*used in stellar mass O1 searches

**LIGO’s lower limit in sensitive frequency
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Scaling

LIGO analyses scale approximately as:

computational cost ≈ NTlogT (3)

where N is the number of templates and T is the number of time

samples in template waveforms.

Searching to lowest mass∗:

• 103 in templates

• At least 102 in time samples

• Spinning search adds another factor of 10-100

• Overall increase of 105 − 107 in computational cost

What is a reasonable parameter space?

*that LIGO is sensitive to at extra-galactic distances
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Wishlist

• Spin range for primordial black holes

• Low vorticity =⇒ low spin?

• Accretion effects

• Mass evolution/incorporation into merger rate

• Spin up by accretion?

• Mass ratios for compact binaries
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Projected results in the PBH

dark matter paradigm



Formation model

• We follow previous work by

[Nakamura et al., 1997, Ioka et al., 1998, Sasaki et al., 2016]

• Model PBH population as component of dark matter, i.e.

ΩPBH = f ΩDM

• Monochromatic distribution of PBH with mass M, mean separation

x̄ , nearest neighbors separated by x , third closest by y

x

y
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Coalescence rate

dP =



3 f
37
8

58

[
f −

29
8

(
t
tc

) 3
37 −

(
t
tc

) 3
8

]
dt

t
, t < tc

3 f
37
8

58

[
f −

29
8

(
t
tc

)− 1
7 −

(
t
tc

) 3
8

]
dt

t
, t ≥ tc

(4)

where tc = Qx̄4f 25/3 and Q = 3 (Gmi )
−3/170.

[Sasaki et al., 2016]

Evaluated at the time today t0 and multiplied by nBH, the average

number density of PBHs, gives the event rate:

event rate = nBH
dP

dt

∣∣∣∣
t=t0

. (5)
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LIGO rates

Assuming a null result, we adopt the loudest event statistic formalism

[Biswas et al., 2009, Abbott et al., 2016b] to constrain the binary merger

rate for a given mass bin, mi , to 90% confidence.

R90,i =
2.3

(VT )i
. (6)

where (VT )i is the sensitive volume-time over the duration of the search.
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Approximating (VT )i

For O1, T ∼ 48 days is the coincident live-time. We can approximate:

(VT )i = T

∫
4πr2εi (r)dr , (7)

εi (r): inject signals into the data, measure the fraction found above the

loudest event [Messick et al., 2017]

nBH
dP
dt

∣∣
t=t0

= R90,i : invert to find limit on f
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Early estimated rates

• We can perform a similar

estimate before the search has

completed.

• Estimate the horizon distance

from the PSD

[Abadie et al., 2010]

• Use T = 48 days, V =
4πr3horizon

3 ,

to find R90,i

• Set nBH
dP
dt

∣∣
t=t0

= R90,i and

invert to obtain limit on f
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Projected O1 results
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Projected O2 results
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Projected results with [Ali-Häımoud et al., 2017] correction

Solid lines = Projected O1 results with Sasaki (red) and YAH (black) rate models

Dashed lines = Projected O2 results
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Conclusions

• LIGO offers a new way to search for sub-solar mass compact objects

• Regardless of the results, the future is bright:

• Constraining neutron star EOS

• Constraining PBH abundance

• Test for new and/or exotic physics and compact objects

• Lots of room to improve

• Extend to distributions

• Add more physics to model

• Perform a spinning search

• O2 alone has much more sensitive (VT )
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