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This  ‘talk’  is  dedicated  to  the  memory  of  my  friend  
and  mentor  Stephen  Hawking.  He  wrote  the  first  
paper  on  primordial  black  holes  in  1971.  If  they  turn  
out  to  play  any  of  the  roles  discussed  in  my  talk,  
this  will  have  been  his  most  prescient  work

Sadly  I  am  unable  to  attend  this  important  workshop  but  
maybe  in  some  parallel  universe  I  am  giving  this  talk  in  
person   and  Stephen  is  in  the  audience!
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• Formation  of PBHs

• PBHs  and  dark  matter

PLAN  OF  ‘TALK’

•

• PBHs  and  gravitational  waves  

• Introduction  and  early  history

• PBHs  and  large-scale  structure



BLACK HOLE FORMATION

RS = 2GM/c2 = 3(M/MO) km => rS = 1018(M/MO)-2 g/cm3

Stellar BH (M~101-2MO), IMBH (M~103-5MO), SMBH (M~106-9MO)

Cygnus  X1    10MO NGC1313      500MO QSO  108MO
None  of  these  BHs  could  solve  the  dark  matter  problem

Small “primordial” BHs can only form in early Universe

cf. cosmological density  r ~ 1/(Gt2) ~ 106(t/s)-2g/cm3

10-5g  at 10-43s     (minimum)
MPBH ~ c3t/G =  1015g  at 10-23s    (evaporating)

1MO at 10-5s      (maximum)
=> huge range

horizon mass
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Þ no  observational  evidence  against  them!

=> need  to  consider  quantum  effects    



PBHs are important even if they never formed!



PBH EVAPORATION

Black holes radiate thermally with temperature

T =               ~  10-7 K

=> evaporate completely in time     tevap ~ 1064 y

M ~ 1015g => final explosion phase today (1030 ergs)

g-ray background at 100 MeV  => WPBH(1015g) < 10-8

=> explosions undetectable in standard particle physics model

T  >  TCMB=3K  for  M  <  1026g  => “quantum” black holes

But PBHs are important even if they never formed!
(Page & Hawking 1976)

Only PBHs with  M >> 1015g could provide dark matter 



First  paper  on  PBHs  as  dark  matter
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FORMATION MECHANISMS

Primordial inhomogeneities Inflation

Pressure reduction  Form more easily but need spherical symmetry

Cosmic strings  PBH constraints => G µ < 10-6

Bubble collisions  
Need fine-tuning of bubble formation rate      

Domain walls   PBHs can be very large

String necklaces

http://www.damtp.cam.ac.uk/research/gr /public/cs_phase.html



PBH FORMATION => LARGE INHOMOGENEITIES

To collapse against pressure, need    (Carr 1975)

when d ~ 1  =>   dH > a (p=arc2)

Gaussian fluctns with <dH
2>1/2 = e(M) 

Þ fraction of PBHs 

      b(M) ~ e(M) exp

e(M) decreases with M => exponential upper cut-off

e(M) constant => b(M) constant => 

p=0 => subhorizon holes but need spherical symmetry 

=>  b(M) ~ 0.06 e(M)6

Separate universe for dH > 1 but recently reinterprted



Limit on fraction of Universe collapsing

b(M)  fraction of density in PBHs of mass M at formation

General limit

=> b ~ 10-6 WPBH ~ 10-18 WPBH

Unevaporated M>1015g =>WPBH < 0.25   (CDM)
Evaporating now M~1015g =>WPBH < 10-8      (GRB)
Evaporated in past M<1015g 

   => constraints from entropy, g-background, BBNS

fDM(M)  ~  (b /10-8) (M/Mo)-1/2



CONSTRAINTS ON FRACTION OF UNIVERSE IN PBHS 

Carr, Gilbert & Lidsey (1994)



Constraints on amplitude of density fluctuations at horizon epoch

b(M) ~ e(M) exp

LSS

PBHs are unique probe of e on small scales. 
Need blue spectrum or spectral feature to produce them.



CONSTRAINTS FOR EVAPORATING PBHS 

CMB distortions

Neutrino relics

LSP relics

Reionization and 21cm

Extragalactic cosmic rays

Big bang nucleosynthesis

Gamma-ray background

This assumes monochromatic mass function

B. Carr, K. Kohri, Y. Sendouda & J. Yokoyama PRD 81(2010) 104019



MORE PRECISE ANALYSIS OF PBH FORMATION 

Analytic calculations imply need d > 0.3 for a = 1/3  (Carr 1975)

Confirmed by first numerical studies (Nadezhin et al 1978)

but pressure gradient => PBHs smaller than horizon 

Critical phenomena => d > 0.7          M = k MH(d-dc)g
(Niemeyer & Jedamzik 1999, Shibata & Sasaki 1999) 

Þ spectrum peaks at horizon mass with extended low mass tail
(Yokoyama 1999, Green 2000)

Later calculations and peak analysis => d > 0.4 - 0.5     
(Musco et al 2005, Green et al 2004)



PBHs from near-critical collapse

=> broad mass spectrum => strong constraints above 1014g

DM from 1016g PBHs without violating GRB constraints?

But this slope does not apply in all scenarios (Kuhnel et al. 2016)

(Yokoyama 1998)(g = 0.35)

dC ~ 0.45 and applies to  d - dC ~ 10-10 (Musco & Miller 2013)



PBHS AND INFLATION  

PBHs formed before reheat inflated away =>

M > Mmin = MPl(Treheat / TPl)-2 > 1 gm

CMB quadrupole  => Treheat < 1016GeV

But inflation generates fluctuations

Can these generate PBHs?

PRESUMABLY  DISCUSSED  IN  DETAIL  IN  OTHER  TALKS



BBNS => Wbaryon=  0.05

Þ need  baryonic  and  non-baryonic DM

MACHOs

Wvis=  0.01,  Wdm=  0.25

PBHs  are  non-baryonic  with  features  of  both WIMPs  and  MACHOs

1017-1020g  PBHs  excluded  by  femtolensing of  GRBs
1026-1033g  PBHs  excluded  by  microlensing  of  LMC          (2010)
Above  103M0 excluded  by  dynamical  effects

Intermediate MassAsteroid

=>  windows  at  1016-1017g  or  1020-1024g  or  1033-1036g  for  dark  matter

Sublunar

WIMPs



Early microlensing searches suggested MACHOs with 0.5 MO

Later found that at most 20% of DM can be in these objects

=> PBH formation at QCD transition?

Pressure reduction => PBH mass function peak at 0.5 MO

For this reason, there was no motivation to suspect that there might be MACHOs which
led to higher-longevity microlensing events. The longevity, t̂, of an event is

t̂ = 0.2yrs

(

MPBH

M⊙

)
1

2

(27)

which assumes a transit velocity 200km/s. Subsituting our extended PBH masses, one
finds approximately t̂ ∼ 6, 20, 60 years for MPBH ∼ 103, 104, 105M⊙ respectively, and
searching for light curves with these higher values of t̂ could be very rewarding.

Our understanding is that the original telescope used by the MACHO Collaboration [7] at
the Mount Stromlo Observatory in Australia was accidentally destroyed by fire, and that
some other appropriate telescopes are presently being used to search for extasolar planets,
of which two thousand are already known.

It is seriously hoped that MACHO searches will resume and focus on greater longevity
microlensing events. Some encouragement can be derived from this, written this month
by a member of the original MACHO Collaboration :

There is no known problem with searching for events of greater longevity than those dis-
covered in 2000; only the longevity of the people!

That being written, convincing observations showing only a fraction of the light curves
could suffice? If so, only a fraction of the e.g. six years, corresponding to PIMBHs with
one thousand solar masses, could well be enough to confirm the theory.

Finally, going back to the 2010 Vera Rubin quote mentioned in the Introduction, it is

”If I could have my pick, I would like to learn that Newton’s laws must be modified in order
to correctly describe gravitational interactions at large distances. That’s more appealing
than a universe filled with a new kind of sub-nuclear particle.”

If our solution for the dark matter problem is correct, Rubin’s preference for no new
elementary particle filling the Universe would be vindicated, because for dark matter
microscopic particles become irrelevant. Regarding Newton’s law of gravity, it would not
need modification beyond general relativity theory which is needed for the black holes. In
this sense, Rubin did not need to pick either alternative to explain dark matter.

References

[1] P.H. Frampton, Searching for Dark Matter Constituents with Many Solar Masses.
arXiv:1510.00400[hep-ph]
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The possibility of primordial black holes constituting dark matter is studied in detail, focussing
on the intermediate-mass range from 10�8 M� to 102 M�. All relevant up-to-date constraints are
reviewed and any e↵ect necessary for a precision calculation of the primordial black-hole abun-
dance, such as non-Gaussianity, non-sphericity, critical collapse, merging, etc., is discussed in depth.
A general novel procedure for confronting observational constraints with an extended primordial
black-hole mass spectrum is introduced. This scheme together with the various formation e↵ects
provides a guideline, for arbitrary constraints, for how to systematically approach the problem of
primordial black holes as dark matter, both from a model-independent observational point of view
and starting from a fundamental formation model for primordial black holes. It is also pointed
out which e↵ects in the formation process should be studied further in order to provide a realistic
mapping from inflationary power spectra to the mass function of primordial black holes in order
to use the observational constraints on the latter to put constraints on inflation and early-universe
physics. This scheme is applied to two specific inflationary models. It is demonstrated under which
conditions these models can yield primordial black holes constituting 100% of the dark matter.
Interestingly, the respective distributions peak in the mass region where the recent LIGO black-
hole mergers were found. We also show which model-independent conclusions can be drawn from
observable constraints in this mass range.

I. INTRODUCTION

Primordial black holes (PBHs) have been a source of intense interest for nearly 50 years [1], despite the fact that
there is still no evidence for their existence. One reason for this is that only PBHs can be small enough for quantum
radiation to be important [2]. After 42 years there is still no direct evidence for this e↵ect and people are still
grappling with conceptual puzzles associated with the process [3]. Nevertheless, this discovery is generally recognised
as one of the key developments in physics of the last century because it beautifully unified general relativity, quantum
mechanics and thermodynamics. The fact that Hawking was only led to this discovery as a result of contemplating
the properties of PBHs illustrates that it can be useful to study something even if it may not exist!

PBHs smaller than 1015g would have evaporated by now with many interesting cosmological consequences [4, 5].
Studies of such consequences have placed useful constraints on models of the early universe [6–13] and, more positively,
evaporating PBHs have also been invoked to explain certain features (such as the extragalactic and Galactic gamma-
ray backgrounds [14–17], a primary antimatter component in cosmic rays [18, 19], the annihilation line radiation from
the Galactic centre [20] and some short-period gamma-ray bursts [21]). However, there are usually other possible
explanations for these features, so there is no definitive evidence for evaporating PBHs.

Attention has therefore shifted to the PBHs larger than 1015g, which are una↵ected by Hawking radiation. Such
PBHs might have various astrophysical consequences (seeds for supermassive black holes in galactic nuclei [22–25], the
generation of large-scale structure through Poisson-fluctuations [26, 27], heating the Galactic disc Marit: Ref missing,
reionization of the pregalactic medium [28–30]). But perhaps the most exciting possibility – and the main focus of
this paper – is that they could provide the dark matter which comprises 25% of the critical density [31, 32]. Since

⇤Electronic address: b.j.carr@qmul.ac.uk
†Electronic address: florian.kuhnel@fysik.su.se
‡Electronic address: marit.sandstad@astro.uio.no

D Also  (D)  Planck  mass  relics

But  some  of  these  limits  are  now  thought  to  be  wrong
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FIG. 1. Limits on the abundance of PBH today, from ex-
tragalactic photon background (orange), femto-lensing (red),
micro-lensing by MACHO (green) and EROS (blue) and
CMB distortions by FIRAS (cyan) and WMAP3 (purple).
The constraints from star formation and capture by neu-
tron stars in globular clusters are displayed for ρGlob.Cl.

DM =
2×103 GeVcm−3 (brown). The black dashed line corresponds
to a particular realization of our scenario of PBH formation.
Figure adapted from [56].

of the star in presence of the PBH gravitational field.
PBH of masses larger than 1018 kg are potentially ob-
servable [62]. Even if highly unlikely (1 event in ∼ 107

years for ρPBH = ρDM with MPBH ∼ 1012 kg), the
transit of PBH of masses MPBH

>∼ 1012 kg through or
nearby the Earth could be detected because of the seis-
mic waves they induce [63]. X-rays photons emitted by
non-evaporating PBH should ionize and heat the nearby
intergalactic medium at high redshifts. This produces
specific signatures in the 21cm angular power spectrum
from reionization, which could be detected with the SKA
radio-telescope [64]. For PBH of masses from 102M⊙

to 108M⊙, densities down to ΩPBH
>∼ 10−9 could be

seen. A PBH transiting nearby a pulsar gives an impulse
acceleration which results in residuals on normally or-
derly pulsar timing data [65, 66]. Those timing residuals
could be detected with future giant radio-telescope like
the SKA. The signal induced by PBH in the mass range
1019 kg <∼ MPBH

<∼ 1025 kg and contributing to more
than one percent to dark matter should be detected [66].
Binaries of PBH forming a fraction of DM should emit
gravitational waves; this results in a background of grav-
itational waves that could be observed by LIGO, DE-
CIGO and LISA [67, 68].

Finally, the recent discovery by CHANDRA of tens of
black hole candidates in the central region of the An-
dromeda (M31) galaxy [42–46] provides a hint in favor
of models of PBH with stellar masses. As detailed later
in the paper, such massive PBH can be produced in our
model. The CMB distortions and micro-lensing limits
could be evaded if PBH were less massive at the epoch of

recombination and then have grown mostly by merging
to form black holes with stellar masses today.

III. HYBRID-WATERFALL INFLATION

It has been shown recently that the original non-
supersymmetric hybrid model [31, 32] and its most well-
known supersymmetric realizations, the F-term and D-
term models [69, 70], own a regime of mild waterfall [36–
40]. Initially the field trajectories are slowly rolling along
a nearly flat valley of the multi-field potential. When tra-
jectories cross a critical field value, denoted φc, the po-
tential becomes tachyonic in the orthogonal direction to
the valley. In the mild-waterfall case, inflation continues
for more than 50 e-folds of expansion after crossing the
critical instability point and before tachyonic preheat-
ing [33] is triggered. This scenario has the advantage
that topological defects formed at the instability point
are stretched outside our observable patch of the Uni-
verse by the subsequent inflation.
According to Refs. [37–39], the mild waterfall can be

decomposed in two phases (called phase-1 and phase-2).
During the first one, inflation is driven only by the infla-
ton, whereas the terms involving the auxiliary field can be
neglected. At some point, these terms become dominant
and trajectories enter in a second phase. When the wa-
terfall lasts for much more than 50 e-folds, the observable
scales exit the Hubble radius in the second phase, when
trajectories are effectively single field and curvature per-
turbations are generated by adiabatic modes only. For
the three hybrid models mentioned above (original, F-
term and D-term), the observable predictions are conse-
quently modified and a red scalar spectral index is pre-
dicted (instead of a blue one for the original model fol-
lowed by a nearly instantaneous waterfall). If one denotes
by N∗ the number of e-folds between horizon exit of the
pivot scale k∗ = 0.05Mpc−1 and the end of inflation, the
scalar spectral index is given by ns = 1 − 4/N∗, too low
for being within the 95% C.L. limits of Planck. Only
a low, non-detectable, level of local non-gaussianitiy is
produced, characterized by fNL ≃ −1/N∗ [37].
When inflation continues during the waterfall for a

number of e-folds close but larger than 50 e-folds, the
pivot scale becomes super-Hubble during the phase-1.
Trajectories are not effectively single-field, and entropic
perturbations source the curvature perturbations [37].
This leads to a strong enhancement in the scalar power
spectrum amplitude, whose thus cannot be in agreement
with observations.
In this paper, we focus on an intermediate case, be-

tween fast and mild waterfall. We consider the regime
where inflation continues for a number of e-folds be-
tween about 20 and 40 after crossing the instability point.
There is a major difference with the previous case: ob-
servable scales leave the Hubble radius when field tra-
jectories are still evolving along the valley, when the
usual single-field slow-roll formalism can be used to de-

Clesse &	  Garcia-‐Bellido
arXiv:1501.07565

WHICH  MASS  WINDOW  IS  MOST  PLAUSIBLE?

PBH  dark  matter  @1020g  
from  double  inflation                                

Inomata et	  al	  
arXiv:1701.02544	  

PBH  dark  matter  @10Mo
from  hybrid  inflation

cf.  light  versus  heavy  dark  matter  particle



But  many  extra  constraints  since  2010!
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We update the constraints on the fraction of the Universe going into primordial black holes (PBHs)
over the mass range 109–1050g. Those smaller than ⇠ 1015g would have evaporated by now due
to Hawking radiation, so their abundance at formation is constrained by the e↵ects of evaporated
particles on big bang nucleosynthesis, the cosmic microwave background (CMB), the galactic and
extragalactic �-ray backgrounds and the pssible generation of stable Planck mass relics. PBHs
larger than ⇠ 1015g are subject to a variety of constraints associated with gravitational lensing,
dynamical e↵ects, influence on large-scale structure, accretion and gravitational waves. We discuss
the constraints on both the initial collapse fraction and the current fraction of the cold dark matter
in PBHs at each mass scale. We also consider indirect constraints associated with the amplitude
on the primordial density fluctuations, such as second-order tensor perturbations and µ-distortions
arising from the e↵ect of acoustic reheating on the CMB. These constraints apply if and only if
PBHs are created from high-� peaks of nearly Gaussian fluctuations. There is no single mass scale
on which PBHs can provide all the dark matter but an extended mass function may do so. We
therefore extend our analysis to cover this case.
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LENSING,  DYNAMICAL,  ACCRETION  AND  COSMOLOGICAL   LIMITS  



Each  constraint  is  a  potential  signature  

These  constraints  are  not  just  nails  in  a  coffin!

PBHs  are  interesting  even  if  f  <<  1

Many  constraints  tells  an  interesting    story!



Can  we  evade  standard  limits  with  extended  mass  spectrum?

Most  constraints  assume  monochromatic  PBH  mass  function

But  this  is  two-edged  sword!

PBHs  may  be  dark  matter  even  if  fraction  is  low  at  each  scale  

PBHs  giving  dark  matter  at  one  scale  may  violate  limits  at  others  

EXTENDED  MASS  FUNCTION?

CKS  2016



f(M)  limits  themselves  depend  on  PBH  mass  function

3

constraint is claimed, rather than a positive detection,
it is important to specify the associated confidence level
(CL). For all lensing constraints shown in Fig. 1, we use
the 95% CL constraint given in Refs. [40–43].

Additional relaxing of constraints would apply if the
PBHs were spatially clustered into sub-haloes. This ef-
fect depends on details of small-scale structure formation
which are not fully understood, so we simply adopt the
results presented in the current literature. Recently it
has been claimed that long-term radio variability in the
light-curves of active galactic nuclei (AGN) arises from
gravitational millilensing of features in AGN jets [56].
If so, this could imply that the DM is either individual
black holes of mass 103 � 106M

�

or clusters of this mass
comprising smaller black holes.

Observations of neutron stars limits the PBH abun-
dance and indeed it has been claimed that this excludes
PBH DM over a wide range of masses. However, these
limits are dependent on the DM density in the cores
of globular clusters, which is very uncertain. Following
Ref. [38], the neutron star capture constraint is presented
for three values of this density (dashed and dot-dashed
yellow lines).

It must be stressed that the constraints in Fig. 1
have varying degrees of certainty and they all come with
caveats. For some, the observations are well understood
(e.g. the CMB and gravitational lensing data) but there
are uncertainties in the black hole physics. For others,
the observations themselves are not fully understood or
depend upon additional astrophysical assumptions. To
address the associated uncertainties in a systematic way,
we split the constraints into two classes. The first class,
presented in Fig. 1 by solid lines, are relatively robust,
while the second class, presented by dashed lines, are
somewhat less firm and depend upon astrophysical pa-
rameters. In particular, this applies to most of the dy-
namical and accretion constraints (e.g. those associated
with dwarf galaxies, wide binaries and neutron stars).
However, we stress that this division is not completely
clear-cut. In the following, we present our results for the
two classes of constraints both separately and together.

III. CONSTRAINTS ON EXTENDED PBH
MASS FUNCTION

If the PBHs span an extended range of masses, the
mass function is usually written as dn/dM where dn is
the number density of PBHs in the mass range (M,M +
dM). For our purposes it is more convenient to introduce
the function
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normalised so that the fraction of the DM in PBHs is
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where ⌦PBH and ⌦DM ⇡ 0.25 are the PBH and DM den-
sities in units of the critical density. The lower cut-o↵
in the mass integral necessarily exceeds M
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⇡ 4⇥ 1014g,
the mass of the PBHs evaporating at the present epoch
[8]. Note that  (M) is the distribution function of logM
and has units [mass]�1.
In this paper we consider three types of mass function.

1. A lognormal mass function of the form:
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where Mc is the mass at which the function M (M)
peaks and � is the width of the spectrum. This is
often a good approximation if the PBHs result from
a smooth symmetric peak in the inflationary power
spectrum. This was first demonstrated numerically
in Ref. [15] and analytically in Ref. [30] for the case
in which the slow-roll approximation holds. It is
therefore representative of a large class of extended
mass functions. Note that Refs. [15–17] use a quasi-
lognormal mass function, which omits the M�1 term
in Eq. (3). In this case, the position of the peak of
M (M) is no longer Mc but also depends on �, with
the peak mass reducing as � increases. The form (3) is
more useful for our purposes because M (M) relates
to the DM fraction in PBHs of mass M .

2. A power-law mass function of the the form

 (M) / M��1 (Mmin < M < Mmax) . (4)

For � 6= 0, either the lower or upper cut-o↵ can be
neglected if Mmin ⌧ Mmax, so this scenario is ef-
fectively described by two parameters. Only in the
� = 0 case are both cut-o↵s necessary. For example,
a mass function of this form arises naturally if the
PBHs form from scale-invariant density fluctuations
or from the collapse of cosmic strings. In both cases,
� = �2w/(1 + w), where w specifies the equation of
state, p = w⇢, when the PBHs form [6]. In a non-
inflationary universe, w 2 (�1/3, 1) and so the natu-
ral range of the mass function exponent is � 2 (�1, 1).
Equation (4) is not applicable for w 2 (�1,�1/3), cor-
responding to � 2 (1,1), because PBHs do not form
during inflation but only after it as a result of inflation-
generated density fluctuations. Special consideration
is also required in the w = 0 (matter-dominated)
case [57, 58], because then both cut-o↵s in (4) can
be relevant and this is discussed elsewhere [59]. In the
following analysis we will consider both positive and
negative values for � but not zero.

3. A critical collapse mass function [60–63]:

 (M) / M2.85 exp(�(M/Mf )
2.85) , (5)

which may apply generically if the PBHs form from
density fluctuations with a �-function power spectrum.
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Additional relaxing of constraints would apply if the
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which may apply generically if the PBHs form from
density fluctuations with a �-function power spectrum.
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In this case, the mass spectrum extends down to ar-
bitrarily low masses but there is an exponential upper
cut-o↵ at a mass-scale Mf which corresponds roughly
to the horizon mass at the collapse epoch. If the den-
sity fluctuations are themselves extended, as expected
in the inflationary scenario, then Eq. (5) must be mod-
ified [9]. Indeed, the lognormal distribution may then
be appropriate. So although the mass function (5) is
described by a single parameter, two may be required
in the more realistic critical collapse situation.

To compare with the lognormal case, we describe the
mass function in the last two cases by the mean and
variance of the logM distribution:

logMc ⌘ hlogMi , �2 ⌘ hlog2 Mi � hlogMi2 , (6)

where hXi ⌘ f�1
PBH

R
dM  (M)X(M). For a power-law

distribution these are

Mc = Mcute
�

1
� , � =

1

|�| , (7)

where Mcut stands for min(Mmin,M⇤

) if � < 0 or Mmax

if � > 0. For the critical-collapse distribution (5), the
exponential cut-o↵ is very sharp, so the mass function
is well approximated by a power law distribution with
� = 3.85 and Mmax ⇡ Mf . As it is relatively narrow,
Eq. (7) implying � = 0.26, even the monochromatic mass
function provides a good fit. Since critical collapse should
be a fairly generic feature of PBH formation, � = 0.26
will usually provide a lower limit to the width of the mass
function. However, critical collapse may not be relevant
in all cases, for example in the cosmic string or matter-
dominated (w = 0) scenarios.

It should be stressed that two parameters should al-
ways su�ce to describe the PBH mass function locally

(i.e. close to a peak) since this just corresponds to the
first two terms in a Taylor expansion. However, in prin-
ciple the mass function could be more complicated than
this. For example, depending on the form of the inflaton
potential, it could have several distinct peaks. Indeed,
with a su�ciently contrived form, these peaks could be
tuned to exactly match all the constraint windows.

The existing constraints on the allowed fraction of
PBH DM are commonly presented assuming a monochro-
matic mass function (presented in the upper panel of
Fig. 1). In the following we introduce a simple method
for generalising these results to arbitrary mass func-
tions. For this purpose, consider an astrophysical observ-
able A[ (M)] depending on the PBH abundance (e.g. the
number of microlensing events of given duration in a
given time interval). It can generally be expanded as

A[ (M)] = A0 +

Z
dM  (M)K1(M)

+

Z
dM1dM2  (M1) (M2)K2(M1,M2) + . . . ,

(8)

where A0 is the background contribution and the func-
tions Kj depend on the details of the underlying physics

and the nature of the observation. If PBHs of di↵erent
mass contribute independently to the observable, as ap-
plies for all the constraints shown in Fig. 1 (see [9, 15, 17]
for explicit expressions), only the first two terms in
Eq. (8) need to be considered. In this case, if a mea-
surement puts an upper bound on the observable,

A[ (M)]  Aexp, (9)

then for a monochromatic mass function with M = Mc,

 mon(M) ⌘ fPBH(Mc)�(M �Mc), (10)

this translates to

fPBH(Mc)  Aexp �A0

K1(Mc)
⌘ fmax(Mc) . (11)

The function fmax(M) corresponds to the maximum
observationally allowed fraction of DM in PBHs for a
monochromatic mass distribution. Combining Eqs. (8)–
(11) then yields

Z
dM

 (M)

fmax(M)
 1 . (12)

Once fmax is known, it is possible to apply Eq. (12) for an
arbitrary mass function  (M) to obtain the constraints
equivalent to those for a monochromatic mass function.
The procedure must be implemented separately for

each constraint and is as follows. We first integrate
Eq. (12) over the mass range (M1,M2) for which
the constraint applies, assuming a particular function
 (M ; fPBH,Mc,�). Once we have specified M1 and M2,
this constrains fPBH as a function of Mc and �. (In all
cases except lensing, we take the integral limits to be the
values of M for which fmax = 100.) The last three pan-
els in Fig. 1 are then derived by assuming � = 2 for the
lognormal mass function (upper right panel) and � = ±1
for the power law mass function (lower panels).
The important qualitative point is that the form of

Fig. 1 in the non-monochromatic case is itself dependent
on the PBH mass function. One cannot just compare
a predicted extended mass function with the monochro-
matic form of the constraints, as some authors have done.
In displaying the constraints, one also needs to select
values of the parameters which describe the mass func-
tion. In both the lognormal and power-law cases, we have
taken these to be � and Mc. For the critical collapse
model, there is only one parameter (Mf ) but this model
is practically indistinguishable from the monochromatic
one because only a small fraction of the PBH density is
associated with the low-mass tail. So this case is not
shown explicitly.
We now discuss some caveats that have to be kept in

mind when applying Eq. (12). The mass function evolves
in time if the PBHmerge or if new black holes are created.
This can have an important impact on the constraints.
For example, if mergers between recombination and the
present are significant, the accretion constraints will be
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constraint is claimed, rather than a positive detection,
it is important to specify the associated confidence level
(CL). For all lensing constraints shown in Fig. 1, we use
the 95% CL constraint given in Refs. [40–43].

Additional relaxing of constraints would apply if the
PBHs were spatially clustered into sub-haloes. This ef-
fect depends on details of small-scale structure formation
which are not fully understood, so we simply adopt the
results presented in the current literature. Recently it
has been claimed that long-term radio variability in the
light-curves of active galactic nuclei (AGN) arises from
gravitational millilensing of features in AGN jets [56].
If so, this could imply that the DM is either individual
black holes of mass 103 � 106M
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or clusters of this mass
comprising smaller black holes.

Observations of neutron stars limits the PBH abun-
dance and indeed it has been claimed that this excludes
PBH DM over a wide range of masses. However, these
limits are dependent on the DM density in the cores
of globular clusters, which is very uncertain. Following
Ref. [38], the neutron star capture constraint is presented
for three values of this density (dashed and dot-dashed
yellow lines).

It must be stressed that the constraints in Fig. 1
have varying degrees of certainty and they all come with
caveats. For some, the observations are well understood
(e.g. the CMB and gravitational lensing data) but there
are uncertainties in the black hole physics. For others,
the observations themselves are not fully understood or
depend upon additional astrophysical assumptions. To
address the associated uncertainties in a systematic way,
we split the constraints into two classes. The first class,
presented in Fig. 1 by solid lines, are relatively robust,
while the second class, presented by dashed lines, are
somewhat less firm and depend upon astrophysical pa-
rameters. In particular, this applies to most of the dy-
namical and accretion constraints (e.g. those associated
with dwarf galaxies, wide binaries and neutron stars).
However, we stress that this division is not completely
clear-cut. In the following, we present our results for the
two classes of constraints both separately and together.
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where Mc is the mass at which the function M (M)
peaks and � is the width of the spectrum. This is
often a good approximation if the PBHs result from
a smooth symmetric peak in the inflationary power
spectrum. This was first demonstrated numerically
in Ref. [15] and analytically in Ref. [30] for the case
in which the slow-roll approximation holds. It is
therefore representative of a large class of extended
mass functions. Note that Refs. [15–17] use a quasi-
lognormal mass function, which omits the M�1 term
in Eq. (3). In this case, the position of the peak of
M (M) is no longer Mc but also depends on �, with
the peak mass reducing as � increases. The form (3) is
more useful for our purposes because M (M) relates
to the DM fraction in PBHs of mass M .

2. A power-law mass function of the the form

 (M) / M��1 (Mmin < M < Mmax) . (4)

For � 6= 0, either the lower or upper cut-o↵ can be
neglected if Mmin ⌧ Mmax, so this scenario is ef-
fectively described by two parameters. Only in the
� = 0 case are both cut-o↵s necessary. For example,
a mass function of this form arises naturally if the
PBHs form from scale-invariant density fluctuations
or from the collapse of cosmic strings. In both cases,
� = �2w/(1 + w), where w specifies the equation of
state, p = w⇢, when the PBHs form [6]. In a non-
inflationary universe, w 2 (�1/3, 1) and so the natu-
ral range of the mass function exponent is � 2 (�1, 1).
Equation (4) is not applicable for w 2 (�1,�1/3), cor-
responding to � 2 (1,1), because PBHs do not form
during inflation but only after it as a result of inflation-
generated density fluctuations. Special consideration
is also required in the w = 0 (matter-dominated)
case [57, 58], because then both cut-o↵s in (4) can
be relevant and this is discussed elsewhere [59]. In the
following analysis we will consider both positive and
negative values for � but not zero.

3. A critical collapse mass function [60–63]:

 (M) / M2.85 exp(�(M/Mf )
2.85) , (5)

which may apply generically if the PBHs form from
density fluctuations with a �-function power spectrum.
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�
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378 Here the effective mass function is given by

ψ effðMÞ ¼
X

n

αnψnðMÞ; ð15Þ

379 where αn relates to the fraction of n-body bound objects,

ψnðMÞ≡
Z Yn

i¼1

dMiψðMiÞδðM − ΣMiÞ; ð16Þ

380 and the effective mass function ψ eff has to satisfy the
381 normalization condition fPBH ≤ 1. The constraints for the
382 general and monochromatic mass functions are still related
383 by Eq. (12) but likely overestimate the allowed PBH mass
384 since ψ effðMÞ is always shifted towards higher masses. In
385 principle, all the constraints discussed below and shown in

386our figures relate to the effective mass functions, which can
387be different for different constraints.
388It is also possible that the mass function is position
389dependent. This is expected in dwarf galaxies because mass
390segregation causes lighter PBHs to migrate outwards, with
391the heavier ones occupying the central region. This will
392introduce corrections for constraints arising from the
393evolution of stars in the Galaxy [47,48]. Again, it might
394be possible to invoke an effective mass function ψ eff that
395only accounts for the heavier PBHs. However, an estimate
396of this effect requires detailed numerical simulations which
397are beyond the scope of this work.

398IV. RESULTS AND DISCUSSION

399Our main results are presented in Fig. 2, where we show
400constraints on the maximum allowed fraction of PBH DM,

F2:1 FIG. 2. Upper panels: Combined observational constraints onMc and σ for a lognormal PBH mass function. The color coding shows
F2:2 the maximum allowed fraction of PBH DM. In the white region log10fmax < −3, while the solid, dashed, dot-dashed, and dotted
F2:3 contours correspond to fmax ¼ 1, fmax ¼ 0.5, fmax ¼ 0.2, and fmax ¼ 0.1, respectively. In the left panel only the constraints depicted by
F2:4 the solid lines in Fig. 1 are included, whereas the right panel includes all the constraints. Lower panels: Same as the upper left panel but
F2:5 for a power-law mass function with γ < 0 (left) and γ > 0 (right).
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401 fmax, in the (Mc, σ) plane for lognormal and power-law
402 PBH mass functions. In the upper right panel all the
403 constraints shown in Fig. 1 are considered, using the most
404 restrictive forms for the evaporation, accretion, and neutron
405 star constraints, as depicted by the dotted lines. In the other
406 panels only the constraints corresponding to the solid lines
407 are taken into account. We have combined the constraints
408 using Eq. (13). The black lines in Fig. 1 correspond to
409 constant σ slices in Fig. 2. The regions where 10%, 20%,
410 50%, and 100% of DM can consist of PBHs are indicated in
411 Fig. 2 by the dotted, dot-dashed, dashed, and solid lines,
412 respectively, while less than 0.1% of the DM can be in
413 PBHs in the white region.
414 The shape of the constraints in Fig. 2 makes it clear that
415 the allowed mass range for fixed fPBH decreases with
416 increasing the width σ, thus ruling out the possibility of
417 evading the constraints by simply extending the mass
418 function. Moreover, Fig. 2 gives an upper bound σ ≲ 1 if
419 all dark matter is in the form of PBHs. This implies jγj≳ 1,
420 which effectively rules out PBH DM from the collapse of
421 cosmic strings or scale-invariant density fluctuations.
422 Our results agree with the conclusions of
423 Refs. [32,33,62]. However, Refs. [32,62] focused on
424 PBHs in the solar to intermediate mass range, considering
425 microlensing and dynamical constraints from Eridanus II.
426 The authors of Ref. [33] performed a more comprehensive
427 analysis, covering the mass range 10−18 – 104M⊙, but their
428 study did not include the recent constraint from Subaru
429 Hyper Suprime-Cam [43] and they calculated the Planck
430 constraint as in Ref. [35], resulting in a more stringent
431 constraint than the one from Ref. [36] used in this work.
432 Also, they used the potential SKA pulsar timing constraints
433 [72], even though these were not yet realized. Some
434 of the difference between our figures and those in
435 Refs. [32,33,62] results from the difference in the definition
436 of Mc.

437The same conclusion can be drawn if one compares the
438constraints presented in the upper left and right panels of
439Fig. 1. In the latter case, we show the corresponding
440ðfPBH;McÞ constraints for extended mass functions with
441fixed width. The effect of the extension is to “smooth” the
442constraints. Although the most restrictive constraints for
443the PBH fraction are weakened, it can be seen that the
444regions allowing a relatively large PBH fraction are
445reduced. So the constraints become wider, as indicated
446in Fig. 1. We conclude that previous claims in the literature
447that wide mass functions allow one to avoid PBH bounds
448are premature and not supported by our more rigorous
449computations.
450The shape of the colored region of Fig. 2 can be
451understood as follows. The lognormal mass function is
452symmetric in the logM scale, while the power law with
453γ < 0 has a high-mass tail and γ > 0 is skewed towards low
454masses. Since the evaporation constraint [9] is much
455stronger than the accretion one [8], the low-mass tail
456excludes wider mass functions, whereas γ < 0 allows them.
457There are three regions in the upper left panel of Fig. 2
458where all DM can consist of PBHs. Two of them are at very
459low mass, just above the evaporation limit, and the third is
460in the mass window relevant for the LIGO black hole
461coalescence events. However, this neglects the dynamical
462constraints, shown by the dashed lines in Fig. 1. As
463explained above, this might be justified for reasons asso-
464ciated with the dynamics of the observed astrophysical
465systems.
466To clarify what role different constraints play in the
467regions of interest, we present these regions in detail in
468Fig. 3 for ΩPBH ¼ ΩDM. The masses 25–100M⊙ satisfy the
469microlensing and accretion constraints but conflict with
470dynamical constrains from ultra-faint dwarfs and wide
471binaries. At the lower-mass end, there is a narrow window
472around 3 × 10−16M⊙ if we assume a conservative bound

F3:1 FIG. 3. Observational constraints onMc and σ for a lognormal PBH mass function, assuming 100% PBH DM. The left panel presents
F3:2 a zoom into the high-mass region relevant for the LIGO events, while the right panel presents a zoom into the low-mass region. The color
F3:3 coding is the same as in Fig. 1.
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CAN  THERE  BE  INTERMEDIATE  OR  SUPERMSSIVE  PBHS?

What  is  maximum  mass  of  PBH?

BBNS  =>  t  <  1  s  =>  M  <  105MO

Upper  limit  on  µ distortion  of  CMB  excludes  104  <  M/MO  <  1012  
for  Gaussian  fluctuations  but  some  models  evades  these  limits.
Otherwise  need  accretion  factor  of  (M/104Mo)-1

Could  106  -1010 MO  black  holes  in  galactic  nuclei  be  primordial?  

…..but  b <  10-6  (t/s)1/2

Supermassive  PBHs  could  also  generate  cosmic  structures
on  larger  scale  through  ‘seed’  or  ‘Poisson’  effect

Hoyle  &  Narlikar 1966,  Meszaros 1975,  Carr  &  Silk  1983
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number in the mass range 105 − 1012 M⊙ is severely constrained by upper limits to the μ distortion in the
cosmic microwave background (CMB). This is because inhomogeneities on these scales will be dissipated
by Silk damping in the redshift interval 5 × 104 ≲ z ≲ 2 × 106. If the primordial fluctuations on a given
mass scale have a Gaussian distribution and PBHs form on the high-σ tail, as in the simplest scenarios, then
the μ constraints exclude PBHs in this mass range from playing any interesting cosmological role. Only if
the fluctuations are highly non-Gaussian, or form through some mechanism unrelated to the primordial
fluctuations, can this conclusion be obviated.
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I. INTRODUCTION

Primordial black holes (PBHs) have been a focus of great
interest for nearly 50 years [1–3], despite there still being
no definite evidence for them. One reason for this is that
only PBHs could be small enough for Hawking radiation to
be important [4], those smaller than about 1015 g having
evaporated by now with many interesting cosmological
consequences [5]. Recently, however, attention has shifted
to PBHs larger than 1015 g, which are unaffected by
Hawking radiation. This is because of the possibility that
they provide the dark matter, an idea that goes back to the
earliest days of PBH research [6] and has been explored in
numerous subsequent works [7–10]. Since PBHs formed in
the radiation-dominated era, they are not subject to the
well-known big bang nucleosynthesis (BBNS) constraint
that baryons can have at most 5% of the critical density
[11], which is well below the 25% associated with the dark
matter. They should therefore be classed as nonbaryonic
and, from a dynamical perspective, behave like any other
cold dark matter (CDM) candidate. There is no compelling
evidence that PBHs provide the dark matter, but nor is there
evidence for any of the more traditional CDM candidates,
either from direct searches with underground detectors and
particle accelerators or from indirect searches for the
expected gamma-ray, neutrino or positron signatures [12].
Even if nonevaporating PBHs do not provide all the dark

matter, they could still have interesting cosmological effects.

For example, they have been invoked to explain the heating
of the stars in our Galactic disc [13], the seeding of the
supermassive black holes in galactic nuclei [14–16], the
generation of large-scale structure through Poisson fluctua-
tions [16,17] and the associated generation of an infrared
background [18], the reheating and ionization of the
Universe [19,20], and the production of r-process elements
[21]. More recently, it has been proposed that coalescing
PBHs could explain theLIGOgravitationalwave bursts [22],
although this may only require a small fraction of the dark
matter to be in PBHs [23]. The detection of four black holes
with mass around 30 M⊙ has come as a surprise to stellar
evolution modelers, so it is natural to consider more exotic
types of black holes. The suggestion that LIGO could
detect gravitational waves from a population of binary
intermediate-mass black holes was originally proposed in
the context of the Population III scenario by Bond and Carr
[24], and—rather remarkably—a paper in 2014 predicted a
Population III coalescence peak at 30 M⊙ [25]. Since
Population III stars are baryonic, such black holes could
not provide the dark matter, but this would not preclude
intermediate-mass PBHs from doing so. There have been a
large number of recent papers on this topic, but the suggestion
that there could be a stochastic background of gravitational
waves from PBHs goes back a long way [26,27].
There are other possible explanations for these effects,

so they do not necessarily require the existence of PBHs.

PHYSICAL REVIEW D 97, 043525 (2018)

2470-0010=2018=97(4)=043525(9) 043525-1 © 2018 American Physical Society
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PBHs  =>  density  fluctuations  

S  increase  for  t  <  7  x  106  s  =>  weak  BBNS  limit
=>      µ distortions  for    7  x  106 s  <  t  <  3  x  109  s

y  distortions  for  3  x  109 s  <  t  <  3  x  1012  s

Þd(M)  <  µ1/2 ~  10-2 for  104 <  M/Mo <  1012

=>  M  <  105 Mo for  Gaussian  fluctuations
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But  can  alleviate  limits  if  PBHs  
form  from  non-Gaussian  fluct’ns
or  in  ‘patch’  model

explored by calculating CMB spectral distortions for a class
of phenomenological models of PDFs. It turns out that it
also works (if such a PDF can indeed be realized in some
inflationary model, which we do not discuss in this
paper), but the PDF has to be hugely deviated from a
Gaussian PDF.
In the next section we discuss inflationary models, in

which PBHs can be produced whose mass and abundance
are adjustable, in order to explain the SMBHs observed at
high redshifts, while evading CMB distortion constraints,
and then we summarize and conclude in Sec. III.

II. SUPERMASSIVE BLACK HOLES FORMED
BY THE COLLAPSE OF INFLATIONARY

PERTURBATIONS

A. Basic idea

Our observable Universe consists of many small patches
which become causally disconnected during inflation.
For instance, if we consider a patch of comoving wave
number k, it becomes decoupled from the other patches
of the same size at a time when k ¼ aH. After this time,
each patch evolves independently as if they themselves
were an individual Friedmann-Lemaître-Robertson-Walker
(FLRW) universe. If the inflation is caused by a single
slowly rolling scalar field, only adiabatic perturbations are
generated. In this case, each patch follows the same
trajectory in field space and the difference between the
patches is just the difference in the moment when the field
value in each takes a particular value. On the other hand, if
inflation is caused by multiple fields, isocurvature pertur-
bations are also generated besides the adiabatic mode.

Because of the presence of the former, each patch follows a
different trajectory in field space in general, and in the
following we assume such a situation.
Now, suppose that there are essentially only two different

trajectories that each patch can follow (Fig. 3, right). Let us
label each trajectory by A and B, respectively (Fig. 3,
right). In general, the patches corresponding to A and the
patches corresponding to B, after being causally discon-
nected, expand by a different amount, namely, NA ≠ NB
[NAðNBÞ is the number of e-folds in the patches A(B), see
the left panel of Fig. 3]. According to the δN formalism
[50–55], the difference in the number of e-folds is equal
to the curvature perturbation ζ on constant density
hypersurfaces.
It is known that if the region of interest has ζ exceeding

ζc ≃ 1, such a region undergoes gravitational collapse to
form a black hole when it reenters the Hubble horizon [22].
The threshold value ζc depends on the perturbation profile;
there is a lot of literature in which the determination of ζc as
well as its dependence on the perturbation profile have been
investigated. For instance, Shibata and Sasaki [56] found
that ζc depends on the initial curvature profile and it varies
at least in the range (0.7,1.2) (see also [57–64]). However,
precise knowledge of ζc is not crucial for our discussions
here and so we simply take ζc ¼ 1.
Let us assume that most of the patches followed the

trajectory A, that the trajectory B is followed by only a tiny
number of patches, and that NB − NA > ζc ¼ 1. Then, the
patches corresponding to B distribute sparsely, with each
surrounded by patches corresponding to A, and each patch
B has a positive curvature perturbation NB − NA. In other
words, large curvature perturbations of ζ > ζc are

FIG. 2. An illustration of situations discussed in this paper. The black regions correspond to those where curvature perturbations
become large during inflation and collapse to PBHs later during the radiation-dominated era. Normally, if a sufficient amount of PBHs is
realized to explain the SMBHs, fluctuations whose wavelengths correspond to the mass of those PBHs are relatively large, as depicted in
the left panel, and, hence, they dissipate to produce CMB distortions larger than observational upper limits set by COBE. In this paper, in
order to explain SMBHs by PBHs without contradicting this CMB distortion constraint, we discuss phenomenological inflation models
that realize a sufficient probability of PBH formation to explain the SMBHs, while keeping fluctuations with corresponding wavelengths
sufficiently small outside these patches, as depicted in the right panel, thereby evading the CMB distortion constraint.
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and the overdensity in the tiny fraction of the volume
which collapses to PBHs is modified. Also, the production
mechanism advocated in Refs. [49,50] may entail no density
perturbations outside the PBHs at all. The μ-distortion
constraint could thus be much weaker, depending on the
degree of non-Gaussianity of the primordial fluctuations.
A phenomenological description of such non-Gaussianity
was introduced in Ref. [60] and involves a parameter p, such
that—for a fixed PBH formation probability—the dispersion
of the primordial fluctuations becomes smaller as p is
reduced from its Gaussian value of 2, thereby reducing
the μ distortion.
None of these previous works used the μ limits to directly

constrain thePBHmass fraction, so it is not clearwhether this
precludes the low PBH density required in some cosmo-
logical proposals.1 In this paper we address this problem by
calculating the constraints on fðMÞ explicitly, using both the
FIRAS limit of μ ¼ 9 × 10−5 [62] and the projected upper
limit of μ < 3.6 × 10−7 from PIXIE [63]. We find that the μ
distortion is predominantly determined by fluctuations with
30 Mpc−1 < k < 5000 Mpc−1, and this corresponds to the
PBH mass range of 105 M⊙ < M < 1010 M⊙. The mass
range around 109 M⊙ is especially restricted, and we would
need huge non-Gaussianity if such massive PBHs were to
evade the μ-distortion constraints. Alternatively, one could
argue that the PBHs formed with initial mass below 105 M⊙
and then underwent substantial accretion. The μ constraint
would then be avoided altogether.
The plan of this paper is as follows: In Sec. II we derive the

form of the μ constraint on the fraction of the dark matter in
PBHs on the assumption that they form from Gaussian or
non-Gaussian primordial fluctuations with amonochromatic
power spectrum. In Sec. III we extend the analysis to include
the y-distortion limit, and we discuss how our conclusions
depend on the type of non-Gaussianity. We also discuss
briefly how our conclusions are modified if the fluctuations
are nonmonochromatic or the PBHs accrete, both of which
would be expected in a more realistic scenario. We summa-
rize our conclusions in Sec. IV.

II. DEPENDENCE OF PBH LIMITS
FROM μ ON NON-GAUSSIANITY

Primordial fluctuations over a wide range of mass scales
will be dissipated by Silk damping when they fall within
the photon diffusion scale. The diffusion scale at any epoch
is the geometric mean of the horizon mass and the mass of
unit optical depth to Thompton scattering:

MD∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MτMH

p
∼
"
1010ðt=teqÞ7=4M⊙ ðt<teqÞ
1013ðt=tdecÞ11=6M⊙ ðteq<t<tdecÞ:

ð1Þ

Themasses here refer to the radiation content, which ismuch
larger than the matter content before the time of matter-
radiation equality (teq ∼ 1010 s). The value of 1013 M⊙ at
decoupling (tdec ∼ 1012 s) corresponds roughly to the Silk
mass, the matter and radiation densities then being
comparable.
The associated heat production could affect the CMB in

various ways, depending on the epoch, so we first discuss
these more general limits. Photons generated by the dissipa-
tion of fluctuations before t1 ¼ 7 × 106 s will be completely
thermalized, leading to an increase in the photon-to-baryon
ratio S of the CMB through acoustic reheating [64]. In
principle, this places constraints on fluctuations on scales
below 105 M⊙ since S cannot increasemuch after BBNS, but
these limits are relatively weak. Photons generated by the
dissipation of fluctuations between t1 and t2 ≈ 3 × 109 s will
lead to a μ distortion in the CMB. Photons generated by the
dissipation of fluctuations between t2 and t3 ≈ 3 × 1012 s
(decoupling) will lead to a y distortion. Note that these
effects can also be used to limit the number of evaporating
PBHs [65], those in themass ranges1011 − 1012 g and1012 −
1013 g evaporating in theperiods t1 < t < t2 and t2 < t < t3,
respectively.The sourceof thephotons is different—Hawking
radiation versus dissipation of fluctuations—but the interac-
tion with the CMB is the same.
Fluctuations on a given comoving scale produce PBHs

when that scale enters the horizon, and only much later are
fluctuations on the same scale dissipated. To find the PBH
mass ranges relevant to the three types of distortion
mentioned above, we must find the PBH mass M corre-
sponding to the diffusion mass MD. These masses are
different because a PBH forms when the Universe is
radiation dominated. Thereafter its mass remains constant,
but the radiation mass of a comoving region outside the
black hole decreases as a−1, which scales as t−1=2 for t <
teq and t−2=3 for t > teq. One can show that the PBH mass
associated with the diffusion mass MD is

M ∼
"
102ðMD=M⊙Þ6=7 M⊙ ðt < teqÞ
10ðMD=M⊙Þ10=11 M⊙ ðteq < t < tdecÞ

ð2Þ

This shows that the PBH mass ranges constrained by the
S, μ and y observations are M=M⊙<105, 105<M=M⊙<
1011 and 1011 < M=M⊙ < 1013, respectively.
We now focus on the μ distortions. In Ref. [60], the

following phenomenological description of the non-
Gaussian probability density function (PDF) of the curva-
ture perturbation ζ was introduced:

PðζÞ ¼ 1

2
ffiffiffi
2

p
~σΓð1þ 1=pÞ

exp
#
−
$

jζjffiffiffi
2

p
~σ

%
p
&
: ð3Þ

This satisfies
R∞
−∞ PðζÞdζ ¼ 1 and reduces to the Gaussian

distribution of Ref. [31] when p ¼ 2. The dispersion is
1The mass range associated with the μ limit is indicated in

Fig. 1 of Ref. [61] but not the limit on fðMÞ itself.
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and the overdensity in the tiny fraction of the volume
which collapses to PBHs is modified. Also, the production
mechanism advocated in Refs. [49,50] may entail no density
perturbations outside the PBHs at all. The μ-distortion
constraint could thus be much weaker, depending on the
degree of non-Gaussianity of the primordial fluctuations.
A phenomenological description of such non-Gaussianity
was introduced in Ref. [60] and involves a parameter p, such
that—for a fixed PBH formation probability—the dispersion
of the primordial fluctuations becomes smaller as p is
reduced from its Gaussian value of 2, thereby reducing
the μ distortion.
None of these previous works used the μ limits to directly

constrain thePBHmass fraction, so it is not clearwhether this
precludes the low PBH density required in some cosmo-
logical proposals.1 In this paper we address this problem by
calculating the constraints on fðMÞ explicitly, using both the
FIRAS limit of μ ¼ 9 × 10−5 [62] and the projected upper
limit of μ < 3.6 × 10−7 from PIXIE [63]. We find that the μ
distortion is predominantly determined by fluctuations with
30 Mpc−1 < k < 5000 Mpc−1, and this corresponds to the
PBH mass range of 105 M⊙ < M < 1010 M⊙. The mass
range around 109 M⊙ is especially restricted, and we would
need huge non-Gaussianity if such massive PBHs were to
evade the μ-distortion constraints. Alternatively, one could
argue that the PBHs formed with initial mass below 105 M⊙
and then underwent substantial accretion. The μ constraint
would then be avoided altogether.
The plan of this paper is as follows: In Sec. II we derive the

form of the μ constraint on the fraction of the dark matter in
PBHs on the assumption that they form from Gaussian or
non-Gaussian primordial fluctuations with amonochromatic
power spectrum. In Sec. III we extend the analysis to include
the y-distortion limit, and we discuss how our conclusions
depend on the type of non-Gaussianity. We also discuss
briefly how our conclusions are modified if the fluctuations
are nonmonochromatic or the PBHs accrete, both of which
would be expected in a more realistic scenario. We summa-
rize our conclusions in Sec. IV.

II. DEPENDENCE OF PBH LIMITS
FROM μ ON NON-GAUSSIANITY

Primordial fluctuations over a wide range of mass scales
will be dissipated by Silk damping when they fall within
the photon diffusion scale. The diffusion scale at any epoch
is the geometric mean of the horizon mass and the mass of
unit optical depth to Thompton scattering:

MD∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MτMH

p
∼
"
1010ðt=teqÞ7=4M⊙ ðt<teqÞ
1013ðt=tdecÞ11=6M⊙ ðteq<t<tdecÞ:

ð1Þ

Themasses here refer to the radiation content, which ismuch
larger than the matter content before the time of matter-
radiation equality (teq ∼ 1010 s). The value of 1013 M⊙ at
decoupling (tdec ∼ 1012 s) corresponds roughly to the Silk
mass, the matter and radiation densities then being
comparable.
The associated heat production could affect the CMB in

various ways, depending on the epoch, so we first discuss
these more general limits. Photons generated by the dissipa-
tion of fluctuations before t1 ¼ 7 × 106 s will be completely
thermalized, leading to an increase in the photon-to-baryon
ratio S of the CMB through acoustic reheating [64]. In
principle, this places constraints on fluctuations on scales
below 105 M⊙ since S cannot increasemuch after BBNS, but
these limits are relatively weak. Photons generated by the
dissipation of fluctuations between t1 and t2 ≈ 3 × 109 s will
lead to a μ distortion in the CMB. Photons generated by the
dissipation of fluctuations between t2 and t3 ≈ 3 × 1012 s
(decoupling) will lead to a y distortion. Note that these
effects can also be used to limit the number of evaporating
PBHs [65], those in themass ranges1011 − 1012 g and1012 −
1013 g evaporating in theperiods t1 < t < t2 and t2 < t < t3,
respectively.The sourceof thephotons is different—Hawking
radiation versus dissipation of fluctuations—but the interac-
tion with the CMB is the same.
Fluctuations on a given comoving scale produce PBHs

when that scale enters the horizon, and only much later are
fluctuations on the same scale dissipated. To find the PBH
mass ranges relevant to the three types of distortion
mentioned above, we must find the PBH mass M corre-
sponding to the diffusion mass MD. These masses are
different because a PBH forms when the Universe is
radiation dominated. Thereafter its mass remains constant,
but the radiation mass of a comoving region outside the
black hole decreases as a−1, which scales as t−1=2 for t <
teq and t−2=3 for t > teq. One can show that the PBH mass
associated with the diffusion mass MD is

M ∼
"
102ðMD=M⊙Þ6=7 M⊙ ðt < teqÞ
10ðMD=M⊙Þ10=11 M⊙ ðteq < t < tdecÞ

ð2Þ

This shows that the PBH mass ranges constrained by the
S, μ and y observations are M=M⊙<105, 105<M=M⊙<
1011 and 1011 < M=M⊙ < 1013, respectively.
We now focus on the μ distortions. In Ref. [60], the

following phenomenological description of the non-
Gaussian probability density function (PDF) of the curva-
ture perturbation ζ was introduced:

PðζÞ ¼ 1

2
ffiffiffi
2

p
~σΓð1þ 1=pÞ

exp
#
−
$

jζjffiffiffi
2

p
~σ

%
p
&
: ð3Þ

This satisfies
R∞
−∞ PðζÞdζ ¼ 1 and reduces to the Gaussian

distribution of Ref. [31] when p ¼ 2. The dispersion is
1The mass range associated with the μ limit is indicated in

Fig. 1 of Ref. [61] but not the limit on fðMÞ itself.
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and the overdensity in the tiny fraction of the volume
which collapses to PBHs is modified. Also, the production
mechanism advocated in Refs. [49,50] may entail no density
perturbations outside the PBHs at all. The μ-distortion
constraint could thus be much weaker, depending on the
degree of non-Gaussianity of the primordial fluctuations.
A phenomenological description of such non-Gaussianity
was introduced in Ref. [60] and involves a parameter p, such
that—for a fixed PBH formation probability—the dispersion
of the primordial fluctuations becomes smaller as p is
reduced from its Gaussian value of 2, thereby reducing
the μ distortion.
None of these previous works used the μ limits to directly

constrain thePBHmass fraction, so it is not clearwhether this
precludes the low PBH density required in some cosmo-
logical proposals.1 In this paper we address this problem by
calculating the constraints on fðMÞ explicitly, using both the
FIRAS limit of μ ¼ 9 × 10−5 [62] and the projected upper
limit of μ < 3.6 × 10−7 from PIXIE [63]. We find that the μ
distortion is predominantly determined by fluctuations with
30 Mpc−1 < k < 5000 Mpc−1, and this corresponds to the
PBH mass range of 105 M⊙ < M < 1010 M⊙. The mass
range around 109 M⊙ is especially restricted, and we would
need huge non-Gaussianity if such massive PBHs were to
evade the μ-distortion constraints. Alternatively, one could
argue that the PBHs formed with initial mass below 105 M⊙
and then underwent substantial accretion. The μ constraint
would then be avoided altogether.
The plan of this paper is as follows: In Sec. II we derive the

form of the μ constraint on the fraction of the dark matter in
PBHs on the assumption that they form from Gaussian or
non-Gaussian primordial fluctuations with amonochromatic
power spectrum. In Sec. III we extend the analysis to include
the y-distortion limit, and we discuss how our conclusions
depend on the type of non-Gaussianity. We also discuss
briefly how our conclusions are modified if the fluctuations
are nonmonochromatic or the PBHs accrete, both of which
would be expected in a more realistic scenario. We summa-
rize our conclusions in Sec. IV.

II. DEPENDENCE OF PBH LIMITS
FROM μ ON NON-GAUSSIANITY

Primordial fluctuations over a wide range of mass scales
will be dissipated by Silk damping when they fall within
the photon diffusion scale. The diffusion scale at any epoch
is the geometric mean of the horizon mass and the mass of
unit optical depth to Thompton scattering:

MD∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MτMH

p
∼
"
1010ðt=teqÞ7=4M⊙ ðt<teqÞ
1013ðt=tdecÞ11=6M⊙ ðteq<t<tdecÞ:

ð1Þ

Themasses here refer to the radiation content, which ismuch
larger than the matter content before the time of matter-
radiation equality (teq ∼ 1010 s). The value of 1013 M⊙ at
decoupling (tdec ∼ 1012 s) corresponds roughly to the Silk
mass, the matter and radiation densities then being
comparable.
The associated heat production could affect the CMB in

various ways, depending on the epoch, so we first discuss
these more general limits. Photons generated by the dissipa-
tion of fluctuations before t1 ¼ 7 × 106 s will be completely
thermalized, leading to an increase in the photon-to-baryon
ratio S of the CMB through acoustic reheating [64]. In
principle, this places constraints on fluctuations on scales
below 105 M⊙ since S cannot increasemuch after BBNS, but
these limits are relatively weak. Photons generated by the
dissipation of fluctuations between t1 and t2 ≈ 3 × 109 s will
lead to a μ distortion in the CMB. Photons generated by the
dissipation of fluctuations between t2 and t3 ≈ 3 × 1012 s
(decoupling) will lead to a y distortion. Note that these
effects can also be used to limit the number of evaporating
PBHs [65], those in themass ranges1011 − 1012 g and1012 −
1013 g evaporating in theperiods t1 < t < t2 and t2 < t < t3,
respectively.The sourceof thephotons is different—Hawking
radiation versus dissipation of fluctuations—but the interac-
tion with the CMB is the same.
Fluctuations on a given comoving scale produce PBHs

when that scale enters the horizon, and only much later are
fluctuations on the same scale dissipated. To find the PBH
mass ranges relevant to the three types of distortion
mentioned above, we must find the PBH mass M corre-
sponding to the diffusion mass MD. These masses are
different because a PBH forms when the Universe is
radiation dominated. Thereafter its mass remains constant,
but the radiation mass of a comoving region outside the
black hole decreases as a−1, which scales as t−1=2 for t <
teq and t−2=3 for t > teq. One can show that the PBH mass
associated with the diffusion mass MD is

M ∼
"
102ðMD=M⊙Þ6=7 M⊙ ðt < teqÞ
10ðMD=M⊙Þ10=11 M⊙ ðteq < t < tdecÞ

ð2Þ

This shows that the PBH mass ranges constrained by the
S, μ and y observations are M=M⊙<105, 105<M=M⊙<
1011 and 1011 < M=M⊙ < 1013, respectively.
We now focus on the μ distortions. In Ref. [60], the

following phenomenological description of the non-
Gaussian probability density function (PDF) of the curva-
ture perturbation ζ was introduced:

PðζÞ ¼ 1
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2

p
~σ

%
p
&
: ð3Þ

This satisfies
R∞
−∞ PðζÞdζ ¼ 1 and reduces to the Gaussian

distribution of Ref. [31] when p ¼ 2. The dispersion is
1The mass range associated with the μ limit is indicated in

Fig. 1 of Ref. [61] but not the limit on fðMÞ itself.
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σ2 ≡
Z

∞

−∞
ζ2PðζÞdζ ¼ 2Γð1þ 3=pÞ

3Γð1þ 1=pÞ
~σ2; ð4Þ

where ΓðaÞ is the gamma function. In particular, σ ¼ ~σ
when p ¼ 2, as expected.
We estimate the fraction of the Universe collapsing into

PBHs to be

β ¼
Z

∞

ζc

PðζÞdζ ¼ Γð1=p; 2−p=2ðζc= ~σÞpÞ
2pΓð1þ 1=pÞ

; ð5Þ

where ζc is the threshold for PBH formation and Γða; zÞ is
the incomplete gamma function. For p ¼ 2 this reduces to

β ¼ 2−1erfcð2−1=2ζc=σÞ: ð6Þ

This shows that increasing μ sensitivity is equivalent to
increasing p. Our results are very sensitive to the value of
ζc, but there is some ambiguity about this since it depends
upon the perturbation profile, pressure gradients playing an
important role [66]. Therefore the threshold can only be
specified in terms of some range. If we use the value of ζ at
the peak of the perturbation, ζc lies in the range 0.67–1.05
according to numerical simulations [67]. But this peak
value is subject to what is called the environmental effect
[68,69]. Harada et al. [67] suggest the range 0.95–1.26 by
approximately converting the threshold in terms of the
density perturbation in the comoving slice to ζ. To make
our limits as conservative as possible, we use the threshold
ζc ≃ 0.67 obtained for the class of perturbation profiles
considered in previous numerical simulations [67].
Equation (5) can be inverted to give

~σ ¼ 2−1=2ζc
½Q−1ð1=p; 2βÞ&1=p

; ð7Þ

whereQ−1ða; zÞ is the inverse of the regularized incomplete
gamma function Qða; zÞ≡ Γða; zÞ=ΓðaÞ, so that z ¼
Q−1ða; sÞ if s ¼ Qða; zÞ.
Let us consider the following dimensionless delta-func-

tion power spectrum:

Pζ ¼ σ2kδðk − k'Þ; ð8Þ

which leads to the μ distortion [70]

μ≃2.2σ2
!
exp

"
−

k̂'
5400

#
−exp

"
−
!
k̂'
31.6

$2#$
; ð9Þ

where k̂' is the wave number in units of Mpc−1. The wave
number and the PBH mass are related via [35]

k≃ 7.5 × 105γ1=2 Mpc−1
"

g
10.75

#−1=12" M
30 M⊙

#−1=2
;

ð10Þ

where γ gives the size of the PBH in units of the horizon
mass at formation and g is the number of degrees of freedom
of relativistic particles. We set γ ¼ 1 and g ¼ 10.75 for all
masses for simplicity.2 The initial abundance β is related to
f ¼ ΩPBH=ΩDM, where ΩDM ≃ 0.27 [71], via [35]

β≃ 1.1 × 10−8γ−1=2
"

g
10.75

#
1=4

"
ΩDM

0.27

#−1" M
30 M⊙

#
1=2

f:

ð11Þ

This is just Eq. (2.5) of Ref. [5] with M normalized to the
mass 30 M⊙ indicated by the LIGO events. Then, using both
the FIRAS limit (μ < 9 × 10−5) [62] and the projected upper
limit of μ < 3.6 × 10−7 for PIXIE [63], the above phenom-
enologicalmodel of non-Gaussianity can be used to calculate
the μ-distortion constraints on β or f. The results for f are
presented in Fig. 1; the results for β are not shown explicitly,
but they have a similar form and can be inferred from
Eq. (11). The figure shows that the limits are highly
restrictive but much less so in the non-Gaussian cases than
the Gaussian one. The PIXIE constraint may no longer be
relevant since the project has not been approved. Therefore
we give constraints for both PIXIE and a hypothetical
future experiment that we dub HYPERPIXIE, assumed to
give μ < 10−9.
The term in square brackets in Eq. (9) peakswith a value of

1 at k̂' ¼ 80, which corresponds to a mass 2.6 × 109 M⊙,
so the μ distortion is most sensitive to modes on this scale
and has a value μ≃ 2.2σ2. For ζc ¼ 0.67, this implies
ζc=σ ≃ ð100; 1.7 × 103; 3.1 × 104Þ for μ ¼ ð9 × 10−5;
3.6 × 10−7; 10−9Þ. Hence the decimal logarithm of the
PBH formation probability in the Gaussian case, given
by Eq. (6), formally reaches ð−2.4 × 103;−6.0 × 105;
−2.1 × 108Þ. Although this limit is very strong, there is also
a value of fðMÞ which corresponds to having just one PBH
per current Hubble horizon. This has been described as the
“incredulity limit” [72] and can be written as

f1¼
M

ΩDMMH
¼ 8.2×10−14

"
ΩDM

0.27

#−1" h
0.67

#"
M

109 M⊙

#
;

ð12Þ

where MH is the current horizon mass,

MH ¼ c3

2GH
¼ 4.5 × 1022 M⊙

"
h

0.67

#−1
: ð13Þ

The μ limit can be well below this, so we also plot f1 in the
figures for comparison.

2Strictly speaking, g should be somewhat smaller for
M > 105 M⊙, but this simplification does not cause significant
errors due to the weak dependence on g in Eq. (10).
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where ΓðaÞ is the gamma function. In particular, σ ¼ ~σ
when p ¼ 2, as expected.
We estimate the fraction of the Universe collapsing into

PBHs to be

β ¼
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PðζÞdζ ¼ Γð1=p; 2−p=2ðζc= ~σÞpÞ
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where ζc is the threshold for PBH formation and Γða; zÞ is
the incomplete gamma function. For p ¼ 2 this reduces to

β ¼ 2−1erfcð2−1=2ζc=σÞ: ð6Þ

This shows that increasing μ sensitivity is equivalent to
increasing p. Our results are very sensitive to the value of
ζc, but there is some ambiguity about this since it depends
upon the perturbation profile, pressure gradients playing an
important role [66]. Therefore the threshold can only be
specified in terms of some range. If we use the value of ζ at
the peak of the perturbation, ζc lies in the range 0.67–1.05
according to numerical simulations [67]. But this peak
value is subject to what is called the environmental effect
[68,69]. Harada et al. [67] suggest the range 0.95–1.26 by
approximately converting the threshold in terms of the
density perturbation in the comoving slice to ζ. To make
our limits as conservative as possible, we use the threshold
ζc ≃ 0.67 obtained for the class of perturbation profiles
considered in previous numerical simulations [67].
Equation (5) can be inverted to give

~σ ¼ 2−1=2ζc
½Q−1ð1=p; 2βÞ&1=p

; ð7Þ

whereQ−1ða; zÞ is the inverse of the regularized incomplete
gamma function Qða; zÞ≡ Γða; zÞ=ΓðaÞ, so that z ¼
Q−1ða; sÞ if s ¼ Qða; zÞ.
Let us consider the following dimensionless delta-func-

tion power spectrum:

Pζ ¼ σ2kδðk − k'Þ; ð8Þ

which leads to the μ distortion [70]
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!
exp

"
−

k̂'
5400

#
−exp

"
−
!
k̂'
31.6

$2#$
; ð9Þ

where k̂' is the wave number in units of Mpc−1. The wave
number and the PBH mass are related via [35]

k≃ 7.5 × 105γ1=2 Mpc−1
"

g
10.75

#−1=12" M
30 M⊙

#−1=2
;

ð10Þ

where γ gives the size of the PBH in units of the horizon
mass at formation and g is the number of degrees of freedom
of relativistic particles. We set γ ¼ 1 and g ¼ 10.75 for all
masses for simplicity.2 The initial abundance β is related to
f ¼ ΩPBH=ΩDM, where ΩDM ≃ 0.27 [71], via [35]

β≃ 1.1 × 10−8γ−1=2
"

g
10.75

#
1=4

"
ΩDM

0.27

#−1" M
30 M⊙

#
1=2

f:

ð11Þ

This is just Eq. (2.5) of Ref. [5] with M normalized to the
mass 30 M⊙ indicated by the LIGO events. Then, using both
the FIRAS limit (μ < 9 × 10−5) [62] and the projected upper
limit of μ < 3.6 × 10−7 for PIXIE [63], the above phenom-
enologicalmodel of non-Gaussianity can be used to calculate
the μ-distortion constraints on β or f. The results for f are
presented in Fig. 1; the results for β are not shown explicitly,
but they have a similar form and can be inferred from
Eq. (11). The figure shows that the limits are highly
restrictive but much less so in the non-Gaussian cases than
the Gaussian one. The PIXIE constraint may no longer be
relevant since the project has not been approved. Therefore
we give constraints for both PIXIE and a hypothetical
future experiment that we dub HYPERPIXIE, assumed to
give μ < 10−9.
The term in square brackets in Eq. (9) peakswith a value of

1 at k̂' ¼ 80, which corresponds to a mass 2.6 × 109 M⊙,
so the μ distortion is most sensitive to modes on this scale
and has a value μ≃ 2.2σ2. For ζc ¼ 0.67, this implies
ζc=σ ≃ ð100; 1.7 × 103; 3.1 × 104Þ for μ ¼ ð9 × 10−5;
3.6 × 10−7; 10−9Þ. Hence the decimal logarithm of the
PBH formation probability in the Gaussian case, given
by Eq. (6), formally reaches ð−2.4 × 103;−6.0 × 105;
−2.1 × 108Þ. Although this limit is very strong, there is also
a value of fðMÞ which corresponds to having just one PBH
per current Hubble horizon. This has been described as the
“incredulity limit” [72] and can be written as

f1¼
M

ΩDMMH
¼ 8.2×10−14

"
ΩDM

0.27

#−1" h
0.67

#"
M

109 M⊙

#
;

ð12Þ

where MH is the current horizon mass,

MH ¼ c3

2GH
¼ 4.5 × 1022 M⊙

"
h

0.67

#−1
: ð13Þ

The μ limit can be well below this, so we also plot f1 in the
figures for comparison.

2Strictly speaking, g should be somewhat smaller for
M > 105 M⊙, but this simplification does not cause significant
errors due to the weak dependence on g in Eq. (10).
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the incomplete gamma function. For p ¼ 2 this reduces to

β ¼ 2−1erfcð2−1=2ζc=σÞ: ð6Þ

This shows that increasing μ sensitivity is equivalent to
increasing p. Our results are very sensitive to the value of
ζc, but there is some ambiguity about this since it depends
upon the perturbation profile, pressure gradients playing an
important role [66]. Therefore the threshold can only be
specified in terms of some range. If we use the value of ζ at
the peak of the perturbation, ζc lies in the range 0.67–1.05
according to numerical simulations [67]. But this peak
value is subject to what is called the environmental effect
[68,69]. Harada et al. [67] suggest the range 0.95–1.26 by
approximately converting the threshold in terms of the
density perturbation in the comoving slice to ζ. To make
our limits as conservative as possible, we use the threshold
ζc ≃ 0.67 obtained for the class of perturbation profiles
considered in previous numerical simulations [67].
Equation (5) can be inverted to give

~σ ¼ 2−1=2ζc
½Q−1ð1=p; 2βÞ&1=p
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whereQ−1ða; zÞ is the inverse of the regularized incomplete
gamma function Qða; zÞ≡ Γða; zÞ=ΓðaÞ, so that z ¼
Q−1ða; sÞ if s ¼ Qða; zÞ.
Let us consider the following dimensionless delta-func-

tion power spectrum:
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which leads to the μ distortion [70]
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where k̂' is the wave number in units of Mpc−1. The wave
number and the PBH mass are related via [35]
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where γ gives the size of the PBH in units of the horizon
mass at formation and g is the number of degrees of freedom
of relativistic particles. We set γ ¼ 1 and g ¼ 10.75 for all
masses for simplicity.2 The initial abundance β is related to
f ¼ ΩPBH=ΩDM, where ΩDM ≃ 0.27 [71], via [35]
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This is just Eq. (2.5) of Ref. [5] with M normalized to the
mass 30 M⊙ indicated by the LIGO events. Then, using both
the FIRAS limit (μ < 9 × 10−5) [62] and the projected upper
limit of μ < 3.6 × 10−7 for PIXIE [63], the above phenom-
enologicalmodel of non-Gaussianity can be used to calculate
the μ-distortion constraints on β or f. The results for f are
presented in Fig. 1; the results for β are not shown explicitly,
but they have a similar form and can be inferred from
Eq. (11). The figure shows that the limits are highly
restrictive but much less so in the non-Gaussian cases than
the Gaussian one. The PIXIE constraint may no longer be
relevant since the project has not been approved. Therefore
we give constraints for both PIXIE and a hypothetical
future experiment that we dub HYPERPIXIE, assumed to
give μ < 10−9.
The term in square brackets in Eq. (9) peakswith a value of

1 at k̂' ¼ 80, which corresponds to a mass 2.6 × 109 M⊙,
so the μ distortion is most sensitive to modes on this scale
and has a value μ≃ 2.2σ2. For ζc ¼ 0.67, this implies
ζc=σ ≃ ð100; 1.7 × 103; 3.1 × 104Þ for μ ¼ ð9 × 10−5;
3.6 × 10−7; 10−9Þ. Hence the decimal logarithm of the
PBH formation probability in the Gaussian case, given
by Eq. (6), formally reaches ð−2.4 × 103;−6.0 × 105;
−2.1 × 108Þ. Although this limit is very strong, there is also
a value of fðMÞ which corresponds to having just one PBH
per current Hubble horizon. This has been described as the
“incredulity limit” [72] and can be written as
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where MH is the current horizon mass,

MH ¼ c3
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The μ limit can be well below this, so we also plot f1 in the
figures for comparison.

2Strictly speaking, g should be somewhat smaller for
M > 105 M⊙, but this simplification does not cause significant
errors due to the weak dependence on g in Eq. (10).
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where ΓðaÞ is the gamma function. In particular, σ ¼ ~σ
when p ¼ 2, as expected.
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PBHs to be

β ¼
Z

∞

ζc

PðζÞdζ ¼ Γð1=p; 2−p=2ðζc= ~σÞpÞ
2pΓð1þ 1=pÞ

; ð5Þ

where ζc is the threshold for PBH formation and Γða; zÞ is
the incomplete gamma function. For p ¼ 2 this reduces to

β ¼ 2−1erfcð2−1=2ζc=σÞ: ð6Þ

This shows that increasing μ sensitivity is equivalent to
increasing p. Our results are very sensitive to the value of
ζc, but there is some ambiguity about this since it depends
upon the perturbation profile, pressure gradients playing an
important role [66]. Therefore the threshold can only be
specified in terms of some range. If we use the value of ζ at
the peak of the perturbation, ζc lies in the range 0.67–1.05
according to numerical simulations [67]. But this peak
value is subject to what is called the environmental effect
[68,69]. Harada et al. [67] suggest the range 0.95–1.26 by
approximately converting the threshold in terms of the
density perturbation in the comoving slice to ζ. To make
our limits as conservative as possible, we use the threshold
ζc ≃ 0.67 obtained for the class of perturbation profiles
considered in previous numerical simulations [67].
Equation (5) can be inverted to give

~σ ¼ 2−1=2ζc
½Q−1ð1=p; 2βÞ&1=p
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whereQ−1ða; zÞ is the inverse of the regularized incomplete
gamma function Qða; zÞ≡ Γða; zÞ=ΓðaÞ, so that z ¼
Q−1ða; sÞ if s ¼ Qða; zÞ.
Let us consider the following dimensionless delta-func-

tion power spectrum:
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where γ gives the size of the PBH in units of the horizon
mass at formation and g is the number of degrees of freedom
of relativistic particles. We set γ ¼ 1 and g ¼ 10.75 for all
masses for simplicity.2 The initial abundance β is related to
f ¼ ΩPBH=ΩDM, where ΩDM ≃ 0.27 [71], via [35]
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This is just Eq. (2.5) of Ref. [5] with M normalized to the
mass 30 M⊙ indicated by the LIGO events. Then, using both
the FIRAS limit (μ < 9 × 10−5) [62] and the projected upper
limit of μ < 3.6 × 10−7 for PIXIE [63], the above phenom-
enologicalmodel of non-Gaussianity can be used to calculate
the μ-distortion constraints on β or f. The results for f are
presented in Fig. 1; the results for β are not shown explicitly,
but they have a similar form and can be inferred from
Eq. (11). The figure shows that the limits are highly
restrictive but much less so in the non-Gaussian cases than
the Gaussian one. The PIXIE constraint may no longer be
relevant since the project has not been approved. Therefore
we give constraints for both PIXIE and a hypothetical
future experiment that we dub HYPERPIXIE, assumed to
give μ < 10−9.
The term in square brackets in Eq. (9) peakswith a value of

1 at k̂' ¼ 80, which corresponds to a mass 2.6 × 109 M⊙,
so the μ distortion is most sensitive to modes on this scale
and has a value μ≃ 2.2σ2. For ζc ¼ 0.67, this implies
ζc=σ ≃ ð100; 1.7 × 103; 3.1 × 104Þ for μ ¼ ð9 × 10−5;
3.6 × 10−7; 10−9Þ. Hence the decimal logarithm of the
PBH formation probability in the Gaussian case, given
by Eq. (6), formally reaches ð−2.4 × 103;−6.0 × 105;
−2.1 × 108Þ. Although this limit is very strong, there is also
a value of fðMÞ which corresponds to having just one PBH
per current Hubble horizon. This has been described as the
“incredulity limit” [72] and can be written as
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where MH is the current horizon mass,
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¼ 4.5 × 1022 M⊙

"
h

0.67

#−1
: ð13Þ

The μ limit can be well below this, so we also plot f1 in the
figures for comparison.

2Strictly speaking, g should be somewhat smaller for
M > 105 M⊙, but this simplification does not cause significant
errors due to the weak dependence on g in Eq. (10).
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PBHs  with  106-1010Mo have  fSMBH <<<  1  in  Gaussian  case  
Cosmic  seed  effect  =>  fSMBH ~  10-4 =>  p  <  0.5  or  fNL >  5000

Extended  power  spectrum

Figures 2 and 3 show the corresponding results for the
quadratic and cubic non-Gaussianity investigated in the
context of PBHs in Refs. [35,73]:

ζ ¼ ζG þ 3

5
fNLðζ2G − σ2GÞ; ð14Þ

ζ ¼ ζG þ gζ3G; g≡ 9

25
gNL: ð15Þ

The dispersion σ2 ¼ hζ2i is then related to σ2G ≡ hζ2Gi via

σ2 ¼ σ2G þ 2

!
3

5
fNL

"
2

σ4G; ð16Þ

σ2 ¼ σ2G þ 6gσ4G þ 15g2σ6G: ð17Þ

For each fNL or gNL and mass M, which can be translated
into k%, the dispersion σ2 (or equivalently σ2G) correspond-
ing to the upper limit on μ is obtained. The corresponding
value of f can then be obtained using Refs. [35,73], which
leads to Figs. 2 and 3. The limits for cubic non-Gaussianity
are weaker than those for quadratic non-Gaussianity, and
the limits for p-type non-Gaussianity are even weaker for
sufficiently small p. As noted in Ref. [35], in the limit
fNL ¼ ∞, we have

β ¼ erfc½ð~ζc=2Þ1=2' with ~ζc ¼
ffiffiffi
2

p
ζc=σ þ 1 ð18Þ

where erfcðxÞ denotes the complementary error function. In
the limit gNL ¼ ∞, we have

β ¼ 1

2
erfc

$
1ffiffiffi
2

p
!

ζc
σ=

ffiffiffiffiffi
15

p
"

1=3
%
: ð19Þ

These relations and Eqs. (9) and (10) lead to the curves of
Figs. 2 and 3 with fNL ¼ ∞ and gNL ¼ ∞, which serves as
a check.

III. DISCUSSION

Although we have focused mainly on the μ distortions
associated with PBH formation, we should also comment
briefly on the y distortions, which can be calculated using
Eq. (9b) in Ref. [70] and assuming y < 1.5 × 10−5 [62]. It
is clear from Fig. 4, which shows the μ and y limits for
FIRAS with different values of p, that there is a transition at
around 109 M⊙ above which the y constraint dominates.
This scale is independent of the value of p and can be
understood from the qualitative discussion at the start of
Sec. II. The y curves are interesting, even if one does not
expect PBHs larger than 109 M⊙ in practice. Note that
including other sources of y distortion would merely
strengthen the PBH limits. Indeed, HYPERPIXIE will

FIG. 1. Upper limits on f ¼ ρPBH=ρDM for different values of
the non-Gaussianity parameter p [Eq. (3)]. The solid curves are
for FIRAS (μ ¼ 9 × 10−5) and correspond to p ¼ 0.5, 1, 2 (from
top to bottom). The dashed and dotted curves are for PIXIE
(μ ¼ 3.6 × 10−7) and HYPERPIXIE (μ ¼ 10−9), respectively,
with the same values of p from top to bottom. The SINGLE
line corresponds to having one PBH per current Hubble volume.

FIG. 2. Upper limits on f ¼ ρPBH=ρDM for quadratic non-
Gaussianity with fNL ¼ ∞, 10, 0 from top to bottom. The
FIRAS, PIXIE, HYPERPIXIE and SINGLE curves are as for
Fig. 1.

FIG. 3. Upper limits on f ¼ ρPBH=ρDM for cubic non-
Gaussianity with gNL ¼ ∞, 1000, 0 from top to bottom and
the same values of gNL. The FIRAS, PIXIE, HYPERPIXIE
and SINGLE curves are as for Fig. 1.
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y-constraints

MPBH ¼ 2.2 × 1013
!

k"
1 Mpc−1

"−2
; ðA8Þ

the above range of k̂" is translated into the following range
of the mass of PBHs, excluded by CMB μ distortion:

8 × 105 M⊙

!
log

!
μupper
2.2σ2

""−2

≲MPBH ≲ 2 × 1010
!
− log

!
1 −

μupper
2.2σ2

""−1
: ðA9Þ

The lower and upper bounds here for each p for the same
fixed β above are shown in Fig. 10. Noting the logarithmic
dependence on p of this mass range, PBHs in roughly
106 M⊙ ≲MPBH ≲ 1010MPBH, which is probably the most
important range for PBHs as a candidate for the seeds of
SMBHs, are excluded by CMB μ distortion (and larger
PBHs are excluded by CMB y distortions) unless primor-
dial perturbations are tremendously non-Gaussian
(p≲ 0.43 in the toy model analyzed here), with high-σ
peaks enhanced considerably in comparison to a Gaussian
case. Smaller PBHs can be potentially constrained by
annihilation of dark matter inside UCMHs [46], and these
potential constraints are also applicable unless primordial
perturbations are tremendously non-Gaussian. If such a
highly non-Gaussian and monotonically decreasing PDF
for 0≲ ζ can indeed be realized in some model of inflation,
such a model can also explain SMBHs by PBHs, evading
constraints from CMB distortions or UCMHs to explain
SMBHs by PBHs.

APPENDIX B: MASS FUNCTION OF PBHS

Here we calculate the mass function of PBHs in our
model by solving the Fokker-Planck equation for the time
evolution of the PDF pðt; χÞ of the χ field. To this end we
replace the step function θðχÞ in Eq. (7) by a hyperbolic
tangent function as follows:

θðχÞ → TðχÞ≡ 1

2

#
1þ tanh

!
χ
Δχ

"$
; ðB1Þ

where Δχ is a positive parameter. The Fokker-Planck
equation for pðt; χÞ is5

∂pðt; χÞ
∂t ¼ VðϕðtÞÞvðϕðtÞÞ

3HðtÞ
∂
∂χ

#∂TðχÞ
∂χ pðt; χÞ

$

þH3ðtÞ
8π2

∂2pðt; χÞ
∂χ2 : ðB2Þ

In terms of the e-folds N, this reads

−
∂pðN; χÞ

∂N ¼ VðϕðNÞÞvðϕðNÞÞ
3H2ðNÞ

∂
∂χ

#∂TðχÞ
∂χ pðN; χÞ

$

þH2ðNÞ
8π2

∂2pðN; χÞ
∂χ2 : ðB3Þ

Notice that the first term of the right-hand side represents
the effect of the gap at χ ∼ 0, and the ratio of the second
term to the first term is roughly given by R introduced in
(21). That is, the first term becomes important when
R≲ 1. Let us rewrite the above equation using quantities
normalized by Hobs ¼ HðtobsÞ, denoted with a tilde (e.g.,
~H ¼ H=Hobs). For the case of the ϕ2 potential, we obtain

FIG. 10. The lower and upper bound of Eq. (A9) for each p.
The region between the curves corresponds to the mass of PBHs
excluded by CMB μ distortion.

FIG. 9. The μ distortion induced by the delta-function-type
power spectrum of the curvature perturbation (A5) as a function
of k̂", assuming the non-Gaussian PDF (A1). Here β ¼ 4 × 10−14

and ζc ¼ 1 are used. For 0.43 < p, there exists a range of k̂" that
leads to a μ distortion exceeding the COBE/FIRAS limit.

5Strictly speaking, the evolution of ϕ is affected by the motion
of χ; however, we investigate the motion of χ when the effects of
the hill on the evolution of ϕ are negligible, so the evolutions of ϕ
and χ would be separately treated safely, as is done in this
appendix.
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Abstract

Primordial black holes (PBHs) could provide the dark matter in various mass windows below

102M� and those of 30M� might explain the LIGO events. PBHs much larger than this might

have important consequences even if they provide only a small fraction of the dark matter. In

particular, they could generate cosmological structure either individually through the ‘seed’ e↵ect

or collectively through the ‘Poisson’ e↵ect, thereby alleviating some problems associated with the

standard CDM scenario. If the PBHs all have a similar mass and make a small contribution to the

dark matter, then the seed e↵ect dominates on small scales, in which case PBHs could generate

the supermassive black holes in galactic nuclei or even galaxies themselves. If they have a similar

mass and provide the dark matter, the Poisson e↵ect dominates on all scales and the first bound

clouds would form earlier than in the usual scenario, with interesting observational consequences.

If the PBHs have an extended mass spectrum, which is more likely, they could fulfill all three roles

– providing the dark matter, binding the first bound clouds and generating galaxies. In this case,

the galactic mass function naturally has the observed form, with the galaxy mass being simply

related to the black hole mass. The stochastic gravitational wave background from the PBHs in

this scenario would extend continuously from the LIGO frequency to the LISA frequency, o↵ering

a potential goal for future surveys.

Keywords: dark matter, early Universe, galaxies: formation, stars: Population III, quasars;

supermassive black holes, gravitational waves
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SEED  AND  POISSON  FLUCTUATIONS

If  region  of  mass  M  contains  PBHs  of  mass  m,  initial  fluctuation  is    

II. PBHS AS DARK MATTER AND LIGO SOURCES

[EXPAND] There are general arguments that PBHs rather than WIMPs provide the dark

matter [17–19]. PBHs can provide DM with fine-tuning of the collapse fraction [3],

�(m) ⇠ 10�9(m/M�)
1/2 . (2.1)

The PBH mass is of order the horizon mass at formation but there are only few mass windows

allowed observationally [5, 6]. The most interesting is the IMBH range (10�100M�), which

would have implications for LIGO [20], although the LIGO observations would only require

a small fraction of the dark matter to be in PBHs [21], the infrared background [22] and

lensing of fast radio bursts [23]. The other windows are the lunar-mass range (1020 � 1024g)

and atomic (sized) range (1016 � 1017g) but these would be unimportant for large-scale

structure, the seed and Poisson e↵ects being negligible. [GRAVITY WAVES.]

III. SEED VERSUS POISSON FLUCTUATIONS

PBHs of mass m provide a source of fluctuations for objects of mass M in two ways: (1)

via the seed e↵ect, in which the Coulomb e↵ect of a single black hole binds a larger region;

and (2) via the Poisson e↵ect, in which the
p
N fluctuation in the number N of black holes

in the larger region binds it. The first mechanism was proposed by Ryan [14] and then

discussed in more detail in Ref. [16]; the second mechansm was suggested by Meszaros [15]

and then explored in several subsequent papers [24–27]. In the following discussion, we will

consider both these e↵ects in order to determine the dominant one. Note that the seed

need not be a black hole; a bound cluster of smaller objects or Ultra Compact Mini Halos

(UCMHs) would serve equally well [REF]. [EXPAND]

The initial density fluctuations have the form:

�i ⇠

8
><

>:

m/M (seed)

(fm/M)1/2 (Poisson) ,
(3.1)

where f is the fraction of the dark matter in the PBHs. If PBHs provide the dark matter,

f ⇠ 1 and the Poisson e↵ect dominates for all M but we also consider scenarios with f ⌧ 1.

The Poisson e↵ect then dominates for M > m/f and the seed e↵ect for M < m/f . Indeed,

the first equation in (3.1) only applies in the latter situation since otherwise the region would

4

f  =  1  =>  Poisson  dominates;;  f  <<1  =>  seed  dominates  for  M  <  m/f.  
Fluctuation  grows  as  z-1 from  zeq ~  104,  so  mass  binding  at  zB is    

PBHs  larger  than  102MO cannot  provide  dark  matter  but  can  
affect  large-scale  structure  through  seed  effect  on  small  scales  
or  Poisson  effect  on  large  scales  even  if  f  small.  

A. Monochromatic PBH mass function

If the PBHs have a single mass m, the initial density fluctuation on a scale M is

�i ⇡

8
><

>:

m/M (seed)

(fm/M)1/2 (Poisson) ,
(4.1)

where f is the fraction of the dark matter in the PBHs. If PBHs provide the dark matter,

f ⇠ 1 and the Poisson e↵ect dominates for all M but we also consider scenarios with f ⌧ 1.

The Poisson e↵ect then dominates for M > m/f and the seed e↵ect for M < m/f . Indeed,

the first expression in (4.1) only applies for f ⌧ 1, since otherwise a region of mass M would

be expected to contain more than one black hole of mass m, i.e. the mass bound by a single

seed can never exceed m/f because of competition from other seeds. The dependence of �i

on the ratio M/m is indicated in Fig. 2(a).

It should be stressed that the
p
N fluctuation does not initially correspond to a fluctuation

in the total density because at formation each PBH is surrounded by a region which is

underdense in its radiation density. (This was the source of the error in Meszaros’s initial

analysis.) However, because the radiation density falls o↵ faster than the black hole density,

a fluctuation in the total density does eventually develop and this has amplitude �i at the

horizon epoch. Thereafter one can show (Meszaros 1974) that the fluctuation evolves as

� = �H

✓
1 +

3⇢B(t)

2⇢r(t)

◆✓
1 +

3⇢B(tH)

2⇢r(tH)

◆�1

, (4.2)

where ⇢B and ⇢r are the mean black hole and radiation densities, respectively. Therefore

the
p
N fluctuation is frozen during the radiation-dominated era but it starts growing as

(z + 1)�1 from the start of the matter-dominated era. Since this corresponds to a redshift

zeq ⇡ 4000 and an overdense region binds when � ⇡ 1, the mass binding at redshift zB is

M ⇡

8
><

>:

4000mz�1
B (seed)

107fmz�2
B (Poisson) .

(4.3)

Note that one also expects the peculiar velocity of the PBHs to induce Poisson fluctuations

on the scales they can traverse in a cosmological time (Carr & Rees 1984). In this con-

text, Meszaros considers fluctuations of the form �N ⇠ N1/3, on the assumption that this

corresponds to a situation in which the black holes are distributed on a lattice, with their
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SEED  VERSUS  POISSON

=>  gravity  wave  background  over  huge  frequency  range

f  =  1  =>  m  <  103  MO =>  M  <1011zB-2  MO <  Mgal (Poisson)  

only a small fraction is bound by the seeds at the present epoch for f ⌧ z�1
eq ⇠ 10�4. On

the other hand, for f > zB/zeq the bound fraction at zB would exceed 1, so competition

between the seeds will reduce the mass of each bound region to at most M ⇠ m/f . But

this is precisely the value of M above which the Poisson e↵ect dominates.

If f is is treated as a free parameter, unconstrained by observations, the dependence of

M on the redshift zB is as indicated in Fig. 2(b). However, it is interesting to obtain the

constraints on the function M(zB) implied by the limits on f(m) discussed in Sec. II. If the

PBHs provide the dark matter (f ⇠ 1), the Poisson e↵ect always dominates and Eq. (4.3) and

the condition m < 102M� imply M < 109M�. More generally, the wide-binary constraint

(2.2) and the second expession in Eq. (4.3) imply

M <

8
>>>><

>>>>:

107mz�2
B (m . 102 M�)

109z�2
B M� (102 M� < m . 103 M�)

106mz�2
B (m > 103 M�) ,

(4.4)

where the seed e↵ect dominates for

zB >

8
><

>:

104(m/104M�)�1 (102 M� < m . 103 M�)

104 (m . 102 M� or m > 103 M�) .
(4.5)

The last expression in Eq. (4.4) can be large if m is but – unless one invokes highly non-

Gaussian fluctuations or appreciable PBH accretion in the radiation-dominated era — the

µ-distortion upper limit on m of 106M� implies M < 1012M�. The combined constraints

on M(zB) for di↵erent values m are indicated in Fig. 2(c).

It is interesting to compare the seed and Poisson fluctuations with the primordial fluc-

tuations implied by the CDM model. At the time of matter-radiation equality, teq ⇠ 104y,

when the PBH fluctuations start to grow, the CDM fluctuations have the form

�eq /

8
><

>:

M�1/3 (M < Meq)

M�2/3 (M > Meq) ,
(4.6)

where Meq ⇠ 1015M� is the horizon mass at teq. These fluctuations and the e↵ect on the

binding mass are shown by the lines labelled “CDM” in Fig. 2. In the mass range M < Meq

relevant to the present considerations, the CDM fluctuations fall o↵ slower than both the

Poisson and seed fluctuations, so they necessarily dominate on su�ciently large scales (i.e.
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cf.  CDM  fluctuations

Extended  PBH  mass  function  =>  DM  and cosmic  structures  

Can  constrain  PBH  scenarios  by  requiring  that  various
cosmic  structure  don’t  form  too  early.    



DWARF  GALAXIES  (MB ~  1010MO)

To  avoid  these  forming  too  early  (zB>7),  we    require

Seed  effect  wins  for  f  <  m/M  and  requires  m  <  107MO

B. Galaxies and clusters

In deriving the condition that galaxies do not form too early, it must be appreciated that

galaxies span a wide range of masses and the upper limit on their formation redshift, zB(M),

only refers to typical galaxies of mass M (i.e. some galaxies of that mass may form earlier

than the average). Nevertheless, one can still obtain rough PBH constraints. For example,

if we assume that Milky-Way-type galaxies have a mass of order 1012M� and must not bind

before zB ⇠ 3, we obtain

f(m) <

8
><

>:

(m/106M�)�1 (106 M� < m . 109 M�)

m/1012M� (109 M� . m < 1012 M�) .
(5.1)

This limit is shown in Fig. 3 and bottoms out at m ⇠ 109M� with a value f ⇠ 0.001. The

first condition in Eq. (5.1) can be obtained by putting M ⇠ 1012M� and zB ⇠ 3 in Eq. (4.3).

The second condition corresponds to having just one PBH per galaxy and is also the line

above which the seed e↵ect dominates the Poisson e↵ect (f < m/M). Indeed, since the

initial seed fluctuation is m/M , the seed mass required for the galaxy to bind at z ⇠ 3 is

immediately seen to be 107M�. There is no constraint on PBHs below this line because

the fraction of the Universe going into galaxies would be small, with most of the baryons

presumably going into the intergalactic medium. Therefore the seed e↵ect does not modify

the form of the limit shown in Fig. 3 but merely comes into play at the minimum.

If we apply the same argument to dwarf galaxies, assuming these have M ⇠ 1010M� and

must not bind before zB ⇠ 7, we obtain

f(m) <

8
><

>:

(m/5⇥ 104M�)�1 (5⇥ 104 M� < m . 2⇥ 107 M�)

m/1010M� (2⇥ 107 M� . m < 1010 M�) ,
(5.2)

this bottoming out at m ⇠ 2 ⇥ 107M� with a value f ⇠ 0.002. On the other hand, if we

apply the argument to clusters of galaxies, assuming these have a mass of 1014M� and must

not bind before zB ⇠ 1, we obtain

f(m) <

8
><

>:

(m/107M�)�1 (107 M� < m . 3⇥ 1010 M�)

m/1014M� (3⇥ 1010 M� . m < 1014 M�) .
(5.3)

this bottoming out at m ⇠ 3⇥ 1010M� with a value f ⇠ 0.0003.
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MILKY  WAY  TYPE  GALAXIES  (MB ~  1012MO)

To  avoid  these  forming  too  early  (zB>3),  we    require

Seed  effect  wins  for  f  <  m/M  and  requires  m  <  109MO

B. Galaxies and clusters

In deriving the condition that galaxies do not form too early, it must be appreciated that

galaxies span a wide range of masses and the upper limit on their formation redshift, zB(M),

only refers to typical galaxies of mass M (i.e. some galaxies of that mass may form earlier

than the average). Nevertheless, one can still obtain rough PBH constraints. For example,

if we assume that Milky-Way-type galaxies have a mass of order 1012M� and must not bind

before zB ⇠ 3, we obtain

f(m) <

8
><

>:

(m/106M�)�1 (106 M� < m . 109 M�)

m/1012M� (109 M� . m < 1012 M�) .
(5.1)

This limit is shown in Fig. 3 and bottoms out at m ⇠ 109M� with a value f ⇠ 0.001. The

first condition in Eq. (5.1) can be obtained by putting M ⇠ 1012M� and zB ⇠ 3 in Eq. (4.3).

The second condition corresponds to having just one PBH per galaxy and is also the line

above which the seed e↵ect dominates the Poisson e↵ect (f < m/M). Indeed, since the

initial seed fluctuation is m/M , the seed mass required for the galaxy to bind at z ⇠ 3 is

immediately seen to be 107M�. There is no constraint on PBHs below this line because

the fraction of the Universe going into galaxies would be small, with most of the baryons

presumably going into the intergalactic medium. Therefore the seed e↵ect does not modify

the form of the limit shown in Fig. 3 but merely comes into play at the minimum.

If we apply the same argument to dwarf galaxies, assuming these have M ⇠ 1010M� and

must not bind before zB ⇠ 7, we obtain

f(m) <

8
><

>:

(m/5⇥ 104M�)�1 (5⇥ 104 M� < m . 2⇥ 107 M�)

m/1010M� (2⇥ 107 M� . m < 1010 M�) ,
(5.2)

this bottoming out at m ⇠ 2 ⇥ 107M� with a value f ⇠ 0.002. On the other hand, if we

apply the argument to clusters of galaxies, assuming these have a mass of 1014M� and must

not bind before zB ⇠ 1, we obtain

f(m) <

8
><

>:

(m/107M�)�1 (107 M� < m . 3⇥ 1010 M�)

m/1014M� (3⇥ 1010 M� . m < 1014 M�) .
(5.3)

this bottoming out at m ⇠ 3⇥ 1010M� with a value f ⇠ 0.0003.
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CLUSTERS  (MB ~  1013MO)

To  avoid  these  forming  too  early  (zB>1),  we    require

Seed  effect  wins  for  f  <  m/M  and  requires  m  <  1010MO

B. Galaxies and clusters

In deriving the condition that galaxies do not form too early, it must be appreciated that

galaxies span a wide range of masses and the upper limit on their formation redshift, zB(M),

only refers to typical galaxies of mass M (i.e. some galaxies of that mass may form earlier

than the average). Nevertheless, one can still obtain rough PBH constraints. For example,

if we assume that Milky-Way-type galaxies have a mass of order 1012M� and must not bind

before zB ⇠ 3, we obtain

f(m) <

8
><

>:

(m/106M�)�1 (106 M� < m . 109 M�)

m/1012M� (109 M� . m < 1012 M�) .
(5.1)

This limit is shown in Fig. 3 and bottoms out at m ⇠ 109M� with a value f ⇠ 0.001. The

first condition in Eq. (5.1) can be obtained by putting M ⇠ 1012M� and zB ⇠ 3 in Eq. (4.3).

The second condition corresponds to having just one PBH per galaxy and is also the line

above which the seed e↵ect dominates the Poisson e↵ect (f < m/M). Indeed, since the

initial seed fluctuation is m/M , the seed mass required for the galaxy to bind at z ⇠ 3 is

immediately seen to be 107M�. There is no constraint on PBHs below this line because

the fraction of the Universe going into galaxies would be small, with most of the baryons

presumably going into the intergalactic medium. Therefore the seed e↵ect does not modify

the form of the limit shown in Fig. 3 but merely comes into play at the minimum.

If we apply the same argument to dwarf galaxies, assuming these have M ⇠ 1010M� and

must not bind before zB ⇠ 7, we obtain

f(m) <

8
><

>:

(m/5⇥ 104M�)�1 (5⇥ 104 M� < m . 2⇥ 107 M�)

m/1010M� (2⇥ 107 M� . m < 1010 M�) ,
(5.2)

this bottoming out at m ⇠ 2 ⇥ 107M� with a value f ⇠ 0.002. On the other hand, if we

apply the argument to clusters of galaxies, assuming these have a mass of 1014M� and must

not bind before zB ⇠ 1, we obtain

f(m) <

8
><

>:

(m/107M�)�1 (107 M� < m . 3⇥ 1010 M�)

m/1014M� (3⇥ 1010 M� . m < 1014 M�) .
(5.3)

this bottoming out at m ⇠ 3⇥ 1010M� with a value f ⇠ 0.0003.
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FIRST  CLOUDS  (M  ~  106MO)

Cannot  constrain  formation  epoch  observationally  but  Poisson  
effect    implies  earlier  than  in  standard  model  (zB>100)  unless

Although we are treating the various types of cosmic structures as distinct, it is clear

that the above analysis can be applied to bound structures of any mass M . If structures of

mass M are required to form after some redshift zB(M), the maximum value of m for which

f ⇠ 1 is allowed and the values of m and f where the constraint bottoms out are given by

mmax ⇠ 10�7MzB(M)2, mmin ⇠ 3⇥ 10�4MzB(M), fmin ⇠ 3⇥ 10�4zB(M) , (5.4)

so we can merge the di↵erent limits into a combined constraint, as indicated by the bold

line in Fig. 3. The limit scales as m�1 at the low end, as m at the high end and as some

intermediate power of m in between. In order to compare this constraint to the other limits

on f(m), it is also indicated by the bold broken line in Fig. 1. It is not as strong as the

dynamical friction and accretion limits but these are more tentative.

C. First baryonic clouds

The first baryonic clouds would be expected to have a mass of order 106M� in the

CDM picture. We cannot apply the above argument to these directly because there is no

observational constraint on their formation redshift. However, we know that the clouds

would form at a redshift zB ⇠ 100 in the CDM picture, so we can still derive a limit

corresponding to the requirement that the standard picture is not perturbed. This gives the

condition:

f(m) <

8
><

>:

(m/103M�)�1 (103 M� < m < 3⇥ 104 M�)

m/106M� (3⇥ 104 M� < m < 106 M�) ,
(5.5)

the limit bottoming out at m ⇠ 3 ⇥ 104M� with a value f ⇠ 0.03. More generally, we

must distinguish between direct observational constraints on the function zB(M), available

for galaxies and clusters, and the form of the function predicted by some theory of structure

formation The CDM scenario has nearly scale-invariant fluctuations at the horizon epoch

and - as indicated by Eq. (4.6) - this implies that the density fluctuations at matter-radiation

equality scale as �eq / M�1/3 in the mass range of interest. Then zB / M�1/3, so Eq. (5.4)

implies

mmin / MzB / z�2
B ) fmin / zB / m

�1/2
min . (5.6)

The limit on f(m) at low m, interpreted as the requirement that the CDM model remains

unperturbed, is therefore as indicated by the broken line in Fig. 3. That the theoretical line
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EXPECTED  PBH  MASS  FUNCTION  

Scale-invariant  fluctuations  or  cosmic  strings

a parameter p, such that – for a fixed PBH formation probability – the dispersion of the

primordial fluctuations becomes smaller as p is reduced, thereby reducing the µ distortion.

Recently Nakama, Carr & Silk (2017a) have calculated the µ-distortion constraints on

f(m), using both the FIRAS limit of µ = 9 ⇥ 10�5 (Planck collaboration 2016) and the

projected upper limit of µ < 3.6 ⇥ 10�7 from PIXIE (Abitbol et al. 2017). They use

Eq. (7) of Nakama, Silk & Kamionkowski (2017b) to convert PBH mass to wave-number

and Eq. (20) to convert � to f = ⌦PBH/⌦dm. The limits are very strong and essentially rule

out PBHs over the entire mass range indicated in Fig. 1 unless the primordial fluctuations

are highly non-Gaussian. It would therefore be more plausible to invoke smaller PBHs with

initial masses of 104M� which undergo substantial accretion between the µ-disortion era

and the time of matter-radiation equality,

III. THE PBH MASS FUNCTION

In many scenarios, one would expect PBHs to form with an extended mass function. This

is interesting because it would allow them to play a variety of cosmological roles. In this

section, we discuss four such scenarios, with particular regard to the question of whether

PBHs could provide both the dark matter and the seeds for cosmic structure. The first

assumes that the PBHs form from scale-invariant primordial fluctuations or the collapse of

cosmic strings, the second that they form in an early matter-dominated era, the third that

they form from initial inhomogeneities of inflationary origin, and the fourth that they form

from critical collapse. In each of these cases, we will give the form of the mass function and

the relative densities of the PBHs which provide the dark matter and the cosmic seeds. If

the SMBHs in galactic nuclei are primordial, observations require the ratio of the densities

to be of order 10�4.

A. Collapse from scale-invariant fluctuations or cosmic strimgs

If the PBHs form from scale-invariant fluctuations (i.e. with constant amplitude at the

horizon epoch), their mass spectrum should have the power-law form (Carr 1975)

dn

dm
/ m�↵ with ↵ =

2(1 + 2�)

1 + �
, (3.1)

9

=>

where � specifies the equation of state (p = �⇢c2) at PBH formation. The exponent arises

because the background density and PBH density have di↵erent redshift dependencies. The

mass function is also proportional to the probability � that an overdense region of mass m

has a size exceeding the Jeans length at maximum expansion, so that it can collapse against

the pressure. In this case, � should be scale-independent, so if the horizon-scale fluctuations

have a Gaussian distribution with dispersion �H , one expects (Carr 1975)

� ⇡ erfc (�c/�H) . (3.2)

Here erfc is the complimentary error function and �c is the threshold for PBH formation.

A simple analytic argument suggest �c ⇡ � but more precise arguments – both numerical

(Musco & Miller 2013) and analytical (Harada, Yoo & Kohri 2013) – suggest a somewhat

larger value. At one time it was argued that the primordial fluctuations would be expected

to be scale-invariant (Harrison 1971) but this does not apply in the inflationary scenarios

(discussed below). Nevertheless, one would still expect the above equations to apply if the

PBHs to form from the collapse of cosmic loops because the collapse probability is then

scale-invariant.

One usually assumes 0 < � < 1, corresponding to 2 < ↵ < 3, in which case most of the

density is in the smallest PBHs and the density of those larger than m is

⇢(m) =

Z m
max

m

m(dn/dm)dm / m2�↵ (mmin < m < mmax) , (3.3)

where mmax and mmin are the upper and lower cut-o↵s for the mass function. If we assume

that the PBHs contain a fraction fdm of the dark matter, this implies that the fraction of

the DM density in PBHs of mass larger than m is

f(m) ⌘ ⇢(m)/⇢dm ⇡ fdm(mdm/m)↵�2 (mmin < m < mmax) , (3.4)

where mdm ⇡ mmin is the mass-scale which contains most of the dark matter. [Alternatively,

one could define f(m) as the fraction in PBHs in the mass interval (m, 2m), which is smaller

by a factor 1 � 22�↵.] In a radiation-dominated era, which is most likely, � = 1/3 and the

exponent in Eq. (3.4) becomes 1/2. There is then a simple relationship between the density

of the primordial SMBHs, taken to have a mass msmbh, and ones which provide the dark

matter:

fsmbh/fdm ⇠ (mdm/msmbh)
1/2 ⇠ 10�4(mdm/10M�)

1/2(msmbh/10
9M�)

�1/2 . (3.5)

10

Collapse  in  matter-dominated  era

If one wants to identify the SMBHs with those in galactic nuclei, this ratio must be around

10�4, which requires msmbh ⇠ 108mdm. In a more general scenario, in which ↵ is regarded

as a free parameter, unrelated to �, one requires msmbh ⇠ 104/(↵�2)mdm.

B. Collapse in a matter-dominated era

PBHs form more easily if the Universe becomes pressureless (i.e. matter-dominated) for

some period. For example, this may arise due to some form of phase transition in which

the mass is channeled into non-relativistic particles (Khlopov & Polnarev 1980; Polnarev

& Khlopov 1985) or due to slow reheating after inflation (Khlopov, Malomed & Zeldovich

1985; Carr, Gilbert & Lidsey 1994). Since the value of ↵ in the above analysis is 2 for � = 0,

one might expect ⇢(m) to increases logarithmically with m. However, the analysis breaks

down in this case because the Jeans length is much smaller than the particle horizon, so

pressure does not inhibit collapse. Instead, collapse is prevented by deviations from spherical

symmetry and the probabiity of PBH formation can be shown to be (Khlopov & Polnarev

1980)

�(m) = 0.02 �H(m)5 . (3.6)

This is in agreement with the recent analysis of Harada et al (2016) and leads to a mass

function
dn

dm
/ m�2�H(m)5 . (3.7)

�(m) is small for �H(m) ⌧ 1e but much larger than the exponentially suppressed fraction

in the radiation-dominated case. If the matter-dominated phase extends from t1 to t2, PBH

formation is enhanced over the mass range

mmin ⇠ MH(t1) < m < mmax ⇠ MH(t2)�H(mmax)
3/2 . (3.8)

The lower limit is the horizon mass at the start of matter-dominance and the upper limit is

the horizon mass at the epoch when the region which binds at the end of matter-dominance

enters the horizon. This scenario has recently been studied by Carr, Tenkanen & Vaskonen

(2017b).

Since the primordial fluctuations must be approximately scale-invariant (even in the

inflationary scenario), �(m) is nearly constant, so Eq. (3.1) applies with ↵ ⇡ 2. Thus the

mass function is uniquely determined by the values of t1 and t2. Although it could well be

11

If one wants to identify the SMBHs with those in galactic nuclei, this ratio must be around

10�4, which requires msmbh ⇠ 108mdm. In a more general scenario, in which ↵ is regarded

as a free parameter, unrelated to �, one requires msmbh ⇠ 104/(↵�2)mdm.

B. Collapse in a matter-dominated era

PBHs form more easily if the Universe becomes pressureless (i.e. matter-dominated) for

some period. For example, this may arise due to some form of phase transition in which

the mass is channeled into non-relativistic particles (Khlopov & Polnarev 1980; Polnarev

& Khlopov 1985) or due to slow reheating after inflation (Khlopov, Malomed & Zeldovich

1985; Carr, Gilbert & Lidsey 1994). Since the value of ↵ in the above analysis is 2 for � = 0,

one might expect ⇢(m) to increases logarithmically with m. However, the analysis breaks

down in this case because the Jeans length is much smaller than the particle horizon, so

pressure does not inhibit collapse. Instead, collapse is prevented by deviations from spherical

symmetry and the probabiity of PBH formation can be shown to be (Khlopov & Polnarev

1980)

�(m) = 0.02 �H(m)5 . (3.6)

This is in agreement with the recent analysis of Harada et al (2016) and leads to a mass

function
dn

dm
/ m�2�H(m)5 . (3.7)

�(m) is small for �H(m) ⌧ 1e but much larger than the exponentially suppressed fraction

in the radiation-dominated case. If the matter-dominated phase extends from t1 to t2, PBH

formation is enhanced over the mass range

mmin ⇠ MH(t1) < m < mmax ⇠ MH(t2)�H(mmax)
3/2 . (3.8)

The lower limit is the horizon mass at the start of matter-dominance and the upper limit is

the horizon mass at the epoch when the region which binds at the end of matter-dominance

enters the horizon. This scenario has recently been studied by Carr, Tenkanen & Vaskonen

(2017b).

Since the primordial fluctuations must be approximately scale-invariant (even in the

inflationary scenario), �(m) is nearly constant, so Eq. (3.1) applies with ↵ ⇡ 2. Thus the

mass function is uniquely determined by the values of t1 and t2. Although it could well be
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extended enough to incorporate both dark matter and SMBH scales, f(m) should only have

a weak dependence on m (logarithmic if � is exactly constant). Therefore the ratio fsmbh/fdm

woud be too large for PBHs to fulfill both roles. However, we note that in the PBH scenario

advocated by Deng & Vilenkin (2017), one expects a combination of nass functions of the

form (3.1), with ↵ = 2 below some critical mass and ↵ = 5/2 above it.

C. Collapse from inflationary fluctuations

If the fluctuations generated by inflation have a blue spectrum (i.e. decrease with increas-

ing scale) and the PBHs form from the high-� tail of the fluctuation distribution, then the

exponential factor in Eq. (3.2) might suggest that the PBH mass function should have an

exponential upper cut-o↵ at the horizon mass when inflation ends (Carr et al. 1994). This

corresponds to the reheat time tR, which the CMB quadrupole anisotropy requires to exceed

10�35s. In this case, f(m) should fall o↵ exponentially above the reheat horizon mass, pre-

cluding any possibility of PBHs providing both dark matter and SMBHs. However, a more

careful analysis gives a di↵erent result. If the fluctuations result from a smooth symmetric

peak in the inflationary power spectrum, the PBH mass fuction should have the lognormal

form
dn

dm
/ 1

m2
exp


�(logm� logmc)2

2�2

�
. (3.9)

This was first suggested by Dolgov & Silk (1993) and later by Garcia-Bellido et al. (1996) and

Clesse & Garcia-Bellido (2015). It has been demonstrated both numerically (Green 2016)

and analytically (Kannike et al. 2017) for the case in which the slow-roll approximation

holds. It is therefore representative of a large class of inflationary scenarios, including the

axion-curvaton and running-mass infation models considered by Carr et al. (2016).

Equation (3.9) implies that the mass function is symmetric about its peak at mc and

described by two parameters: the mass-scale mc itself and the width of the distribution �.

The integrated mass function is

f(m) =

Z

m

m
dn

dm
dm ⇡ erfc (lnm/�) . (3.10)

As in the first two scenarios, this can explain the dark matter and galactic seeds fairly

naturally and it does not require such a broad spread of masses. However, not all inflationary

scenarios produce the mass function (3.9). Inomata et al. (2017) propose a scenario which
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combines a broad mass function at low m (to explain the dark matter) with a sharp one at

high m (to explain the LIGO events). On the other hand, one could also envisage a scenario

in which the sharp peak is in the SMBH range.

D. Critical collapse

It is well known that black hole formation is associated with critical phenomena (Choptuik

1983) and the application of this to PBH formation was then studied by various authors

(Evans & Coleman 1994; Koike, Hara & Adachi 1996; Niemeyer & Jedamzik 1997). The

conclusion was that the mass function still has an upper cut-o↵ at around the horizon

mass but there is also a low-mass tail (Yokoyama 1998). If we assume for simplicity that

the density fluctuations have a monochromatic power spectrum on some mass scale K and

identify the amplitude of the density fluctuation when that scale crosses the horizon, �, as

the control parameter, then the black hole mass is (Choptuik 1983)

m = K (� � �c)
c . (3.11)

Here �c is the critical density fluctuation required for PBH formation (0.4 in a radiation-

dominated era), the exponent has a universal value c ⇡ 0.35 and K ⇡ MH . Although

the scaling relation (3.11) is expected to be valid only in the immediate neighborhood of

�c, most black holes should form from fluctuations with this value because the probability

distribution function declines exponentially beyond � = �c if the fluctuations are blue. Hence

it is sensible to calculate the expected mass function of PBHs using Eq. (3.11). This allows

us to estimate the mass function independently of the specific form of the PDF of primordial

density fluctuations. A detailed calculation gives the mass function (Yokoyama 1998)

dn

dm
/

✓
m

�Mf

◆1/c�1

exp

"
�(1� c)

✓
m

�Mf

◆1/c
#
, (3.12)

where

� ⌘
✓
1� c

s

◆c

, s = �c/� , Mf = K (3.13)

and � is the dispersion of �. For c = 0.35, this gives

dn

dm
/ m1.85 exp[�s(m/Mf )

2.85] . (3.14)
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For  power-law  extended  PBH  mass  function

More generally, the wide-binary constraint f < (m/103M�)�1 and Eq. (3.2) imply M <

1011z�2
B M�, which (coincidentally?) is the same constraint. The seed e↵ect donimates only

for f > m/M . [EXPAND]

B. Extended PBH mass function

If the PBHs have an extended mass function, both the seed and Poission e↵ects could

operate, so we need to analyse the stuation more carefully. In any specific PBH formation

scenario, the PBH mass function will determine the form of f(m). For example, if the PBHs

from from scale-invariant fluctuations, their mass spectrum should have the power-law form

dn

dm
/ m�↵ with ↵ =

2(1 + 2�)

1 + �
, (3.3)

where � specifies the equation of state (p = �⇢c2) at PBH formation [3]. One usually assumes

0 < � < 1, corresponding to 2 < ↵ < 3, in which case most of the density is in the smallest

PBHs. If these provide the dark matter and have mass mmin ⌘ mdm, then the density of

PBHs larger than m is

⇢(m) =

Z m
max

m

m(dn/dm)dm / m2�↵ (m < mmax) , (3.4)

where mmax is the upper cut-o↵ for the mass function. More generally, we will assume that

the PBHs contain a fraction fdm of the dark matter and this implies

f(m) = ⇢(m)/⇢dm ⇡ fdm(mdm/m)↵�2 (m < mmax) . (3.5)

In a more general scenario, one might regard ↵ as a free parameter, unrelated to �. Of

course, the PBH mass function is not necessarily a power-law. More generally it would have

an exponential upper cut-o↵, which might be taken to define the mass mmax, and Green has

argued for an exponential logarithmic form [REF].

Since f(m)m / m3�↵, Eq. (3.1) implies that the biggest
p
N e↵ect is associated with the

largest holes providing ↵ < 3. One expects this, for example, if the PBHs form from scale-

invariant fluctuations since � < 1. In this case, the dominant Poisson fluctuation on scale

M is associated with the largest hole expected to be contained in such a region. Providing

this is less than mmax, the e↵ective value of N is 1 and so the Poisson scenario reduces to

the seed scenario with a seed mass

mseed(M) = (fdmMm↵�2
dm )1/(↵�1) (2 < ↵ < 3) , (3.6)
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=>  biggest  Poisson  effect    for  largest  holes  if  a <  3
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6
Poisson  reduces  to  seed  for  mseed <  mmax and  then

which necessarily increases with M for ↵ > 1. Then Eq. (3.2) gives the mass binding at

redshift z as

MB(z) ⇠ mdmf
1/(↵�2)
dm (z/104)(↵�1)/(2�↵) . (3.7)

However, for M su�ciently large that the mass given by Eq. (3.6) exceeds mmax, the domi-

nant Poisson e↵ect comes from the mass mmax and

Nmax ⇠ Mm1�↵
maxm

↵�2
dm fdm . (3.8)

Therefore the seed e↵ect is subdominant in this case and Eq. (3.2) implies that the mass

binding at redshift z is

MB(z) ⇠ m↵�2
dm m3�↵

maxfdm(z/10
4)�2 . (3.9)

In the monochromatic case, mdm = mmax = m and fdm = f , so this reduces to the second

expression in Eq. (3.2). Fig. 1(b) shows the form of the function MB(z). There is a change

of slope at

z⇤ ⇠ 104fdm(mdm/mmax)
↵�2 (3 > ↵ > 2) , (3.10)

this being the redshift below which the Poisson e↵ect dominates, and the associated mass is

M⇤ ⌘ MB(z⇤) ⇠ m2�↵
dm m↵�1

maxf
�1
dm . (3.11)

Note that z⇤ decreases and M⇤ increases as mmax increases and fdm decreases. Indeed, in

Fig. 1(b) the Poisson e↵ect dominates for all values of z if fdm is su�ciently small or mmax

su�ciently large. For a monotonic mass function, Eq. (3.11) just gives the mass m/f which

follows from Eq. (3.1).

These e↵ects have been invoked to produce three types of structures: in order of increasing

mass, these correspond to the first bound baryonic objects [22], Lyman-↵ clouds [26] and

galaxies [27]. If PBHs are to form seeds for galaxies, it makes sense to invoke an extended

PBH mass function in order to produce an extended mass function for galaxies. For example,

if the PBHs which form from scale-invariant fluctuations in the radiation era (↵ = 5/2),

Eq. (3.7) implies that the mass binding at redshift zB is 1012z�3
B f 2

dmmdm, which is of order a

galactic mass for zB ⇠ 10, fdm ⇠ 1 and mdm ⇠ 10M�. However, if the PBHs are to generate

the first clouds or the Lyman-↵ forest, a monochromatic mass fuction in which all the dark

matter is in PBHs would su�ce. In the following sections we discuss each of these cases in

more detail. Numerical calculations would be needed to elucidate our treatment.
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the seed scenario with a seed mass

mseed(M) = (fdmMm↵�2
dm )1/(↵�1) (2 < ↵ < 3) , (3.6)
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SUPERMASSIVE  PBHS  AS  SEEDS  FOR  GALAXIES

Seed  effect  =>  MB  ~  103 m  (zB/10)
Þnaturally  explain  MBH/Mbulge relation  

Also  predict  mass  function  of  galaxies  (cf.  Press-Schechter)

A. Predicted mass function of galaxies

An interesting consequence of the seed theory is that there should be a simple relation

between the mass spectrum of the holes and that of the resulting galaxies. If Mg / m�,

where the above analysis suggests � = 1, we expect the number of galaxies with mass in the

range (M,M + dM) to be dNg(M) where

dNg/dM / M (1���↵)/� . (4.1)

The Schechter luminosity function [39] is

�(L) / L�1.07 exp(�L/L⇤) , (4.2)

where the exponent increases to 1.8 at high redshift [REF]. On the other hand, the Press-

Schechter mass function [40] is

dNg/dM / M�2 exp(�M/M⇤) , (4.3)

with an exponential upper cut-o↵ at M⇤ ⇠ 1012M� and the integrated density ⇢g(M) is

logarithmically divergent at the low mass end. Therefore, if � = 1, we need ↵ ⇡ 2. If the

PBHs are generated by scale-invariant fluctuations, it is interesting that one would expect

this if they form in a ‘dust’ (i.e. matter-dominated) era.

For a monochromatic mass function, Eq. (3.1) and the linear growth law � / t2/3 for

t > teq imply that a mass M binds at a time

tB(M) ⇠ teq

✓
M

m

◆3/2

⇠ 1010
✓

M

1012M�

◆3/2 ✓
m

108M�

◆�3/2

y , (4.4)

so one requires a PBH massm ⇠ 109M� to bind a galaxy mass ofM ⇠ 1012M� by tB ⇠ 109y.

For an extended mass function, one has

tB(M) ⇠ teq


M

mseed(M)

�3/2
/

✓
M

mdm

◆3(↵�2)/2(↵�1)

, (4.5)

where we have used Eq. (3.6).

One can make very specific predictions about the structure of the galaxy which would

result from the seed theory. If we assume that each shell of gas virializes after it has stopped

expanding (i.e. settles down with a radius of about half its radius at maximum expansion),

then one would expect the resultant galaxy to have a density profile ⇢(r) / r�9/4. This
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9Bondi  accretion  =>  

Hence

m ⇡ mi/(1�mi⌘t) , (4.11)

which diverges at a time

⌧ = 1/(⌘mi) ⇠ (Meq/mi)(ceq/c)
3teq , (4.12)

where Meq ⇠ c3teq/G ⇠ 1015M� is horizon mass at teq ⇠ 104 y and ceq ⇠ c. Thus accretion

is only important by the present epoch (to ⇠ 1010y) for [55]

mi > Meq(teq/to) ⇠ 109M� . (4.13)

This suggests that PBHs larger than 109M� will not be found at the centres of galaxies

because they wuld have swallowed the entire galaxy.

Note that accretion rate reaches the Eddington limit when

dm/dt ⇠ ⌘m2 ⇠ m/tED , (4.14)

where tED ⇡ 4 ⇥ 107y is the Salpeter timescale [REF]. Hence we would only have super-

Eddington accretion for

m > (⌘tED)
�1 ⇠ Meq(teq/tED) ⇠ 1012M� . (4.15)

But this never applies for the SMBHs of interest. Note that the density and temperaure

at the accretion radius will only correspond to the mean cosmological condiitons initially.

A more complicated analysis is required once the growing bound cloud around each PBH

becomes larger than the accretion radius.

V. EFFECTS ON OTHER COSMIC STRUCTURES

A. Lyman-↵ forest

To make Lyman-↵ clouds, here taken to be the precursors of galaxies somewhat smaller

than galaxies themselves [OK?], we require M ⇠ 1010M� and zB ⇠ 10, which implies m ⇠

104M� for the Poisson e↵ect. Indeed, in this context Afshordi et al. [14] used observations

of the Lyman-↵ forest to obtain an upper limit of about 104M� on the mass of PBHs which

provide the dark matter. This conclusion was based on numerical simulations, in which the

12
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=>  upper  limit  

Meq~1015MO

the Schwarschild radius, so the Bondi formula gives (Bondi 1952)

dm/dt ⇠ R2
acs⇢ ⇠ (Gm2)/(c3t2) . (6.6)

Integrating this equation gives

1/m� 1/mi ⇠ (G/c3)(1/t� 1/ti) (6.7)

and hence

m ⇠ mi/[1�mi/MH(ti) +Gmi/(c
3t)] . (6.8)

Therefore there is very little accretion for mi ⌧ MH(ti) (i.e. for PBHs initially much smaller

than the horizon). Although Eq. (6.8) suggests m ⇠ MH(t) for mi ⇠ MH(ti), implying that

a PBH with the horizon mass at formation should continue to grow like the horizon, this

neglects the cosmic expansion. A more careful analysis shows that self-similar growth is

impossible, so that accretion is always negligible in the radiation era (Carr & Hawking

1974).

During the matter-dominated era after teq, Ra is increased (since cs falls below c) and so

the accretion rate is also increased. Providing the matter temperature T follows the usual

background evolution (i.e. before reheating), the Bondi formula gives

dm/dt ⇠ R2
acs⇢ ⇠ (G2m2)/(Gc3st

2) ⇠ Gm2(kTeq/mp)
�3/2t�2

eq . (6.9)

Integrating this gives

1/m� 1/mi ⇠ �⌘t with ⌘ ⌘ G(mp/kTeq)
3/2t�2

eq . (6.10)

Hence

m ⇡ mi/(1�mi⌘t) , (6.11)

which diverges at a time

⌧ = 1/(⌘mi) ⇠ (Meq/mi)(ceq/c)
3teq , (6.12)

where Meq ⇠ c3teq/G ⇠ 1016M� is the horizon mass at teq ⇠ 104 y and ceq ⇠ c. Thus the

mass diverges at a time which precedes the present epoch (to ⇠ 1010y) for

mi > Meq(teq/to) ⇠ 1010M� . (6.13)
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FIRST  BARYON  CLOUDS  (M  ~  106MO)

May  form  earlier  than  in  LCDM  with  many  interesting  
observational  consequences

velocity dispersions and virial temperatures of the first systems as

R ⇠ 400z�1
10 M

1/3
J6 pc, � ⇠ 3z1/210 M1/3

J6 km/s, T ⇠ 1000z10M
2/3
J6 K . (6.16)

Residual ionization in these clouds leads to H� formation, eventually forming trace amounts

of H2 that allow cooling, fragmentation and formation of massive Population III stars. These

short-lived stars generate metallicity and pollute the IGM su�ciently to eventually lead to

enhanced cooling and formation of dwarf galaxies. It is notoriously di�cult to suppress

fragmentation except in the vicinity of enhanced UV fields from neighbouring Population

III star clusters (Habouzit et al. 2016; Regan et al. 2017). There is inevitably competition

between fragmentation and direct collapse, the trade-o↵ involving the operation of disk

instability (Inayoshi & Haiman 2014). In the PBH scenario, the first cloud parameters

are dramatically changed because of their boosted amplitude and earlier formation. They

become

R ⇠ f�1/2M
5/6
J6 m

�1/2
100 pc, � ⇠ f1/4M1/12

J6 m1/4
100 km/s, T ⇠ f1/2M1/6

J6 m1/2
100 K . (6.17)

In this case, it seems likely that fragmentation is largely suppressed because of the lack of

coolants and that runaway growth of the PBHs may ensue. Hence IMBH formation could

precede the formation of the first dwarf galaxies. It is also possible that the first clouds are

smaller than 106M� in the PBH scenario. In the usual LCDM scenario, halos smaller than

this cannot retain gas at the temperature T ⇠ 103K expected due to H2 cooling. However,

the PBHs will enhance the trapping of gas in the gravitational potential of the first objects

to form stars, hence lowering the critical mass.

Kashlinksy (2016) has also stressed that the Poisson fluctuations in PBH dark matter

should lead to more abundant early collapsed halos than in the standard scenario. He makes

the interesting suggestion that the black holes might generate the source-subtracted cosmic

infrared background fluctuations detected by the Spitzer and Akari satellites (Kashlinksy

et al. 2005, 2007, 2012). These should correlate with the X-ray background fluctuations

measured by Chandra and a recent paper suggests that this can be explained by accreting

black holes of possibly primordial origin (Cappelluti et al. 2017).
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LCDM  model  implies

Our  model  implies

(cf.  Kashlinksy 2016)

[SEE  JOE  SILK’S  TALK]
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PBHS  AND  LIGO

Do  we need Pop  III  or  primordial  BHs?

[PRESUMABLY  OTHER  TALKS  HAVE  COVERED  THIS]
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CONCLUSIONS

PBHs  have  been  invoked  for  three  roles

Dark  matter             Cosmic  structure  LIGO  events

These  are  distinct  roles  but  with  an  extended  mass  function  
PBHs  could  fulfill  all  three,  as  also  stressed  in  the important
work  of  Juan  Garcia-Bellido and  Sebastien  Clesse


