Positronium and Muonium 1S-2S laser spectroscopy

Paolo Crivelli Institute for Particle Physics and Astrophysics, ETH Zurich

> Collaboration of Rubbia and Kirch groups and PSI muon and LEM groups

SWICH 2018- 5th of April 2018 – Murten (Switzerland)

Leptonic atoms

Nat. Comm. 6, 8633 (2015) and Ang. Chemie Int. Ed. 54, 1591-1594 (2015).

Ps/Mu energy levels

$$R_M = R_\infty \left(\frac{1}{1+m/M}\right) = \begin{cases} R_\infty/2, & \text{for Ps.}\\ 0.995 \cdot R_\infty, & \text{for Mu} \end{cases}$$

Muonium 1S-2S spectroscopy

Experiment:

 $\Delta \nu_{1S2S}(\text{expt.}) = 2455528941.0(9.8) \text{ MHz}$ Meyer et al. PRL84, 1136 (2000)

Theory:

 $\Delta \nu_{1S2S}$ (theory) = 2455528935.4(1.4) MHz

Limited by knowledge of muon mass. QED calculations at 20 kHz

S. G. Karshenboim, Phys. Rep. 422, 1 (2005)

Reduced mass contribution: 1.187 THz (4800 ppm)

$$\implies m_{\mu^+}/m_{e^-} = 206.76838(17)$$

Best determination:
$$q_{\mu^+}/q_{e^-} = -1 - 1.1(2.1) imes 10^{-9}$$

Improvement by 3 orders of magnitude seems possible!

Muonium 1S-2S spectroscopy

Adapted from K. Jungmann DPG 2017 (Mainz)

Positronium/Muonium Sources

Experiments statistically limited:

1) Improve primary beams (in progress at PSI, muCool)

2) Improve conversion $e^{+/\mu}$ +->Ps/Mu into vacuum

Positronium/Muonium Sources

Experiments statistically limited:
1) Improve primary beams (in progress at PSI, muCool)
2) Improve conversion e+/μ+->Ps/Mu into vacuum

ETHZ: 30% e+->Ps into vacuum with 40 meV (almost 10^5 m/s).

ETHZ/PSI: 20/40% μ+->Mu into vacuum at 100/250K

Muonium spatial confinement

K. S. Khaw, A. Antognini, T. Prokscha, K. Kirch, L. Liszkay, Z., Salman, P. Crivelli, PRA 94, 022716 (2016)

Laser spectroscopy

The Ps/Mu laser system

Detection of Ps annihilations in the 2S state

D.Cooke, PC, J. Alnis, A. Antognini, B. Brown, S. Friedreich, A. Gabard, T. W. Haensch, K. Kirch, A. Rubbia and V. Vrankovic, I, Hyp. Interact. 233 (2015) 1-3, 67

Use bunched beam (buffer gas trap)

 \rightarrow Noise from **accidentals** reduced by 2 orders of magnitude

→ Reduction and correction of **systematic** effects

New beam line based on positron buffer gas trap

D. A. Cooke PC et al. , J. Phys. B: At. Mol. Opt. Phys. 49 014001 (2016)

- \rightarrow Field free region (no related systematic)
- \rightarrow correction for the 2nd order Doppler shift

$$\Delta \nu_{D2} = \nu_0 \frac{v^2}{2c^2}$$

NEXT STEPS

- \rightarrow Combine CW laser with bunched positron beam.
- \rightarrow Absolute frequency reference: upgrade with output
- @ 972 nm frequency comb of Prof. Esslinger group (ETHZ).

GOAL: current source (10000 Ps/pulse @ 40 meV)

- \rightarrow Measurement of 1S-2S of Ps at a level of 5x10⁻¹⁰
- \rightarrow check QED calculation Adkins, Kim, Parsons and Fell, PRL 115 233401 (2015)
- \rightarrow Lorentz/CPT test (sidereal variations)

V.A. Kostelecky and A.J. Vargas, Phys. Rev. D 92, 056002 (2015);

POTENTIAL IMPROVEMENTS

- \rightarrow GBAR LINAC
- → Colder Ps source? Broadband laser cooling?

P. Crivelli, D. A. Cooke and S. Friedreich, Int. J. Mod. Phys. Conf. Ser. 30, 1460257 (2014).

MuoniuM lAser SpectroScopy

Current (1999) 1S-2S results

Paolo Crivelli

1S-2S Mu CW spectroscopy

Pulsed vs CW spectroscopy

	RAL (1999)	Mu-MASS Phase1	Mu-MASS Phase2
μ^+ beam intensity	$3500 \times 50 \text{ Hz}$	$5000 \ {\rm s}^{-1}$	$> 9000 \text{ s}^{-1}$
μ^+ beam energy	$4 { m MeV}$	$5 { m keV}$	$5 {\rm ~keV}$
M atoms	$600 \text{ s}^{-1} @ 300 \text{K}$	$1000 \text{ s}^{-1} @ 100 \text{ K}$	$1800 \text{ s}^{-1} @ 100 \text{ K}$
Spectroscopy	Pulsed laser	CW	CW
Experimental linewidth	$20 \mathrm{~MHz}$	$750 \mathrm{~kHz}$	300 kHz
Laser chirping	$10 \mathrm{MHz}$	$0 \mathrm{~kHz}$	0 kHz
Residual Doppler shift uncert.	$3.4 \mathrm{~MHz}$	$0 \mathrm{~kHz}$	0 kHz
2nd-order Doppler shift uncert.	$44 \mathrm{~kHz}$	15 kHz	1 kHz (corrected)
Frequency calibration uncert.	$0.8 \mathrm{MHz}$	$< 1 \mathrm{~kHz}$	$< 1 \mathrm{~kHz}$
Background events	2.8 events/day	1.6 events/day	1.6 events/day
Total number of 2S events	99	1900 (10 d)	> 7000 (40 d)
Statistical uncertainty	9.1 MHz	<100 kHz	10 kHz
Total uncertainty	9.8 MHz	<100 kHz (linewidth/10)	10 kHz (linewidth/30)

For CW reduction of the transition linewidth by a factor >20!

Pulsed vs CW spectroscopy

	RAL (1999)	Mu-MASS Phase1	Mu-MASS Phase2
μ^+ beam intensity	$3500 \times 50 \text{ Hz}$	$5000 \ {\rm s}^{-1}$	$> 9000 \text{ s}^{-1}$
μ^+ beam energy	$4 { m MeV}$	$5 { m keV}$	$5 {\rm ~keV}$
M atoms	$600 \text{ s}^{-1} @ 300 \text{K}$	$1000 \text{ s}^{-1} @ 100 \text{ K}$	$1800 \text{ s}^{-1} @ 100 \text{ K}$
Spectroscopy	Pulsed laser	CW	CW
Experimental linewidth	$20 \mathrm{~MHz}$	750 kHz	300 kHz
Laser chirping	$10 \mathrm{~MHz}$	0 kHz	0 kHz
Residual Doppler shift uncert.	3.4 MHz	0 kHz	0 kHz
2nd-order Doppler shift uncert.	$44 \mathrm{~kHz}$	15 kHz	1 kHz (corrected)
Frequency calibration uncert.	$0.8 \mathrm{MHz}$	$< 1 \mathrm{~kHz}$	$< 1 \mathrm{~kHz}$
Background events	2.8 events/day	1.6 events/day	1.6 events/day
Total number of 2S events	99	1900 (10 d)	> 7000 (40 d)
Statistical uncertainty	9.1 MHz	<100 kHz	10 kHz
Total uncertainty	9.8 MHz	<100 kHz (linewidth/10)	10 kHz (linewidth/30)

Systematic related to pulsed excitation eliminated

Pulsed vs CW spectroscopy

	RAL (1999)	Mu-MASS Phase1	Mu-MASS Phase2
μ^+ beam intensity	$3500 \times 50 \text{ Hz}$	$5000 \ {\rm s}^{-1}$	$> 9000 \text{ s}^{-1}$
μ^+ beam energy	$4 { m MeV}$	$5 {\rm ~keV}$	$5 {\rm ~keV}$
M atoms	$600 \text{ s}^{-1} @ 300 \text{K}$	$1000 \text{ s}^{-1} @ 100 \text{ K}$	$1800 \text{ s}^{-1} @ 100 \text{ K}$
Spectroscopy	Pulsed laser	CW	CW
Experimental linewidth	$20 \mathrm{MHz}$	$750 \mathrm{~kHz}$	300 kHz
Laser chirping	$10 \mathrm{MHz}$	0 kHz	0 kHz
Residual Doppler shift uncert.	3.4 MHz	0 kHz	0 kHz
2nd-order Doppler shift uncert.	44 kHz	$15 \mathrm{~kHz}$	1 kHz (corrected)
Frequency calibration uncert.	0.8 MHz	$< 1 \mathrm{~kHz}$	$< 1 \mathrm{~kHz}$
Background events	2.8 events/day	1.6 events/day	1.6 events/day
Total number of 2S events	99	1900 (10 d)	> 7000 (40 d)
Statistical uncertainty	9.1 MHz	<100 kHz	10 kHz
Total uncertainty	9.8 MHz	<100 kHz (linewidth/10)	10 kHz (linewidth/30)

Improvement in reach using exisitng LEM beamline at PSI

- \rightarrow Improve muon mass (1 ppb) adn q_{μ}/q_{e} (1 ppt)
- \rightarrow stringent test of bound state QED (rel. accuracy 1 ppt)

 \rightarrow Rydberg costantfree of finite size effects (few ppt) and α at 1 ppb

 \rightarrow Test of SME

- **Switzerland:** leading role in physics of leptonic atoms and exotic atoms in general.

- Unique facilities: ETHZ (positrons beams), PSI (slow/surface muon/pion beam lines, muonic and pionic atoms), CERN (AD \rightarrow ELENA, GBAR LINAC \rightarrow intense positron beam)

TIMELINE for spectroscopy of Ps, Mu and HBAR:

- 2018-2021 Ps spectroscopy (1S-2S and HFS-2S)
- 2019-2024 Mu spectroscopy (1S-2S)
- 2022-2027 Spectroscopy of optically trapped HBAR (using ultra cold GBAR atoms)

P. Crivelli, N. Kolachevsky, "Optical trapping of anti-hydrogen towards an atomic anti-clock", arXiv:1707.02214 (2017).

Backup slides

1) Photo-ionized Ps in the 2S excitation laser detected either by SSPALS or e⁺ or e⁻ in an MCP

2) Photo-ionization: external laser 532 nm

Photo-ionization in 486 nm laser 2S photoionization with 532 nm laser

3) Excitation 2S->20P: laser at 735 nm detection via field ionization

 \rightarrow correction for the 2nd order Doppler shift

$$\Delta \nu_{D2} = \nu_0 \frac{v^2}{2c^2}$$

 \rightarrow Other main systematic: AC Stark shift (corrected via extrapolation)

