LFU Violation in B decays in light of FCC-ee

Luiz Vale Silva

University of Sussex

01 Fev 2018

Based on > 2nd FCC workshop

(and references quoted herein)

Luiz Vale Silva (University of Sussex)

Review of LFUV studies

01 Fev 2018 1 / 29

ELE DOG

Outline

- Plavor physics at the FCC-ee
- 3 Ex. of a new class of observables

4 Conclusions

Outline

2) Flavor physics at the FCC-ee

3 Ex. of a new class of observables

4 Conclusions

Luiz Vale Silva (University of Sussex)

Review of LFUV studies

01 Fev 2018 3 / 29

B-physics anomalies

SM \sim respects LFU (Lepton Flavor Universality) \Rightarrow $R_X \simeq 1$

Pattern of deviations w.r.t. the SM \rightarrow NP sources of LFUV

Close horizon

LHCb and Belle II

year		2012	2020	2024	2030
LHCb	\mathcal{L} [fb ⁻¹]	3	8	22	50
	$n(b\overline{b})$	$0.3 imes 10^{12}$	1.1×10^{12}	37×10^{12}	87×10^{12}
	\sqrt{s}	$7/8\mathrm{TeV}$	$13\mathrm{TeV}$	$14\mathrm{TeV}$	$14\mathrm{TeV}$
Belle (II) \mathcal{L} [ab^{-1}] 0.7	5	50	-
	$n(B\bar{B})$	$0.1 imes 10^{10}$	$0.54 imes 10^{10}$	5.4×10^{10}	-
	\sqrt{s}	$10.58{\rm GeV}$	$10.58\mathrm{GeV}$	$10.58{ m GeV}$	-

[Albrecht+'17 (and refs. therein)]

- More data on the already measured channels
- New channels (with different backgrounds) & new observables ⇒ test the *consistency* of the LFUV picture

EL OQO

LHCb and Belle II - FCCC

arXiv:1709.10308: J. Albrecht, F. U. Bernlochner, M. Kenzie, S. Reichert, D. M. Straub, A. Tully

Measurement	SM	Current World	Current		Project	ed Unce	rtainty ¹	
	prediction	Average	Uncertainty	Be	lle II		LHCb	
				$5ab^{-1}$	$50 \mathrm{ab}^{-1}$	$8 \mathrm{fb}^{-1}$	$22 f b^{-1}$	$50 \mathrm{fb}^{-1}$
				2020	2024	2019	2024	2030
R(D)	(0.299 ± 0.003)	$(0.403 \pm 0.040 \pm 0.024)$	11.6%	5.6%	3.2%	-	-	-
$R(D^*)$	(0.257 ± 0.003)	$(0.310\pm 0.015\pm 0.008)$	5.5%	3.2%	2.2%	3.6%	2.1%	1.6%

Combined Belle II and LHCb should be able to establish $\gg 5\sigma$ in $R_{D^{(*)}}$

Luiz Vale Silva (University of Sussex)

・ロト ・回ト ・ヨト

LHCb and Belle II - FCCC

 $R_{D^{(*)}}$, $R_{D^{(*)}_s}$, $R_{\Lambda^{(*)}_c}$, $R_{J/\psi}$ w/ relative uncertainties **below** \sim 5%:

[P. Owen @ Elba. Theo: Bernlochner+'16, Monahan+'16,'17]

Phase-II will substantially benefit $R(X_c)$ measurements of $B_s, \Lambda_b{}^0, B_c$ hadrons.

Not accessible by Belle-II.

For V_{ub} and V_{cb} , see talk by D. Bečirević

LHCb and Belle II - FCNC

[Albrecht+'17 (and refs. therein)]

Observable	q^2 interval	Measurement	Extrap	olations
		$0.7 \mathrm{ab^{-1}}$	$5 \mathrm{ab}^{-1}$	$50 {\rm ab}^{-1}$
R(K)	$1.0 < q^2 < 6.0 \text{GeV}^2$	-	11%	3.6%
R(K)	$q^2 > 14.4 \text{GeV}^2$	-	12%	3.6%
$R(K^*)$	$1.1 < q^2 < 6.0 \text{GeV}^2$	-	10%	3.2%
$R(K^*)$	$q^2 > 14.4 \text{GeV}^2$	-	9.2%	2.8%

Belle II

LHCb

Observable	q^2 interval	Measurement		Extrapolation	15
	-	$3 {\rm fb}^{-1}$	$8 \mathrm{fb}^{-1}$	$22 {\rm fb}^{-1}$	$50 {\rm fb}^{-1}$
$R(\phi)$	$1.0 < q^2 < 6.0 \text{GeV}^2$	-	0.159	0.086	0.056
$R(\phi)$	$15.0 < q^2 < 19.0 \text{ GeV}^2$	-	0.137	0.074	0.048
R(K)	$1.0 < q^2 < 6.0 \text{GeV}^2$	$0.745^{+0.090}_{-0.074} \pm 0.036$ [17]	0.046	0.025	0.016
R(K)	$15.0 < q^2 < 22.0 \text{ GeV}^2$		0.043	0.023	0.015
$R(K^*)$	$0.045 < q^2 < 1.1 \text{GeV}^2$	$0.66^{+0.11}_{-0.07} \pm 0.03$ [18]	0.048	0.026	0.017
$R(K^*)$	$1.1 < q^2 < 6.0 \text{GeV}^2$	$0.69^{+0.11}_{-0.07} \pm 0.05$ [18]	0.053	0.028	0.019
$R(K^*)$	$15.0 < q^2 < 19.0 \text{GeV}^2$	-	0.061	0.033	0.021

 ~ 2 % stat.

Combined Belle II and LHCb should be able to establish $\gg 5\sigma$ in $R_{K^{(*)}}$

Luiz Vale Silva (University of Sussex)

Review of LFUV studies

01 Fev 2018 8 / 29

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LHCb and Belle II - FCNC

- LFU Violating obs. $P_5^{\prime\mu} P_5^{\prime e}$ by LHCb, and Belle II
- $B_q \rightarrow \mu\mu$: e.g., discovery of $B_d \rightarrow \mu\mu$ by CMS (>2030)
- $b \to d\ell\ell$: e.g., $\frac{\mathcal{B}(B^+ \to \pi^+ \mu\mu)}{\mathcal{B}(B^+ \to \pi^+ ee)}$ by LHCb (300 fb⁻¹)
- $B_s^0 \overline{B}_s^0$ mixing

[CKMfitter'13: see talk by S. Monteil]

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$	< 180%	26%	9.6%
$\mathcal{B}(B^+ \to K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%
$f_L(B^0 \to K^{*0} \nu \bar{\nu})$	_	_	0.079
$f_L(B^+ \to K^{*+} \nu \bar{\nu})$	_	_	0.077
$\mathcal{B}(B^0 o \nu \bar{ u}) imes 10^6$	< 14	< 5.0	< 1.5

Sensitivities of modes with $\nu \overline{\nu}$ in the final state

B2TiP Report (in progress)

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃|∃ ◇Q⊘

LHCb and Belle II - FCNC

- LFU Violating obs. $P_5^{\prime\mu} P_5^{\prime e}$ by LHCb, and Belle II
- $B_q \rightarrow \mu\mu$: e.g., discovery of $B_d \rightarrow \mu\mu$ by CMS (>2030)
- $b \rightarrow d\ell\ell$: e.g., $\frac{\mathcal{B}(B^+ \rightarrow \pi^+ \mu\mu)}{\mathcal{B}(B^+ \rightarrow \pi^+ ee)}$ by LHCb (300 fb⁻¹)
- $B_s^0 \overline{B}_s^0$ mixing

[CKMfitter'13: see talk by S. Monteil]

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$	< 180%	26%	9.6%
$\mathcal{B}(B^+ \to K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%
$f_L(B^0 \to K^{*0} \nu \bar{\nu})$	_	_	0.079
$f_L(B^+ \to K^{*+} \nu \bar{\nu})$	_	_	0.077
${\cal B}(B^0\to\nu\bar\nu)\times 10^6$	< 14	< 5.0	< 1.5

Sensitivities of modes with $\nu \overline{\nu}$ in the final state

B2TiP Report (in progress)

FCCC & FCNC: exciting times ahead w/ Belle II and LHCb

Luiz Vale Silva (University of Sussex)

Review of LFUV studies

01 Fev 2018 9 / 29

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ヨ ・ ク Q (や

Outline

3) Ex. of a new class of observables

Conclusions

Luiz Vale Silva (University of Sussex)

Review of LFUV studies

01 Fev 2018 10 / 29

Image: A matrix

Future Circular Collider @ CERN

- e^+e^- collider stage:
 - $\sqrt{s} = 90, 160, 240, 350 \text{ GeV}$
- Clean experimental environment
- All species of heavy flavors
- Large boosts
- Excellent vertexing
- Unique opportunities for Flavor Physics

In total, $10^{13} Z$ bosons

1 = nar

Future Circular Collider @ CERN

- e^+e^- collider stage:
 - $\sqrt{s} = 90, 160, 240, 350 \text{ GeV}$
- Clean experimental environment
- All species of heavy flavors
- Large boosts
- Excellent vertexing
- Unique opportunities for Flavor Physics

In total, $10^{13} Z$ bosons

HERE: review of (at least a few) flavor physics cases

Luiz Vale Silva (University of Sussex)

Review of LFUV studies

01 Fev 2018 11 / 29

Possible EFT interpretations

C.C.:
$$\mathcal{L}_{b\to c\ell\nu} \supset -\frac{2G_F}{\sqrt{2}} V_{cb} \Big[(C_{CC}^{SM} + \epsilon_L^{\ell}) \underbrace{\bar{c}\gamma_{\rho}P_L b \cdot \bar{\ell}\gamma^{\rho}(1-\gamma_5)\nu_{\ell}}_{SM: tree-level} \Big] + h.c.$$

N.C.:
$$\mathcal{L}_{b\to s\ell\ell} \supset \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \Big[(C_{NC}^{SM} + \delta_L^\ell) \underbrace{\bar{s}\gamma_\rho P_L b \cdot \bar{\ell}\gamma^\rho (1 - \gamma_5)\ell}_{SM: 1-loop} \Big] + \text{h.c.}$$

(in fact, $c_9^{SM}(\mu_b)\simeq -c_{10}^{SM}(\mu_b))$

[Altmannshofer+'17, Capdevila+'17, L.-S. Geng+'17]

 \rightarrow Possibilities other than $\delta_{l}^{\mu}(\mu_{b})$ and $\epsilon_{L}^{\tau}(\mu_{b})$ **not** excluded!

Luiz Vale Silva (University of Sussex)

Possible EFT interpretations

C.C.:
$$\mathcal{L}_{b\to c\ell\nu} \supset -\frac{2G_F}{\sqrt{2}} V_{cb} \Big[(C_{CC}^{SM} + \epsilon_L^{\ell}) \underbrace{\bar{c}\gamma_{\rho}P_L b \cdot \bar{\ell}\gamma^{\rho}(1-\gamma_5)\nu_{\ell}}_{SM: tree-level} \Big] + h.c.$$

$$\text{N.C.}: \mathcal{L}_{b \to s\ell\ell} \supset \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \Big[(C_{NC}^{SM} + \delta_L^\ell) \underbrace{\overline{5}\gamma_\rho P_L b \cdot \overline{\ell}\gamma^\rho (1 - \gamma_5)\ell}_{SM: 1 - loop} \Big] + \text{h.c.}$$

 $(\text{in fact, } c_9^{SM}(\mu_b) \simeq -c_{10}^{SM}(\mu_b)) \qquad \text{[Altmannshofer+'17, Capdevila+'17, L.-S. Geng+'17]}$

 \rightarrow Possibilities other than $\delta_l^{\mu}(\mu_b)$ and $\epsilon_l^{\tau}(\mu_b)$ not excluded!

 δ_L^{μ} and ϵ_L^{τ} at the level of $\sim \mathcal{O}(10\% - 20\%)$ of the SM, with very different meanings: SM loop vs. SM tree

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの⊙

Common framework

[cf. di Luzio, Nardecchia'17]

 $\Lambda_{NP} \sim \mathcal{O}(1-100) \text{ TeV} \Rightarrow \text{direct searches}, \quad \text{[Allanach, Greljo, Zupan: talks on FCC-hh]} \ \text{low-energy (precision) observables}$

Common framework

[cf. di Luzio, Nardecchia'17]

 $\Lambda_{NP} \sim \mathcal{O}(1-100) \text{ TeV} \Rightarrow ext{direct searches}, \quad \ext{[Allanach, Greljo, Zupan: talks on FCC-hh]} \ ext{low-energy (precision) observables}$

At energies $\Lambda_{NP} \gg v_{EW}$, and assuming no new light d.o.f. below $\sim \Lambda_{NP}$:

[Glashow+'14,Feruglio+'16,'17]

$$\mathcal{L}_{NP} = \frac{1}{\Lambda_{NP}^2} \left(C_1 \, \bar{q}_{3L}' \gamma^\mu q_{3L}' \cdot \bar{\ell}_{3L}' \gamma_\mu \ell_{3L}' + C_3 \, \bar{q}_{3L}' \gamma^\mu \tau^a q_{3L}' \cdot \bar{\ell}_{3L}' \gamma_\mu \tau^a \ell_{3L}' \right)$$

 \rightarrow Here, illustrative only!

Correlations w/ other processes

 $\mathcal{L}_{NP} = \frac{1}{\Lambda_{NP}^{2}} \left(\mathbf{C}_{1}(\Lambda_{NP}) \, \bar{q}_{3L}^{\prime} \gamma^{\mu} q_{3L}^{\prime} \cdot \bar{\ell}_{3L}^{\prime} \gamma_{\mu} \ell_{3L}^{\prime} + \mathbf{C}_{3}(\Lambda_{NP}) \, \bar{q}_{3L}^{\prime} \gamma^{\mu} \tau^{a} q_{3L}^{\prime} \cdot \bar{\ell}_{3L}^{\prime} \gamma_{\mu} \tau^{a} \ell_{3L}^{\prime} \right)$

EW corrections: LNV four-lepton ops., coupling of Z to leptons, etc.

[Feruglio+'17]

Luiz Vale Silva (University of Sussex)

Review of LFUV studies

01 Fev 2018 14 / 29

Correlations w/ other processes: Z decays

Vector + axial neutral couplings from $R_f = \frac{\Gamma_{had}}{\Gamma_{f\bar{f}}}$, $\mathcal{A}_f = \frac{2g_v(f)g_s(f)}{g_v^2(f)+g_s^2(f)}$

fermion type	g_a	g_v
e	1.5×10^{-4}	$2.5 imes 10^{-4}$
μ	$2.5 imes 10^{-5}$	$2. \times 10^{-4}$
au	$0.5 imes 10^{-4}$	$3.5 imes 10^{-4}$
b	$1.5 imes 10^{-3}$	1×10^{-2}
с	$2 imes 10^{-3}$	1×10^{-2}

Relative precisions

Improvements 1 - 2 orders of magnitudes with respect to LEP, depending on the fermion

Important also for some concrete models (e.g., involving Z' or LQs)

Luiz Vale Silva (University of Sussex)

Correlations w/ other processes: LNV Z decays

 Lepton Flavour-Violating Z decays in the SM with lepton mixing are typically

 $\mathcal{B}(Z \to e^{\pm} \mu^{\mp}) \sim \mathcal{B}(Z \to e^{\pm} \tau^{\mp}) \sim 10^{-54} \text{ and } \mathcal{B}(Z \to \mu^{\pm} \tau^{\mp}) \sim 4.10^{-60}$

- Current limits at the level of ~10⁻⁶ (from LEP and more recently Atlas, e.g. [DELPHI, Z. Phys. C73 (1997) 243] [ATLAS, CERN-PH-EP-2014-195 (2014)])
 - Following study by M. Dam on LNV:

$$\mathcal{B}(Z \to \tau^{\pm} \mu^{\mp}) < 10^{-9} - 10^{-10}$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ヨ ・ ク Q (や

 B_c lifetime (cf. talk by J.M. Camalich)

$$au_{B_c}^{\mathrm{OPE}} \stackrel{SM}{=} 0.52^{+0.18}_{-0.12} \ \mathrm{ps} \Rightarrow$$

[Bigi'95,Beneke+'96,C.-H. Chang+'00]

$$\mathcal{B}(B_c^- o au
u) \lesssim 30\%$$

 $\frac{\text{BR}(B_c \rightarrow \tau \nu)}{\text{BR}(B_c \rightarrow \tau \nu)^{\text{SM}}} = \left|1 + \epsilon_L^{\tau} + \frac{m_{B_c}^2}{m_{\tau}(m_b + m_c)} \epsilon_P^{\tau}\right|$ 1.0 EXCLUSION REGION 0.8 $Br(B_c \rightarrow \tau v)$ 0.6 OPE 0.4 0.2 SM 0.0 0.26 0.28 0.24 0.30 0.32 0.34 RD

Suppressed coupling ϵ_P^{τ}

[Alonso+'16; see also, Akeroyd+'17]

$$\overrightarrow{\mathsf{BR}_{\mathrm{eff}}}^{\mathrm{FCC-ee}} = \overrightarrow{\mathsf{BR}(B \to \tau\nu)}^{\mathrm{Belle \& BaBar}} + \overrightarrow{\frac{f_c}{f_u}}^{\mathrm{TH.input}} \mathsf{BR}(B_c \to \tau\nu)$$

Luiz Vale Silva (University of Sussex)

01 Fev 2018 17 / 29

b ightarrow s au au transitions

- b → s semileptonic decays involving light leptons: tension of data with the SM
- Processes $b \to s$ with **taus** have not been observed so far: $\mathcal{B}(B^+ \to K^+ \tau^+ \tau^-) < 2.25 \times 10^{-3}$ @ 90 %; [BaBar] expected sensitivity at Belle II of $\mathcal{O}(10^{-4})$ to $\mathcal{O}(10^{-5})$; [S. Wehle] also, $\mathcal{B}(B_s \to \tau^+ \tau^-) < 6.8 \times 10^{-3}$ [LHCb]
- LFU violation suggested by μ , e (to mention only FCNC), room for LFU violation in taus

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ヨ ・ ク Q (や

Reconstruction of $B \rightarrow K^* \tau^+ \tau^-$ events

Challenge: reconstruct events (m_B , kinematics) where information is missing due to the final-state neutrino in $\tau \rightarrow H \nu$

See talk by S. Monteil; similar technique for $B_s \rightarrow \tau \tau$ (ongoing?) SM simulation: parameters from ILD detector, for $H^{\pm} = \pi^{\pm}\pi^{-}\pi^{+}$

Signal and background fits

(Most relevant background comes from D mesons in $b \rightarrow c$) Results for baseline luminosity (10¹³ Z bosons)

Set of $b \rightarrow s \tau \tau$ transitions

FCC-ee: Plane $R_{K^{(*)}}^{ au/\ell}$ and $B_q o au au$

Luiz Vale Silva (University of Sussex)

01 Fev 2018 21 / 29

Set of $b \rightarrow s \tau \tau$ transitions

FCC-ee: Plane $R_{K^{(*)}}^{ au/\ell}$ and $B_q o au au$

Also: **Angular observables** for $b \rightarrow s\tau\tau$ and τ **polarizations**

Luiz Vale Silva (University of Sussex)

01 Fev 2018 21 / 29

Outline

Flavor physics at the FCC-ee

Ex. of a new class of observables

Luiz Vale Silva (University of Sussex)

Asymmetries in the au polarization

Decay products in au ightarrow H u act as a self-analyzer

[Tsai '71, T. Hagiwara et al. '77, Kühn et al. '84, Aurenche et al. '85, K. Hagiwara et al. '90, Rougé '90, Davier et al. '93]

[Aliev et al., Bensalam et al. '02, P. Colangelo et al. '06 '14]

$$\mathcal{P}_{X}^{\pm} = \frac{d\Gamma(\tau^{\pm} \text{ w/ spin along } + e_{X}) - d\Gamma(\tau^{\pm} \text{ w/ spin along } - e_{X})}{d\Gamma(\tau^{\pm} \text{ w/ spin along } + e_{X}) + d\Gamma(\tau^{\pm} \text{ w/ spin along } - e_{X})}$$

 $m_{\tau} \rightarrow 0^+$: \mathcal{P}_L^{\pm} reduce to τ^{\pm} Left/Right chirality asymmetries, while $\mathcal{P}_{T,N}^{\pm}$ vanish

Luiz Vale Silva (University of Sussex)

Review of LFUV studies

JIN NOR

SM predictions for $B \rightarrow K^{(*)} \tau^+ \tau^-$ [Kamenik, Monteil, Semkiv, VS'17]

Binned obs.:
$$\langle \mathcal{P}_X^{\pm}(\mathcal{K}^{(*)}) \rangle = rac{\int_{14.18\,\mathrm{GeV}^2}^{q_{\mathrm{max}}^2} dq^2 \left(rac{d\Gamma}{dq^2}(e_X) - rac{d\Gamma}{dq^2}(-e_X)
ight)}{\int_{14.18\,\mathrm{GeV}^2}^{q_{\mathrm{max}}^2} dq^2 \left(rac{d\Gamma}{dq^2}(e_X) + rac{d\Gamma}{dq^2}(-e_X)
ight)}$$

 $\begin{array}{l} \mathcal{B}(K^*) \times 10^7 = 1.30 \ (09) \ (22) \ (10) \\ \langle \mathcal{A}_{FB}(K^*) \rangle = 0.203 \ (15) \ (25) \ (04) \\ |\langle \mathcal{P}_L^{\pm}(K^*) \rangle| = 0.560 \ (07) \ (28) \ (12) \\ |\langle \mathcal{P}_T^{-}(K^*) \rangle| = 0.533 \ (18) \ (39) \ (02) \\ |\langle \mathcal{P}_T^{\pm}(K^*) \rangle| = 0.03 \ (04) \ (11) \ (01) \\ |\langle \mathcal{P}_N^{\pm}(K^*) \rangle| = 0.013 \ (01) \ (12) \ (00) \end{array}$

$$\begin{array}{l} \mathcal{B}(K) \times 10^7 = 1.61 \ (07) \ (12) \ (09) \\ \langle \mathcal{A}_{FB}(K) \rangle = 0 \\ |\langle \mathcal{P}_L^{\pm}(K) \rangle| = 0.246 \ (4) \ (6) \ (2) \\ |\langle \mathcal{P}_L^{\pm}(K) \rangle| = 0.744 \ (00) \ (17) \ (06) \\ \langle \mathcal{P}_N^{\pm}(K) \rangle = 0 \end{array}$$

Uncertainties: form factors, $OPE \oplus charm resons.$, Wilson coefs.

Luiz Vale Silva (University of Sussex)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ヨ ・ ク Q (や

SM predictions for $B \rightarrow K^{(*)} \tau^+ \tau^-$ [Kamenik, Monteil, Semkiv, VS'17]

Binned obs.:
$$\langle \mathcal{P}_X^{\pm}(\mathcal{K}^{(*)}) \rangle = \frac{\int_{14.18\,\mathrm{GeV}^2}^{q_{\mathrm{max}}^2} dq^2 \left(\frac{d\Gamma}{dq^2}(e_X) - \frac{d\Gamma}{dq^2}(-e_X)\right)}{\int_{14.18\,\mathrm{GeV}^2}^{q_{\mathrm{max}}^2} dq^2 \left(\frac{d\Gamma}{dq^2}(e_X) + \frac{d\Gamma}{dq^2}(-e_X)\right)}$$

 $\begin{array}{l} \mathcal{B}(K^*) \times 10^7 = 1.30 \ (09) \ (22) \ (10) \\ \langle \mathcal{A}_{FB}(K^*) \rangle = 0.203 \ (15) \ (25) \ (04) \\ |\langle \mathcal{P}_L^{\pm}(K^*) \rangle| = 0.560 \ (07) \ (28) \ (12) \\ |\langle \mathcal{P}_T^{-}(K^*) \rangle| = 0.533 \ (18) \ (39) \ (02) \\ |\langle \mathcal{P}_T^{+}(K^*) \rangle| = 0.03 \ (04) \ (11) \ (01) \\ |\langle \mathcal{P}_N^{\pm}(K^*) \rangle| = 0.013 \ (01) \ (12) \ (00) \end{array}$

$$\begin{array}{l} \mathcal{B}(K) \times 10^{7} = 1.61 \ (07) \ (12) \ (09) \\ \langle \mathcal{A}_{FB}(K) \rangle = 0 \\ |\langle \mathcal{P}_{L}^{\pm}(K) \rangle| = 0.246 \ (4) \ (6) \ (2) \\ |\langle \mathcal{P}_{L}^{\pm}(K) \rangle| = 0.744 \ (00) \ (17) \ (06) \\ \langle \mathcal{P}_{N}^{\pm}(K) \rangle = 0 \end{array}$$

Uncertainties: form factors, $OPE \oplus charm resons.$, Wilson coefs.

Clean differential quantities:

$$\frac{\mathcal{P}_{L}^{\pm}(K)}{\mathcal{P}_{T}^{\pm}(K)}(q^{2}) = \frac{F_{1}(q^{2})}{F_{0}(q^{2})} \times f(m_{B,K,\tau},q^{2}) \Rightarrow \frac{|\langle \mathcal{P}_{L}^{\pm}(K)\rangle|}{|\langle \mathcal{P}_{T}^{\pm}(K)\rangle|} = 0.330\,(05)\,(10)\,(00)$$

$$\frac{\mathcal{P}_{L}^{\pm}(K_{\text{long.}}^{*})}{\mathcal{P}_{T}^{\pm}(K_{\text{long.}}^{*})}(q^{2}) = \sum_{i=1}^{2}\frac{A_{i}(q^{2})}{A_{0}(q^{2})} \times f_{i}(m_{B,K^{*},\tau},q^{2}) \Rightarrow \frac{|\langle \mathcal{P}_{L}^{\pm}(K_{\text{long.}}^{*})\rangle|}{|\langle \mathcal{P}_{T}^{\pm}(K_{\text{long.}}^{*})\rangle|} = 0.68\,(3)\,(1)\,(0)$$

Luiz Vale Silva (University of Sussex)

Back to the B anomalies

- Generally: bounds on $\mathcal{B}(B \to K^{(*)}\nu\bar{\nu})$ imply [BaBar, Belle] $|\delta c_9|, |c'_9|, |\delta c_{10}|, |c'_{10}| \leq \mathcal{O}(10)$ [Buras+ '14, Alonso+ '15; cf. Bobeth and Haisch '11]
- New dim=6 operators much beyond the EW scale:

Ex.
$$\mathcal{O}_{ijkl}^{(1)} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l], \ \mathcal{O}_{ijkl}^{(3)} = [\bar{Q}_i \gamma_\mu \sigma^A Q_j] [\bar{L}_k \gamma^\mu \sigma^A L_l]$$

For $C_{2333}^{(1)} \approx C_{2333}^{(3)} \equiv C \Rightarrow \frac{2 \times C}{\Lambda_{NP}^2} ([\bar{c}_L \gamma_\mu b_L] [\bar{\tau}_L \gamma^\mu \nu_\tau] + [\bar{s}_L \gamma_\mu b_L] [\bar{\tau}_L \gamma^\mu \tau_L])$

Correlate $R_{D^{(*)}}, R_{J/\psi}$ anomalies to $b \to s\tau^+\tau^-$: [BaBar, Belle, LHCb] enhance $b \to s\tau^+\tau^-$ rates to $\mathcal{O}(10^{-4})$ [Buttazzo+'17]

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ヨ ・ ク Q (や

Case of real $\delta c_9 \equiv \delta_{\rm NP}$: $B \to K^* \tau \tau$

- Ranges chosen for pprox SM-like ${\cal B}$
- $\bullet\,$ SM-like asyms. exclude a large set of $\delta_{\rm NP}$ values
- The double asyms. give a complementary picture

Luiz Vale Silva (University of Sussex)

Review of LFUV studies

 $(SM: c_{o}^{eff} \simeq 4)$

Outline

2) Flavor physics at the FCC-ee

3) Ex. of a new class of observables

Luiz Vale Silva (University of Sussex)

Review of LFUV studies

01 Fev 2018 27 / 29

EL OQO

Overview

- LHCb and Belle II will verify/rule out the B-anomalies
- Direct searches: a case for FCC-hh
- Low-energy observables: a case for FCC-ee
- Associated effects are likely in Z decays to leptons
- Channels accessible only to FCC-ee include $B_c \rightarrow \tau \nu$
- Much to explore in b → sττ: angular observables; clear NP signatures in tau polarizations

JIN NOR

Thanks!

(and apologies for any omission)

Luiz Vale Silva (University of Sussex)

Review of LFUV studies

01 Fev 2018 29 / 29

三日 のへの

Constraints on $(\bar{b}\Gamma s)(\tau^+\Gamma'\tau^-)$

- Indirect information from $\Gamma_d/\Gamma_s \Rightarrow \mathcal{B}(B_s \to \tau^+ \tau^-) < 0.03$,
- $B \to X_s \tau^+ \tau^-$ mimicking $b \to u \ell \bar{\nu}$, $\ell = e, \mu$,
- Direct bounds from $B^+ \rightarrow K^+ \tau^+ \tau^-$: constraints $|c_{S,AB}, c_{V,AB}, c_{T,AB}| \lesssim 10^3 (A, B = L, R)$

[Bobeth and Haisch '11; cf. Grossman et al. '96]

- With the direct bound, $\mathcal{B}(B_s \to \tau^+ \tau^-) < 6.8 \times 10^{-3}$: $|c_{S,AB}, c_{V,AB}|$ bounds roughly improved by a factor ~ 2
- $SU(2)_L$ symmetry: exploit $B \to K^{(*)} \nu \bar{\nu} \Rightarrow c_{V,AL} \lesssim \mathcal{O}(10)$

[Buras et al. '14, Alonso et al. '15]

Background

Most relevant background comes from D mesons in $b \rightarrow c$:

Spare

$$B^0 o D_s^+ K^{*0} \tau^+ \nu_{\tau} \,, \quad \bar{B}^0_s o D_s^- D_s^+ K^{*0}$$

Review of LFUV studies

SM operators and Wilson coefficients

Below EW scale,
$$H_{\textit{weak: }b
ightarrow s} = -4 rac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i c_i(\mu_b) O_i(\mu_b)$$

In the SM, $\mathcal{P}_{L,T,N}^{\pm}$ depend on c_7^{eff} , c_9^{eff} , c_{10} , where "eff" includes loop contributions from $O_{1,2,3,4,5,6,8}$ [Buchalla et al. '95, Beneke et al. '01, Seidel '04] Muon data: δc_9^{μ} , δc_{10}^{μ} , $c_{9}^{\prime \mu}$, $c_{10}^{\prime \mu}$ [Altmannshofer et al., Descotes-G. et al., Hurth et al.]

EL SQA

Sources of uncertainty

Correction for $\bar{\tau}\gamma_{\mu}\tau$: ops. of higher dimension & charm resonances \Rightarrow for quantities defined over large bins, $\sim 10 \% \times c_9^{\text{eff}}$

[Grinstein et al. '04, Beylich et al. '11]

Uncertainty of c_7^{eff} , c_9^{eff} , c_{10} (ren. scale, α_s value, etc.): $\mathcal{O}(2 \%)$

[e.g., QED: Bobeth et al. '03]

Double polarizations

Also possible to define the correlated τ^{\pm} polarization:

$$\mathcal{P}_{AB}(q^2) = \frac{\left[\frac{d\Gamma}{dq^2}(e_A^-, e_B^+) - \frac{d\Gamma}{dq^2}(-e_A^-, e_B^+)\right] - \left[\frac{d\Gamma}{dq^2}(e_A^-, -e_B^+) - \frac{d\Gamma}{dq^2}(-e_A^-, -e_B^+)\right]}{\frac{d\Gamma}{dq^2}(e_A^-, e_B^+) + \frac{d\Gamma}{dq^2}(-e_A^-, e_B^+) + \frac{d\Gamma}{dq^2}(e_A^-, -e_B^+) + \frac{d\Gamma}{dq^2}(-e_A^-, -e_B^+)}$$

Spare

$$\begin{split} |\langle \mathcal{P}_{LL}(K^*)\rangle| &= 0.35 \ (1.7) \ (2) \ (0.7) \\ |\langle \mathcal{P}_{TT}(K^*)\rangle| &= 0.05 \ (3) \ (9) \ (1) \\ |\langle \mathcal{P}_{NN}(K^*)\rangle| &= 0.09 \ (2) \ (8) \ (1) \\ |\langle \mathcal{P}_{LT}(K^*)\rangle| &= 0.00 \ (2) \ (3) \ (0.7) \\ |\langle \mathcal{P}_{TL}(K^*)\rangle| &= 0.28 \ (0.9) \ (3) \ (1) \\ |\langle \mathcal{P}_{LN,NL}(K^*)\rangle| &= 0.05 \ (0.2) \ (2) \ (0.1) \\ |\langle \mathcal{P}_{TN,NT}(K^*)\rangle| &= 0.00 \ (0.2) \ (3) \ (0) \end{split}$$

 $\begin{aligned} |\langle \mathcal{P}_{LL}(K) \rangle| &= 0.30 \ (1) \ (6) \ (2) \\ |\langle \mathcal{P}_{TT}(K) \rangle| &= 0.68 \ (0.5) \ (2) \ (0.7) \\ |\langle \mathcal{P}_{NN}(K) \rangle| &= 0.20 \ (1) \ (9) \ (4) \\ |\langle \mathcal{P}_{LT, TL}(K) \rangle| &= 0.33 \ (0) \ (3) \ (1) \\ |\langle \mathcal{P}_{LN, NL}(K) \rangle| &= 0.11 \ (0) \ (7) \ (0.2) \\ |\langle \mathcal{P}_{TN, NT}(K) \rangle| &= 0.03 \ (0) \ (3) \ (0) \end{aligned}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Distinction of NP models

- $\delta c_9 \equiv \delta_{\rm NP}$,
- $\delta c_9 = -c_9' \equiv \delta_{\rm NP}$, and
- $\delta c_9 = -c'_9 = -\delta c_{10} = -c'_{10} \equiv \delta_{\mathrm{NP}}$

Review of LFUV studies

Luiz Vale Silva (University of Sussex)

Clean differential quantities

$$\frac{\mathcal{P}_{L}^{\pm}(K)}{\mathcal{P}_{T}^{\pm}(K)}(q^{2}) = \frac{F_{1}(q^{2})}{F_{0}(q^{2})} \times f(m_{B,K,\tau},q^{2}) \Rightarrow \frac{|\langle \mathcal{P}_{L}^{\pm}(K)\rangle|}{|\langle \mathcal{P}_{T}^{\pm}(K)\rangle|} = 0.330\,(05)\,(\mathbf{10})\,(00)$$

$$\frac{\mathcal{P}_{L}^{\pm}(K_{\text{long.}}^{*})}{\mathcal{P}_{T}^{\pm}(K_{\text{long.}}^{*})}(q^{2}) = \sum_{i=1}^{2}\frac{A_{i}(q^{2})}{A_{0}(q^{2})} \times f_{i}(m_{B,K^{*},\tau},q^{2}) \Rightarrow \frac{|\langle \mathcal{P}_{L}^{\pm}(K_{\text{long.}}^{*})\rangle|}{|\langle \mathcal{P}_{T}^{\pm}(K_{\text{long.}}^{*})\rangle|} = 0.68\,(\mathbf{3})\,(1)\,(0)$$

Luiz Vale Silva (University of Sussex)

01 Fev 2018 7 / 11

Spare

Case of real $\delta c_9 \equiv \delta_{\rm NP}$: $B \to K \tau \tau$

• Enhancement of *LL*, *NN* asymmetries to values ≥ 0.8 • *T* vanishes in the untagged case $(B^0 \rightarrow K^0, \bar{B}^0 \rightarrow \bar{K}^0)$

Review of LFUV studies

Spare

Pure imaginary $\delta C_9 \equiv i \, \delta_{\rm NP}$

In the SM, $\operatorname{Im} \{ c_7^{\text{eff}} \}, \operatorname{Im} \{ c_9^{\text{eff}} \}$ come at higher orders $\Rightarrow \mathcal{P}_N^{\pm} \ll \mathcal{P}_{L,T}^{\pm}$

[cf. Krüger and Sehgal '96]

Similar modulations are also found for $\delta C_{10} \equiv i \, \delta_{\rm NP_{c}}$

Luiz Vale Silva (University of Sussex)

Review of LFUV studies

Normal T-, K* Longitudinal t-/Normal t+, K* 0.3 0.2 0.1 0.1 $\delta_{\rm NP}$ -0.1 -0.1 -0.2-0.2 -0.3Long. τ -/Norm. τ +, K: $\delta c_9 = i \delta_{NP}$ 0.4 ٥. $\delta_{\rm NF}$ -0.2 -0.4 -0.6

au-lepton polarization in $ar{B}^0 ightarrow D^* au^- ar{ u}_ au$

• First meas. of the τ longitudinal polarization in $\bar{B}^0 \to D^* \tau^- \bar{\nu}$ through $\tau^- \to \pi^- \nu_{\tau}, \ \tau^- \to \rho^- \nu_{\tau}$ [Belle'16,'17]

- The distribution of $\cos(\theta_{\tau d})$ gives the polarization
- $\bullet~{\rm SD}$ information carried out by the polarizations of the $\tau{\rm -lepton}$

Luiz Vale Silva (University of Sussex)

Review of LFUV studies

01 Fev 2018 10 / 11

[lyanov+'17]

Spare

au-lepton polarization in $B \to D au u$

Final-state τ → dν_τ(ν
_ℓ), d = {π, ρ, ℓ}: self-analyzer [Alonso+'17] Γ_d(τ → d) ⇒ P_L, and A_d(q²) = F^d_AA_τ(q²) + F^d_⊥P_⊥(q²) A_τ: FB asym.; P_⊥: perpendicular pol. (e.g. in the plane πν_τ)
 Belle II (full operation): τ → πν_τ, uncertainties ≤ O(10 %)

 $s_d = E_d / \sqrt{q^2}$ (in the $au ar{
u}_{ au}$ rest-frame)