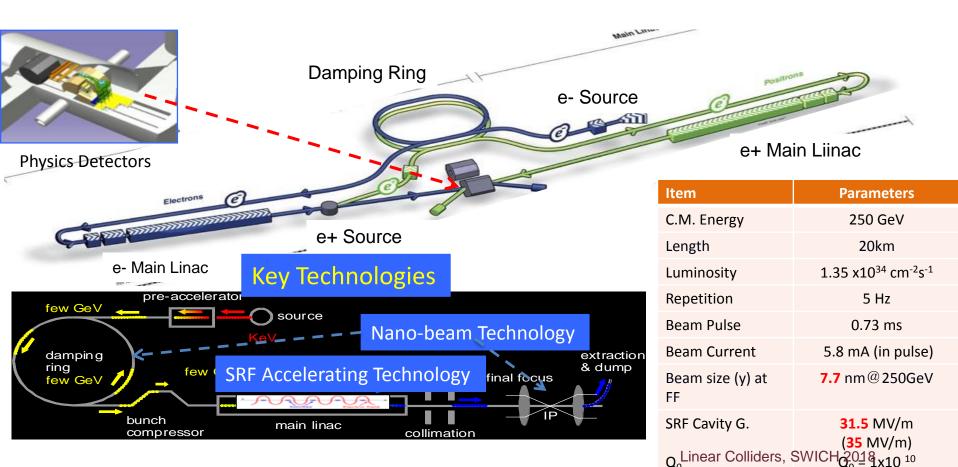


Linear Colliders

D. Schulte, CERN

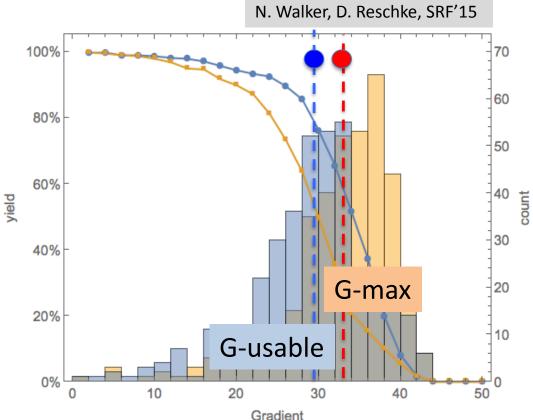
Key Parameters



					•
Parameter	Symbol [unit]	ILC	ILC	CLIC	CLIC
CMS energy	E _{cm} [GeV]	125	250	380	3000
Luminosity	L [10 ³⁴ cm ⁻² s ⁻¹]	1.35	1.8	1.5	6
Gradient	G [MV/m]	31.5	31.5	72	100
Repetition rate	f _r [Hz]	5	5	50	50
Bunches per train	n	1312	1312	352	312
Particles/bunch	N [10 ⁹]	20	20	5.2	3.72
Bunch length	σ _z [μm]	300	300	70	44
Energy spread	[%]	0.1-0.2	0.1-0.2	0.35	0.35
Emittances	ε _{x,y} [nm]	5x10 ³ /35	5x10 ³ /35	950/30	660/20
IP beam size	σ _{x,y} [nm/nm]	520/8	474/6	149/3	40/1
Beta-functions	b _{x,y} [mm]	13/0.41	22/0.48	8/0.1	6/0.07
Assumed effective running time	[10 ⁷ s/year]	1.6	1.6	1.08	1.08

D. Schulte

ILC Overview



ILC Cavities

800 cavities produced for European XFEL

Goal 24 MV/m

In vertical test stand (one Vendor): Average gradient for $Q_0 > 10^{10}$ G = 29.4 MV/m

ILC goal 31.5 MV/m installed

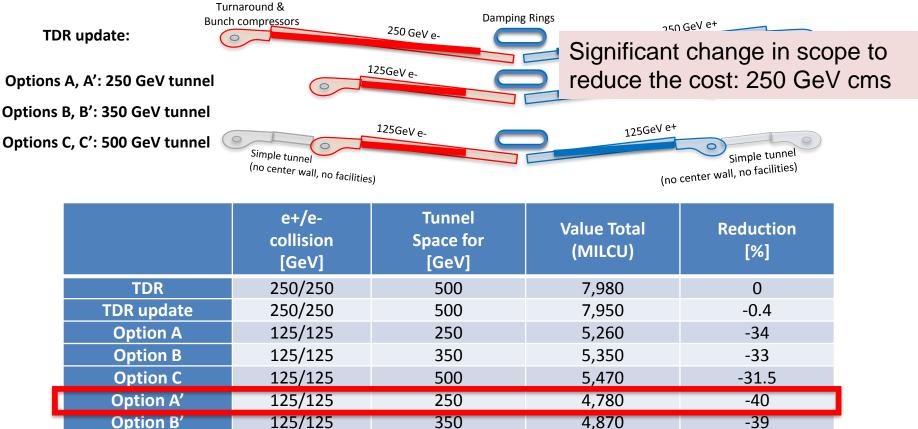
ILC Development

L. Evans

A. Yamamoto

Cost saving studies, e.g.

- Coupler design 1-2%
- Cavity material 2-3%
- No more hydrofluoric acid for chemical treatment 1-2%
- Higher gradient and more efficient cavities 4-5%


Modified exposure to nitrogen (from FNAL) Before: doping with few minutes at 800 °C Now: a day or so at 120 °C

ILC250 cost (in ILCU)

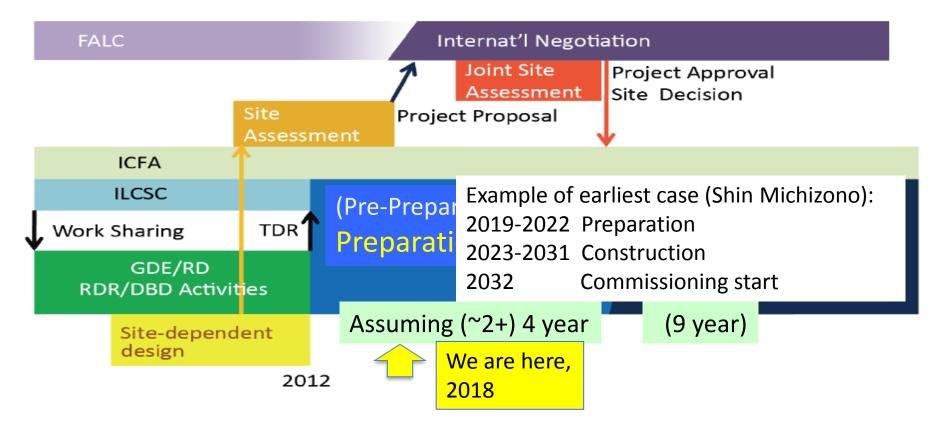
D. Schulte

Option C'

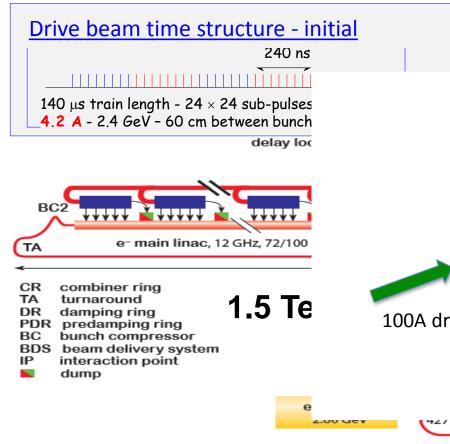
125/125

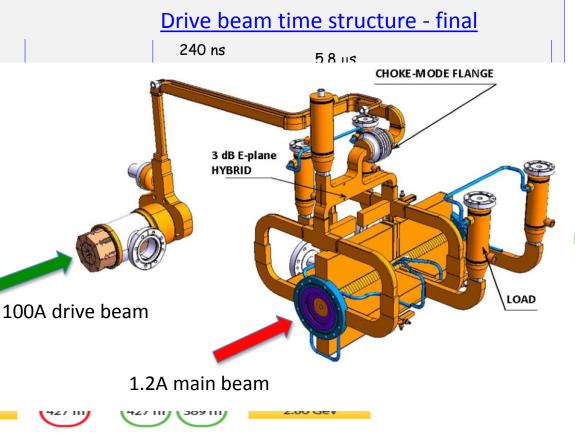
Linear Colliders, SWICH 2018

4,990

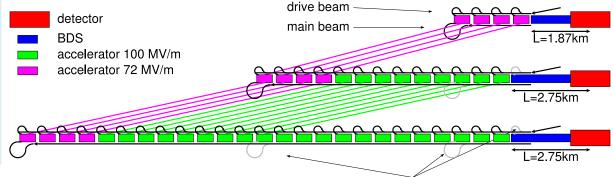

500

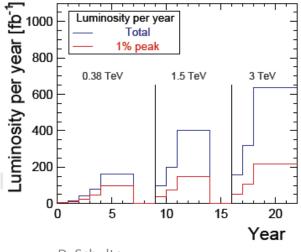
-37.5

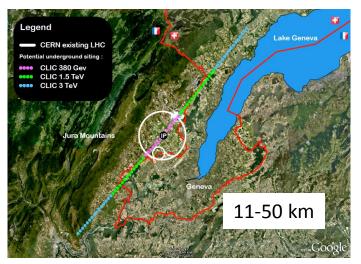

ILC Time Line: Progress and Prospect



CLIC (3 TeV)

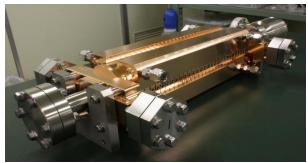

Linear Colliders, SWICH 2018


CLIC Staged Design

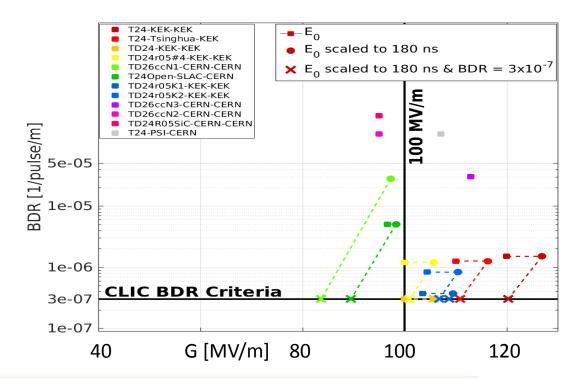

Staged design approach Cost-optimised first energy stage 380 GeV: HZ, WW fusion, top asymmetry Further stages re-use infrastructure and equipment

unused arcs

Stage	\sqrt{s} (GeV)	$\mathscr{L}_{int}(fb^{-1})$
1	380	500
1	350	100
2	1500	1500
3	3000	3000

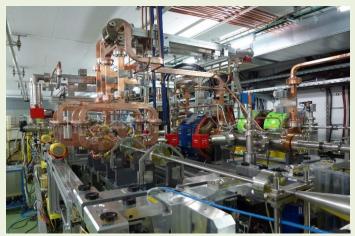


D. Schulte


CLIC Structure Development

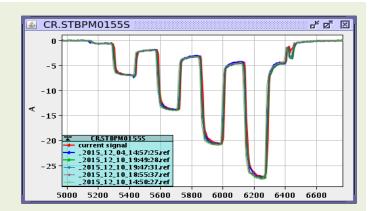
Structure testing takes long, conditioning required

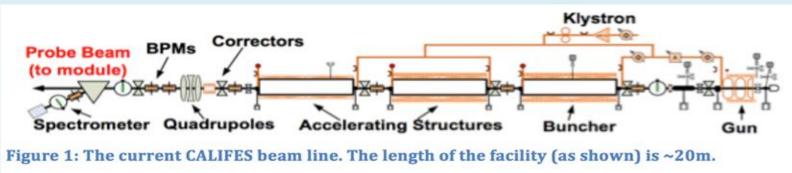
Structures are quite reproducible Details of manufacturing being worked out to improve further



Further optimisation ongoing of structure production for industrialisation Several klystron-based test stands exist that test structures (X-boxes)

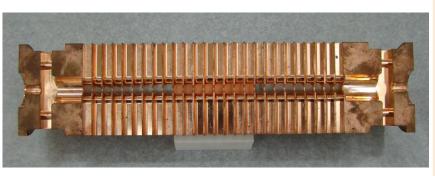
From CTF3 to CLEAR



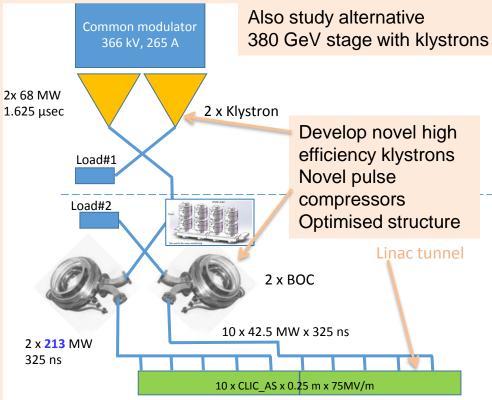

CTF3 has demonstrated drive beam production and main beam acceleration

- Technology
- Beam quality
- Operation

Now completed programme


New facility is coming online: CLEAR CERN Linear Electron Accelerator for Research

CLIC RF Technology Development



Further development and industrialisation of accelerating structures is ongoing

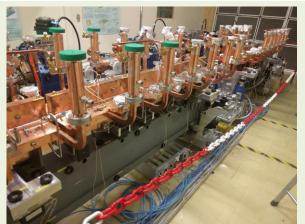
Several klystron-based test stands exist that test structures (X-boxes)

Growing use of X-band (FELs, novel technologies, ...)

- E.g. at PSI, DESY, INFN, Cockcroft, ...
- CompactLight proposal accepted by EU, 24 partners
- Sparc at INFN-LF

Other CLIC Technology Development

Redesign CLIC modulators and klystrons


Aim: increase efficiency from 62% to 90%

 \Rightarrow Less power consumption

 \Rightarrow Also important cost saving Shorter tubes, no oil in modulator, ...

 \Rightarrow Important cost saving

0.9 η_{Total} Δ+++ A++ D

Permanent magnets Use tunable permanent magnets where possible

- Drive beam quadruoles
- Strongest permanent magnet developed in UK

New module design Reduce cost of mechanical system and control

Main beam injector e.g. halved power for positron production

Beam Delivery System

New design with $L^* = 6$ places magnet outside of detector and mitigates high chromaticity

Better for physics

Also easier for equipment: No shielding solenoid Final quadrupole can be attached to tunnel floor

Goal set as "reasonable cost": 6 GCHF

Preliminary cost estimate from rebaselining

Performing bottom-up cost estimate

Also optimise the cost

- Module design is being improved
- Injector cost has been relatively high, is being reduced substantially by about halving number of klystrons
- Drive beam injector has already been optimised
- Civil engineering is being reviewed

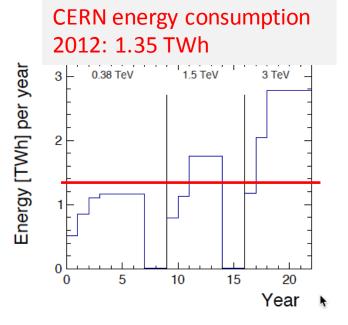
Preliminary value for 380 GeV (MCHF of Dec 2010)

Main beam production	1245
Drive beam production	974
Two-beam accelerator	2038
Interaction region	132
Interaction region Civil engineering etc.	132 2112

. . .

Power

Goal set as "reasonable power": 200 MW


Preliminary power estimate from rebaselining

Performing bottom-up power estimate

Also optimise the power

- Use of permanent magnets
- Reduction of injector power
- More efficient klystrons
- Use of green power: Ability to switch on and off to follow electricity availability

Preliminary Estimate 252 MW

UPDATED BASELINE FOR A STAGED COMPACT LINEAR COLLIDER

. . .

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

A MULTI-TEV LINEAR COLLIDER BASED ON CLIC TECHNOLOGY CLIC CONCEPTUAL DESIGN REPORT

CLIC Roadmap

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

S. Stapnes

Rebaselining document defined staged approach

CDR in 2012

established

feasibility of

3 TeV design

UPDATED BASELINE FOR A STAGED COMPACT LINEAR COLLIDER

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC) 2025 Construction Start

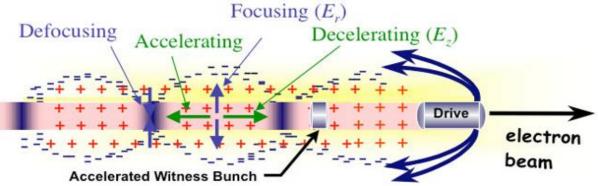
Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

Novel Technologies

- Linear colliders based on novel technologies are being proposed
- Different acceleration media and powering schemes
 - Dielectric structures power by a beam
 - The continuation of CLIC with different means
 - Plasma cells powered by laser or beam, dielectric structures powered by laser
 - Quite different from existing studies
- Different ambitions
 - From cheaper alternative at lower energies
 - To long term goal proposed by Michael Peskin: E_{cms} 30 TeV, L = 10³⁶ cm⁻²s⁻¹
- From CLIC we are starting to explore the opportunities and challenges to make sure that CLIC is not inconsistent with a potential upgrade using novel technologies


Plasma Acceleration

Very high gradients of 50 GV/m demonstrated

Can use laser or particle beam to generate field

R&D programmes are ongoing

Require also excellent beam quality and high efficiency

- For plasma acceleration this is new territory
- Theoretical studies and modelling is required
- Experimental programme is required
- First initiatives are ongoing (e.g. EUPRAXIA)
- This field can have high synergy with conventional linear colliders
 - E.g. could double CLIC luminosity if we could reduce imperfections b one order of magnitude

Example Parameters

Parameter	Symbol [unit]	ILC	CLIC	LPA	PWFA	DLA
CMC	E = [O, V]	F 00	2000	2000	2000	2000
Luminosity	$L[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	1.8	6	10	6.3	10.7(4.4)
Lummosity in peak	$L_{0.01}$ [10 - Cm - S -]	T	2	•	2.0	(3.8)
Total beam power	[MW]	10.5	28	48	48	68.8
Loaded gradient	$G \left[\mathrm{MV/m} \right]$	31.5	100	3000	7600	1000
Particles per bunch	$N[10^9]$	20	3.72	1.19	10	$3 \cdot 10^{-5}$
Bunch length	$\sigma_{z} [\mu \mathrm{m}]$	300	44	8	20	0.0028
Interaction point beam size	$\sigma_x/\sigma_y [{ m nm}/{ m nm}]$	474/6	40/1	18/0.5	194/1.1	0.75/0.75
Normalized emittances	ϵ_x/ϵ_y [nm]	$10^{4}/35$	660/20	50/5	$10^{4}/35$	0.1/0.1
Beta functions	β_x/β_y [mm]	10/0.4	7/0.07	-/-	11/0.1	16.5/16.5
Initial beam energy spread	$\sigma_E [\%]$	O(0.1)	0.35			
Bunches per train	n_b	1312	312	1	1	159
Bunch distance	$\Delta z [\mathrm{ns}]$	554	0.5	$11.9\cdot 10^3$	10^{5}	$6.7 \cdot 10^{-6}$
Repetition rate	$f_r \left[Hz \right]$	5	50	$84 \cdot 10^3$	10^{4}	$3\cdot 10^7$

LPA, PWFA, DLA parameters need important studies to be validated

Linear Colliders, SWICH 2018

My collection for RAST in 2016 PDFA: E. Adli et al. LPA: D.B. Schroeder et al. DLA: J. England

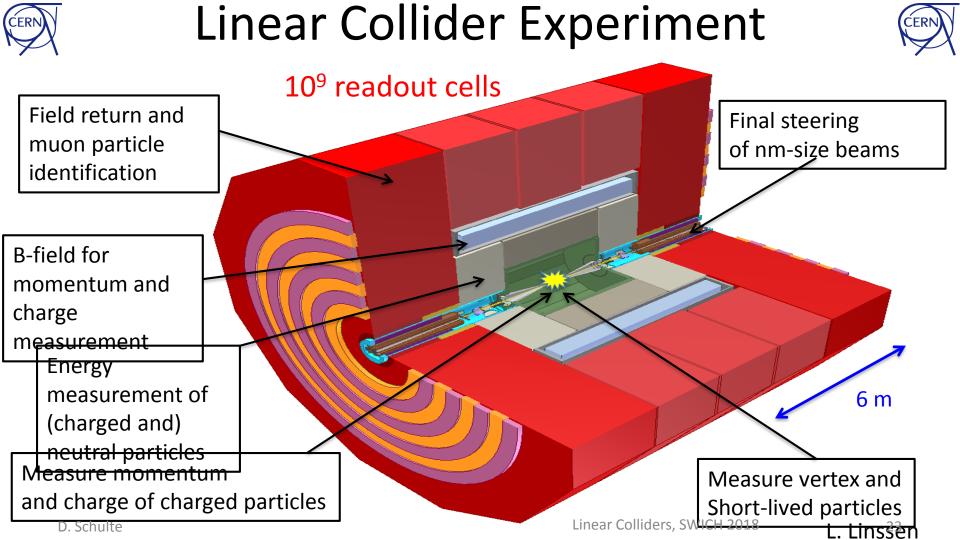
D. Schulte

Conclusion

Important progress toward the EU strategy

- ILC
 - Focus on cost reduction
 - Scope reduction to 250 GeV centre-of-mass
 - Political process ongoing
- CLIC
 - Further optimising 380 GeV first energy stage
 - Work on further stages, including novel technologies
 - Project Implementation Plan by end of 2018
- Novel acceleration technologies
 - Beam-driven dielectric acceleration could maybe be cheaper and higher gradient replacement of copper structures
 - Attention is moving also towards use of sequence multiple plasma cells, efficiency and beam quality
 - Interesting long-term development

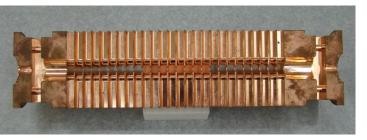
Many thanks to L. Evans, S. Stapnes, W. Wuensch, Ph. Burrows, I. Syratchev,... the ILC and CLIC teams


Reserve

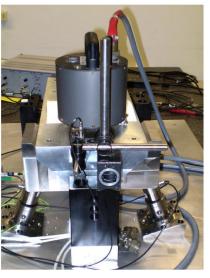
LHeC: J. Phys. G: Nucl. Part. Phys. 39 (2012) FCC-eh :EDMS 17979910 FCC-ACC-RPT-0012075001

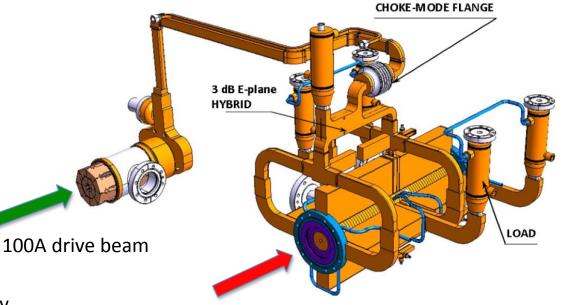
D. Schulte

Linear Colliders, SWICH 2018



CLIC Idea


High gradient makes machine cheap


Stabilise

motion

quadrupoles against groud

Drive beam to produce short, high power RF pulse

Novel, high-accuracy alignment scheme

1.2A main beam

And many more components

Linear Colliders, SWICH 2018

ILC Staging Discussion

Technical improvements can decrease cost by 10-20% More seems to be required, so staging is being considered

Discussions are ongoing

- Physics programme
- Optimum parameter choice at 250 GeV
- Positron source

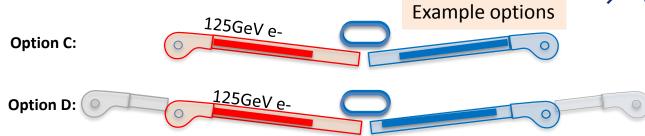
...

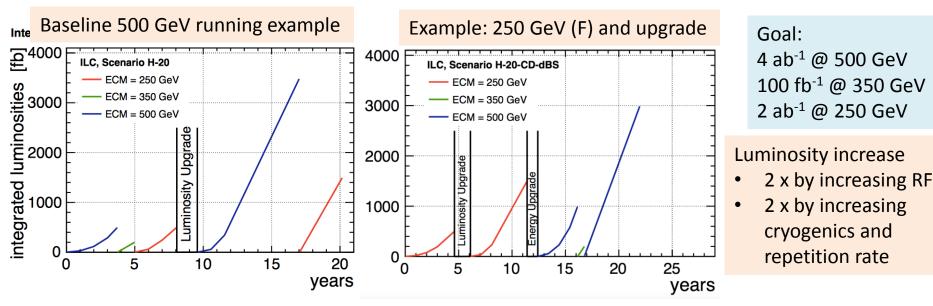
Option C: 0 125GeV e-0 125GeV e-0 125GeV e-0 125GeV e-125GeV e-125GeV e-125GeV e-0 125GeV e-

More options exist

Luminosity increase

- 2 x by increasing RF
- 2 x by increasing cryogenics and repetition rate


Option F:



ILC Staging Scenarios

Technical improvements can decrease cost by 10-20% More seems to be required, so staging is being considered

