

CERN, the European Organization for Nuclear Research, invites you to join us on 9th March 2018 for a manufacturing and applications workshop on

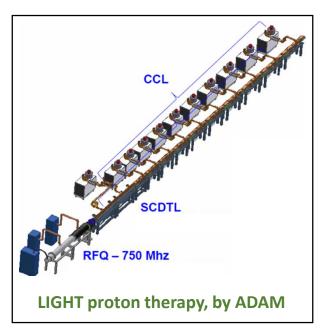
<u>High-Frequency Radio Frequency</u> <u>Quadrupole (HF-RFQ) technology</u>.

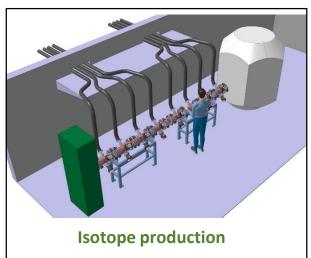
Purpose

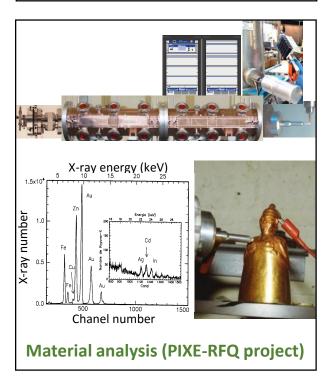
As part of its mission, CERN aims to disseminate its technologies for the benefit of society. The intention of this workshop is to provide companies with a chance to:

- Assess the feasibility of HF-RFQ technology for your business
- Learn from CERN experts on RFQ manufacturing processes
- Discuss the applications of this new technology, and collaboration opportunities, with CERN

We are inviting companies with manufacturing capability and/or an interest in being a distributor for HF-RFQ technology.


Why a High-Frequency RFQ?


Building on its experience with the LINAC4 injector (the first stage in the LHC accelerator chain), the HF-RFQ was constructed with the goal of providing a compact, light-weight, low beam-loss injector for a proton therapy Linac. The 750MHz HF-RFQ can reach an output energy up to 5 MeV in only 2 metres, making it suitable for:


- High energy hadron Linac injector systems
- Linac for radioisotope production
- Transportable Linac for high-sensitivity Ion Beam analysis (e.g. PIXE, PIGE)
- Other applications benefiting from a low output current ion beam.

During this workshop, we will be sharing information regarding the potential applications of the HF-RFQ and the detailed CERN manufacturing procedures (machining, tooling, metrology, heat treatment and vacuum brazing) including general manufacturing guidance for RFQs.

Applications

Agenda

- 09:00 Welcome refreshments
- 09:30 Introduction to CERN
- 10:00 Applications and business opportunities for the HF-RFQ
- 10:45 Manufacturing approach (including processes for machining, tooling, metrology, heat treatment and vacuum brazing)
- 12:00 Lunch
- 13:30 Visit to CERN manufacturing workshop facilities
- 15:00 Coffee break
- 15:30 Q&A with technical staff

Throughout the visit there will be opportunities to converse with CERN engineering staff in order to understand the manufacturing feasibility of the HF-RFQ, and to benefit from their experience.

We invite you to join us on **9th March 2018** at **CERN - European Organization for Nuclear Research,** Meyrin, CH-1211
Geneva 23, Switzerland

To register your attendance and for all enquiries about local transportation and accommodation please go to the following link: https://indico.cern.ch/event/686876/

To ask any questions about the purpose, agenda, or technical nature of the visit, please contact: **Amy Bilton**, Business Development, at amy.bilton@cern.ch

Note: the HF-RFQ is a patent pending technology (WO2016023597). Attendance of the workshop does not imply grant of a licence for use of the technology – which must be negotiated on a commercial basis.

Machining steps

Tooling & Metrology

Vacuum brazing



HF-RFQ parameters

	5 MeV HF-RFQ	PIXE-RFQ
RF Frequency (MHz)	750	750
Length (mm)	1964	1000
Input Energy (MeV)	0.04	0.02
Output Energy (MeV)	5	2
Average Current (nA)	1500 max.	100
Peak Current (μA)	30	1
Repetion Rate (Hz)	200	200
Pulse Duration (μs)	20	500
Duty Cycle (%)	0.4 / 5 max.	10
Vane Voltage (kV)	68	35
Min Aperture (mm)	0.9	0.7
Max Modulation	2.8	2.0
Ro (mm)	2.0	1.4
Rho (mm)	1.5	1.4
Rhol (mm)	1.9	1.7
Transmission (%)	30	30
Output Beam Size (mm)	± 0.5	± 0.1
Acceptance (π mrad mm)	0.3	0.15
(Total norm.)		
Output Energy Spread (keV)	20	10
RF Peak Power (kW)	400	50
RF Efficiency (%)	35	35
Coupleur number (#)	4	1
Plug Power (Total) (KVA)	57.1	14.3