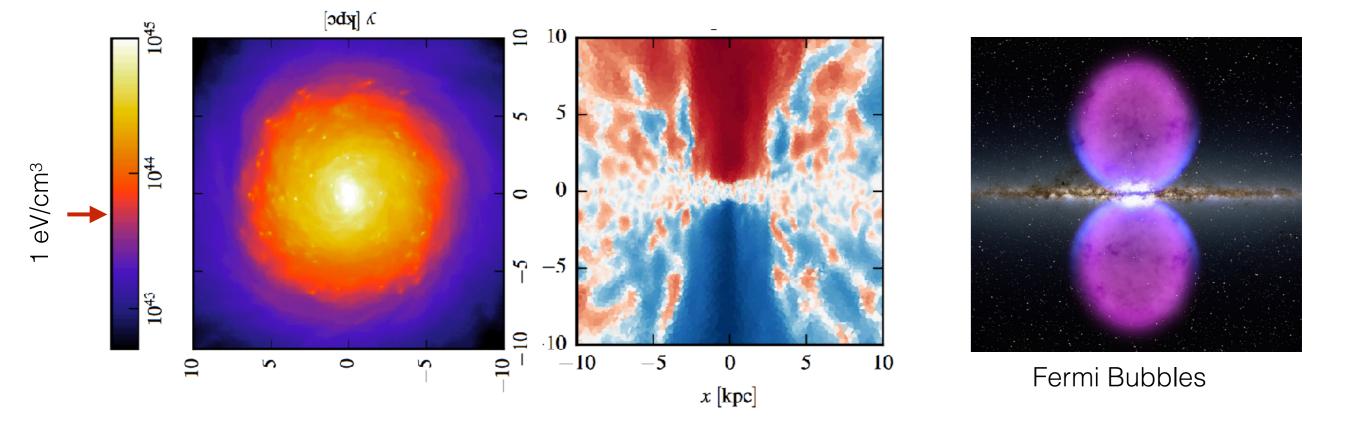

Overview

Traditional data centres — Centralised ("cloud")

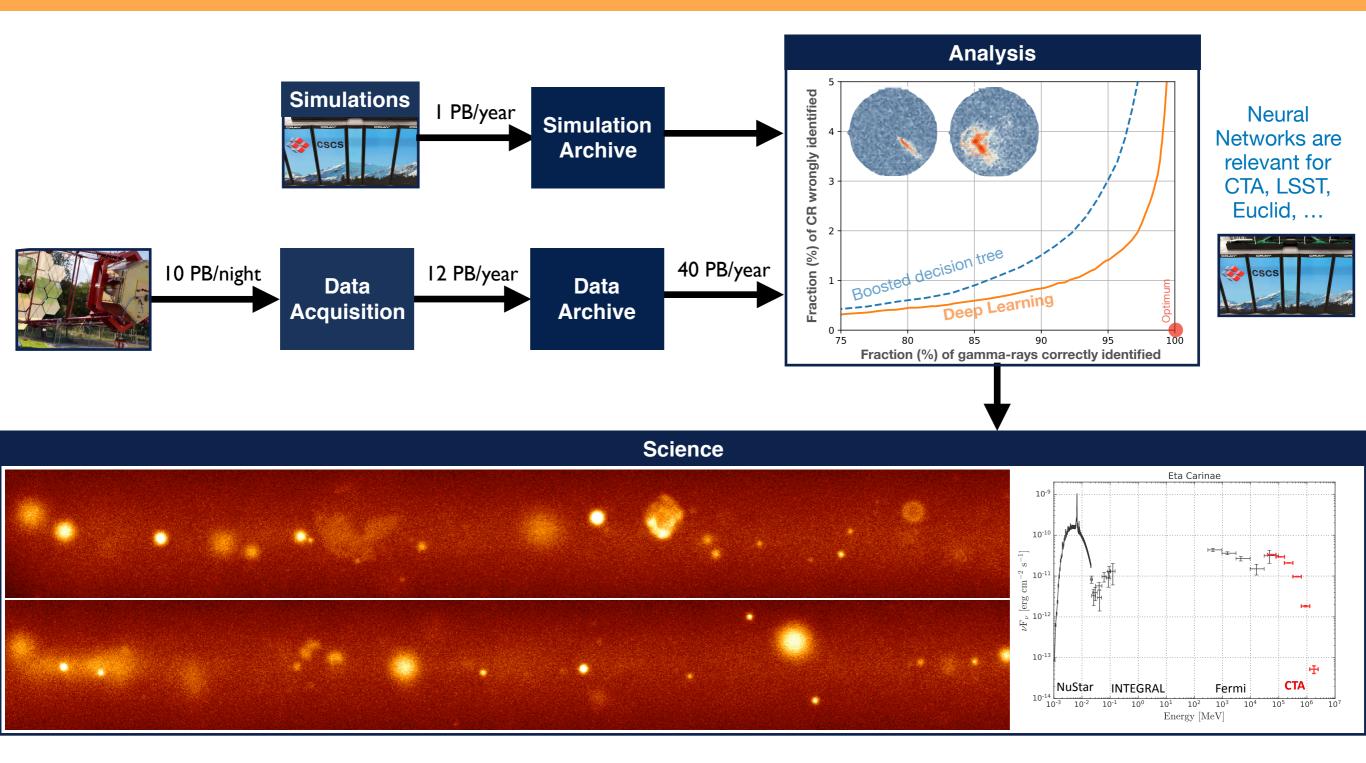
A centralisation of data is taking place. Providing access means providing computing.

> App/PP ~ 3% in 2018 App/PP ~ 7% in 2021 App/PP ~ 10% in 2024

R. Walter - UniGe - Computing for App - CHIPP SWITCH April 2018


Overview

Domain	Experiments	PB / year	Start	Multi messenger	CHIPP
γ-rays (ground)	СТА	10	2020	 ✓ 	~
GW (ground)	Einstein Telescope	1	>2025	✓	v
DM (infrared/optical)	Euclid/LSST	1	2021/2021	✓	~
γ-rays (space)	Polar, eXTP, e-Astrogam	0.1	2017/2025/>2029	 ✓ 	v
CR (space)	DAMPE, HERD, PAN	0.1	2015/>2025		~
СМВ	COrE+++	0.01	>2032		v
DM (noble gas)	Xenon 50T/Argon 300T	0.01			~
GW (space)	LISA	10-4	2034	 ✓ 	
High-energy v	KM3Net	1		~	-
CR	AugerPrime			 	-


The case of CTA

Quenching of stellar formation is necessary to understand the structural evolution of galaxies and of the Universe. This is explained by FEEDBACK:

- The activity of black holes can affect their host galaxies. Whether and how they do so is an open question.
- The growing energy density of Cosmic-Ray at the center of galaxies can expel strong galactic winds and limit stellar formation. *Origin of galactic CR*.

The case of CTA

Is stellar activity responsible for the CR density of the galaxy?

Answering requires analysing CTA data on the full galactic plane

The case of CTA

	Unit	2018	2019	2020	2021	2022	2023	2024	
STORAGE									
Tape Simulations (PB)	PB	1	1	1	1	1	1	1	
Tape Data (PB)	PB	0.7	0.9	1.5	3	6	9	12	
Scratch disk (PB)	PB	0.07	0.09	0.15	0.3	0.6	0.9	1.2	
PROCESSING				Indica	tive nur	nbers			
Simulations	Core-Year	1000	1000	1000	1000	1000	1000	1000	LHC Gr
Data Processing	Core-Year	100	129	214	429	857	1286	1714	Dedicat
Data Processing	GPU-Year	1	2	3	6	12	18	24	Data Cent

+ ML learning, analysis improvements, reprocessing and scientific analysis

	Unit	2014	2015	2016	2017	2018	2019	TOTAL	
SIMULATIONS									~300 Core-Year
СН	MHS06-hours	0	0	0	0	26	26	53	~4% of CHIPP
D	MHS06-hours	83	100	36	36	36	36	327	ressources
F	MHS06-hours	65	47	30	30	30	30	232	
I	MHS06-hours	3	24	11	11	11	11	71	
PL	MHS06-hours	16	16	12	12	12	12	80	
	MHS06-hours	10	10	10	10	10	10	60	-

Suggestions for CHIPP computing

- CHIPP could allocate a small fraction $(4 \rightarrow 10\%)$ of its computing to App (even before App experiments start)

- The need of App go beyond the Grid (e.g. GPUs, data access (anyway the grid was invented to solve an old problem)

 Coordination of computing could be discussed with astrophysics (e.g. simulations on LHC grid, analysis on Astro Data Centre, GPU at CSCS)