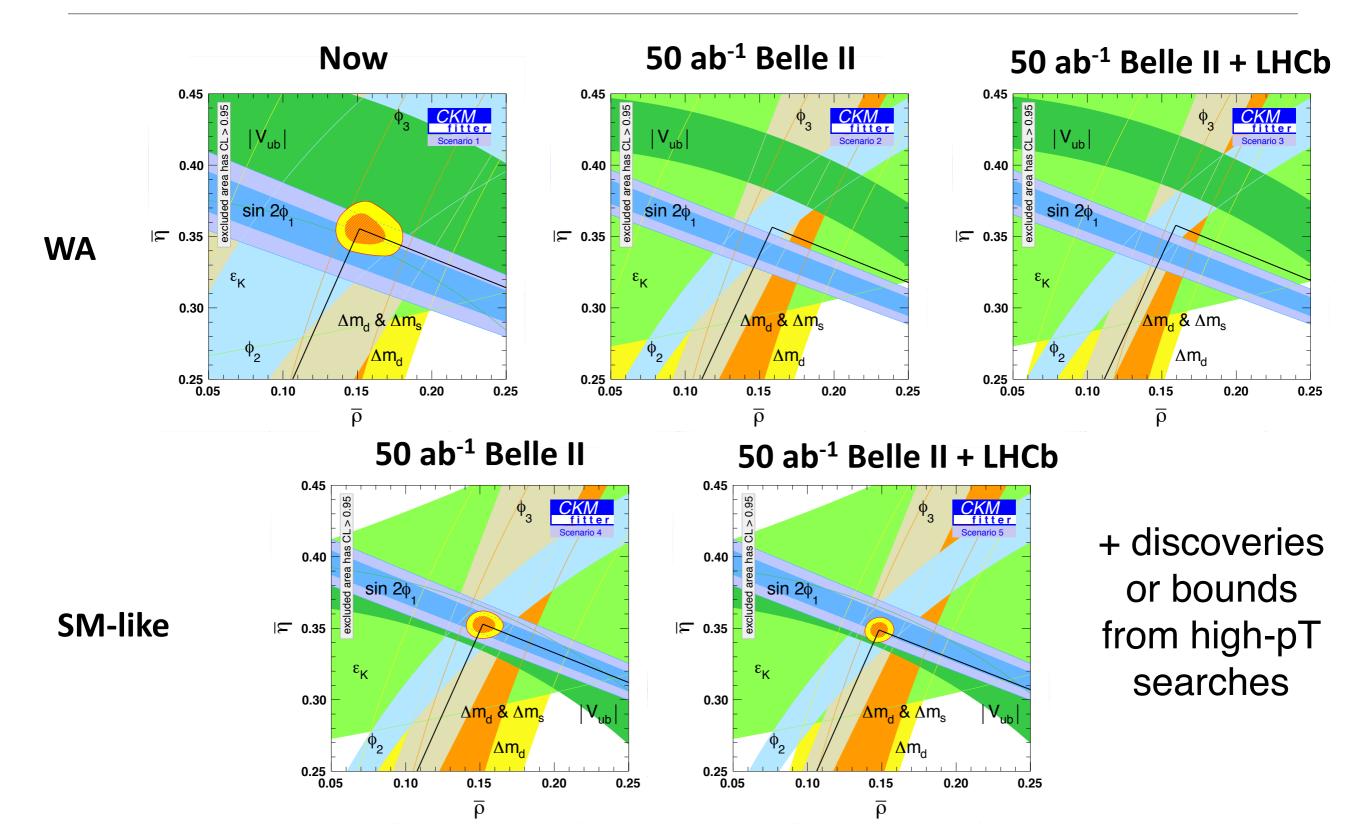
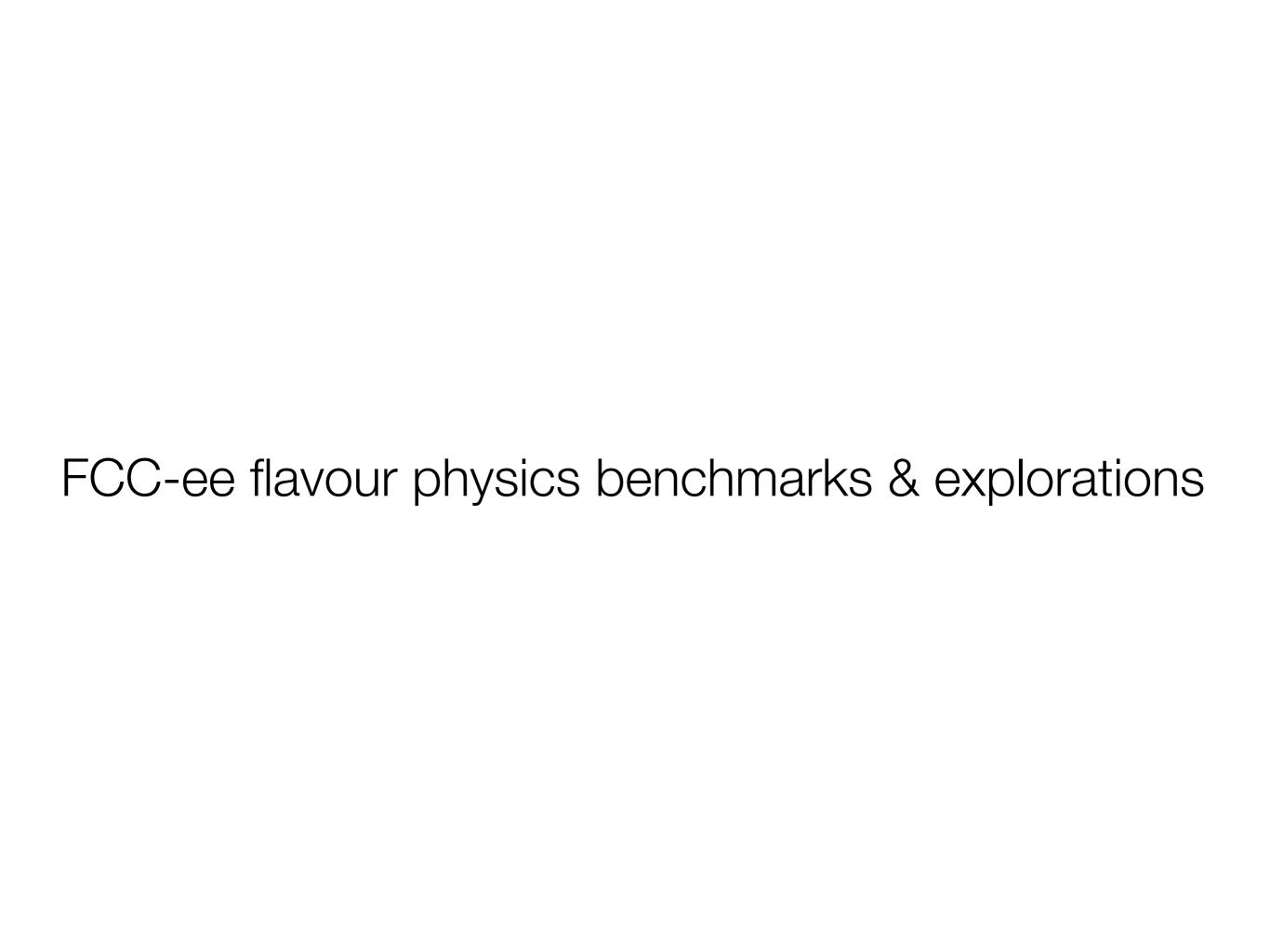

FCC-ee mini-workshop on Flavours

(Additional) Flavour Possibilities at FCC-ee Jernej F. Kamenik

Univerza v Ljubljani

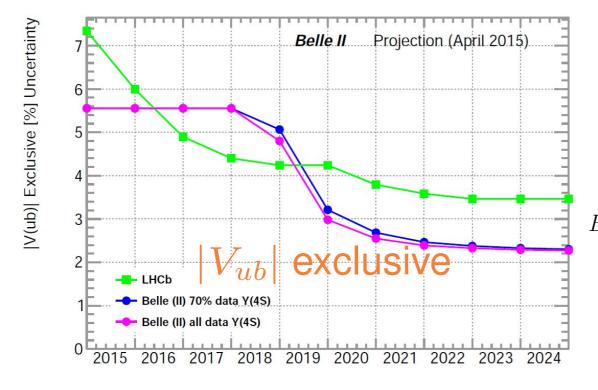

Institut "Jožef Stefan"



Scope of Flavour Physics @ FCC-ee

- Flavour physics reach with O(10¹³) Z decays (10⁸ W, 10⁶ Higgs, top)
 - rare decays of c- and b-hadrons and CP violation in the heavyquark sector
 - rare lepton decays
 - rare Z, (W, h, t?) decays
- In the context of ultimate potential of the LHCb upgrade and Belle II experiments.
- Possibility/utility of dedicated PID (π / K / p separation) detector
- Baseline focus on combination of conservative benchmarks and exploratory new observables

Flavor physics circa 2030: possible scenarios



(see talk by Becirevic)

$$\Rightarrow B_{u,c} \rightarrow \mu \nu, \tau \nu$$

- inclusive |Vub| measurements theory limited,
- final Bellell exclusive precision: ~2.2%

Improvement via B_{u,c}→μν,τν @ FCC-ee?

$$Br(B^- \to \tau^- \bar{\nu}(\gamma))_{\rm SM} = 1.13(1) \times 10^{-4} \left(\frac{f_B}{0.2 {\rm GeV}}\right)^2 \left(\frac{|V_{ub}|}{4 \times 10^{-3}}\right)^2$$

$$\left[\frac{\Gamma(B^+ \to \tau^+ \nu)}{\Gamma(B_c^+ \to \tau^+ \nu)}\right]_{SM^*} = 0.782 \left|\frac{V_{ub} f_B}{V_{cb} f_{B_c}}\right|^2$$

(see also talks by Becirevic, Vale Silva)

Searches for $B_c \to \tau \nu$ at FCC-ee

- BR($B_c \to \tau \nu$) measured in a e^+e^- collider at the Z pole
 - ▶ Searches of $B^- \to \tau^- \nu$ above $B_c \bar{B}_c$ threshold really measure

Mangano&Slabospitsky, PLB410(1997)299

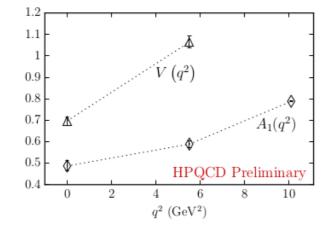
FCC-ee Belle & BaBar
$$\overline{\mathsf{BR}_{\mathrm{eff}}} = \overline{\mathsf{BR}(B \to \tau \nu)} + \frac{f_c}{f_u} \overline{\mathsf{BR}(B_c \to \tau \nu)}$$

- ▶ B_c contribution suppressed by $\frac{f_c/f_u}{V_{cb}}\sim 10^{-3}$ -10⁻² but enhanced by $\frac{|V_{cb}|^2}{|V_{ub}|^2}\frac{f_{B_c}^2}{f_B^2}\sim 700$
- f_c/f_u : Fraction of hadronization into B_c over B
 - Traded by experimental data and computable TH. input

$$R_{\ell} = rac{f_c}{f_u} rac{\mathsf{BR}(B_c o J/\psi \mu
u)}{B o J/\psi K}$$

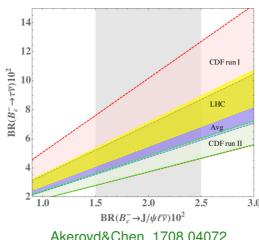
► R_ℓ measured by CDF and reconstructed from LHCb data

(see also talks by Becirevic, Vale Silva)


Searches for $B_c \to \tau \nu$ at FCC-ee

• Model calculations predict BR($B_c \to J/\psi \mu \nu$) $\in 1-7\%!$

	pQCD	WSL[9]	EFG[7]	ISK[6]	HNV[5]	DV[4]
$V^{B_c o J/\Psi}$	0.42	0.74	0.49	0.83	0.61	0.91
$A_0^{B_c \to J/\Psi}$	0.59	0.53	0.40	0.57	0.45	0.58
$A_1^{B_c \to J/\Psi}$	0.46	0.50	0.50	0.56	0.49	0.63
$A_2^{B_c o J/\Psi}$	0.64	0.44	0.73	0.54	0.56	0.74


Wang, Fang&Xiao, arXiv: 1212.5903

- Ongoing efforts in LQCD!
- Preliminary results to select models

HPQCD Collaboration, PoS LATTICE2016 (2016) 281

► Constrains BR($B_c \rightarrow \tau \nu$) < 10%

Akeroyd&Chen, 1708.04072

- M. Acciarri et al. [L3 Collaboration], Phys. Lett. B 396, 327 (1997). P. Abreu et al. [DELPHI Collaboration], Phys. Lett. B 496, 43 (2000).
- R. Barate et al. [ALEPH Collaboration], Eur. Phys. J. C 19, 213 (2001).

(see also talks by Becirevic, Vale Silva)

Searches for $B_c \to \tau \nu$ at FCC-ee

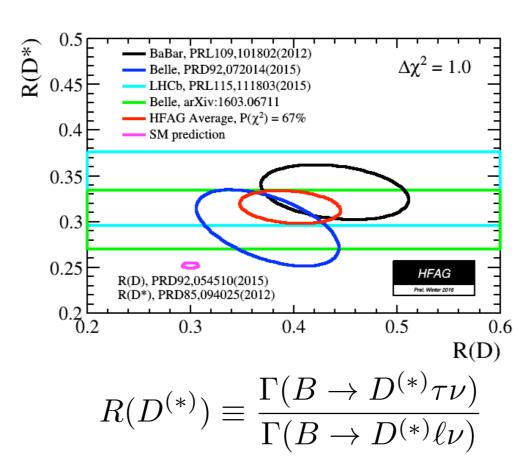
• Model calculations predict BR($B_c \to J/\psi \mu \nu$) $\in 1 - 7\%!$

	pQCD	WSL[9]	EFG[7]	ISK[6]	HNV[5]	DV[4]
$V^{B_c o J/\Psi}$	0.42	0.74	0.49	0.83	0.61	0.91
$A_0^{B_c \to J/\Psi}$	0.59	0.53	0.40	0.57	0.45	0.58
$A_1^{B_c \to J/\Psi}$	0.46	0.50	0.50	0.56	0.49	0.63
$A_2^{B_c o J/\Psi}$	0.64	0.44	0.73	0.54	0.56	0.74

Wang, Fang&Xiao, arXiv: 1212.5903

ightharpoonup Projections made for $\sim 10^9 Z$ bosons Akeroyd, Chen, Recksiegel, 0803.3517

Error BR $(B^{\pm}/B_c^{\pm} \to \tau^{\pm}\nu)$	High Lum. B Factory (B mesons)	Giga Z (Z bosons)
20%	2.2×10^{9}	3.2×10^{7}
4%	8.1×10^{10}	8×10^{8}


TABLE III: Required number of B mesons (Z bosons) for a precision of 20% and 4% in measurement of BR($B^{\pm}/B_c^{\pm} \to \tau^{\pm}\nu$), assuming a signal of BR_{eff} = $4 \pm 2 \times 10^{-4}$ at L3.

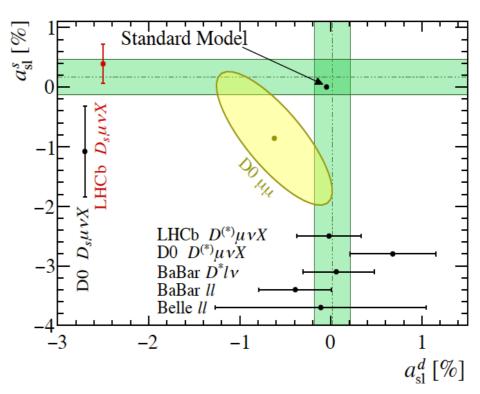
With 10¹³ Z bosons, can look towards other related systems:

$$\left[\frac{\Gamma(B^{+} \to \mu^{+} \nu)}{\Gamma(B^{+} \to \tau^{+} \nu)}\right]_{SM^{*}} = 4.46 \times 10^{-3} \quad \left[\frac{\Gamma(B_{c}^{+} \to \mu^{+} \nu)}{\Gamma(B_{c}^{+} \to \tau^{+} \nu)}\right]_{SM^{*}} = 4.15 \times 10^{-3}$$

(see also talks by Becirevic, Vale Silva)

Especially, given surprising current experimental situation concerning LFU:

With 10¹³ Z bosons, can look towards other related systems:


$$\left[\frac{\Gamma(B^{+} \to \mu^{+} \nu)}{\Gamma(B^{+} \to \tau^{+} \nu)}\right]_{SM^{*}} = 4.46 \times 10^{-3} \quad \left[\frac{\Gamma(B_{c}^{+} \to \mu^{+} \nu)}{\Gamma(B_{c}^{+} \to \tau^{+} \nu)}\right]_{SM^{*}} = 4.15 \times 10^{-3}$$

(see talk by Arogancia)

$$\Rightarrow a_{sl}^{(s,d)}$$

- Current exp. unc. ~0.5%
- Will be improved by order of magnitude by Bellell & LHCb
- Still order of magnitude above precision of SM predictions:

$$a_{\rm sl}^s = (2.22 \pm 0.27) \times 10^{-5} \text{ for } B_s^0$$
 $a_{\rm sl}^d = (-4.7 \pm 0.6) \times 10^{-4} \text{ for } B^0$

Naive extrapolation of LEP results suggests sensitivity of FCC-ee better than 10⁻⁴ More detailed studies underway

(see talks by Monteil, Vale Silva)

$$\Rightarrow B_{d,s} \rightarrow \tau \tau$$

• In the SM known to 6% precision:

Bobeth et al., 1311.0903

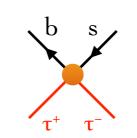
$$BR(B_s \to \tau^+ \tau^-) = (7.73 \pm 0.49) \times 10^{-7}$$

 $BR(B_d \to \tau^+ \tau^-) = (2.22 \pm 0.19) \times 10^{-8}$

First direct exp. bounds by LHCb:

LHCb-CONF-2016-011

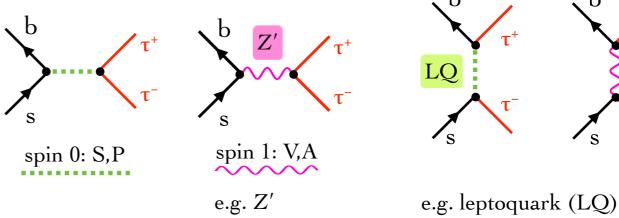
Br(B_s
$$\rightarrow \tau^+\tau^-$$
) < 3.0 × 10⁻³
Br(B_d $\rightarrow \tau^+\tau^-$) < 1.3 × 10⁻³

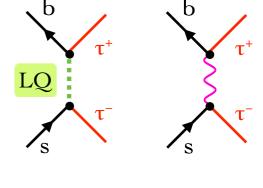

- Expected sensitivity at Belle II to BRs of O $(10^{-4}) \sim O(10^{-5})$
- Sensitivity at FCC-ee could be improved with partial reconstruction techniques (in progress)

(see talks by Monteil, Vale Silva)

$$\Rightarrow B_{d,s} \rightarrow \tau \tau$$

 Apart from tensors, all BSM bs(d)TT Lorentz structures can be tested


 B_s



$$Q_{S,AB} = (\bar{s}P_A b) (\bar{\tau}P_B \tau)$$

$$Q_{V,AB} = (\bar{s}\gamma_\mu P_A b) (\bar{\tau}\gamma^\mu P_B \tau)$$

Relatively most sensitive probe for scalar and vector operators U. Haisch, 1206.1230

U. Haisch @ FCC-ee flavour WG meeting 1

(see talks by Monteil, Vale Silva)

$\Rightarrow b \rightarrow s \tau \tau$

- LFU tests with FCNC B decays
- Theoretically extremely clean

$$\begin{split} R^{\mu\tau}_{\pi^+} &= 1.18 \pm 0.06 \quad , \quad R^{\mu\tau}_{\pi^0} = 1.19 \pm 0.06 \; , \\ R^{\mu\tau}_{K^+} &= 0.87 \pm 0.02 \quad , \quad R^{\mu\tau}_{K^0} = 0.87 \pm 0.02 \; , \\ 15 \; \mathrm{GeV^2} < q^2 < 22 \; \mathrm{GeV^2} \end{split}$$
 Fermilab Lattice & MILC, 1510.02349

$$R_{K^{*+}}^{\mu\tau} = 2.44 \pm 0.09 \; , \quad R_{K^{*0}}^{\mu\tau} = 2.45 \pm 0.08 \; ,$$

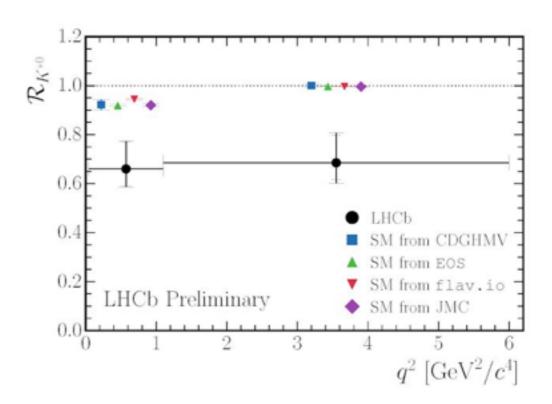
$$15 \; {\rm GeV^2} < q^2 < 19.2 \; {\rm GeV^2}.$$
 D. M. Straub, flavio

W. Altmannshofer @ FCC-ee flavour WG meeting 2 B2TiP draft report

$$R_H^{\ell\ell'} = \frac{\mathrm{BR}(B \to H\ell^+\ell^-)}{\mathrm{BR}(B \to H\ell'^+\ell'^-)} ,$$

- ▶ QCD 2loop virtual corrections (known) are not included in these predictions (are the ratios affected?)
- ► NLO QED corrections might lead to few % shifts M. Bordone et al., 1605.07633

(known for the inclusive $B \to X_s \ell^+ \ell^-$ decays, but not yet calculated for the exclusive modes)


effect of charmonium resonances?

(see talks by Monteil, Vale Silva)

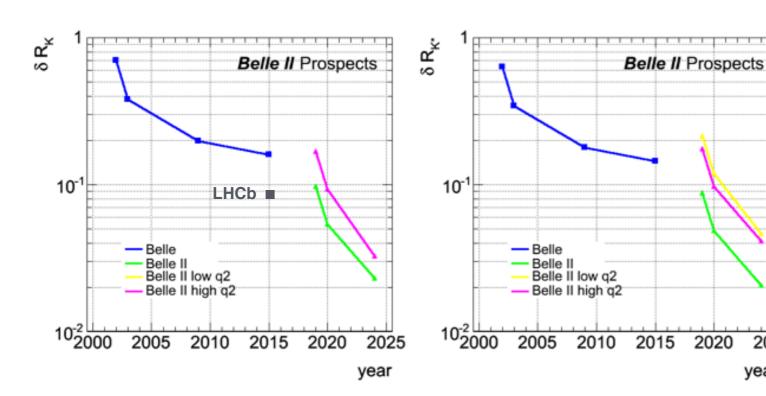
$$\Rightarrow b \rightarrow stt$$

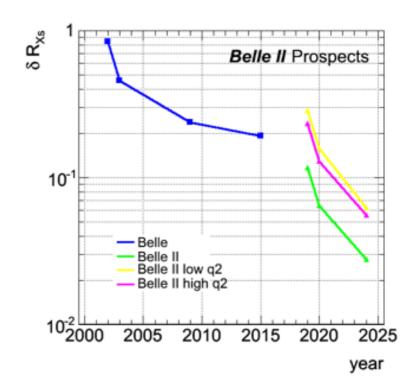
- LFU tests with FCNC B decays
- Surprising exp. situation (μ/e)

$$R_H^{\ell\ell'} = \frac{\mathrm{BR}(B \to H\ell^+\ell^-)}{\mathrm{BR}(B \to H\ell'^+\ell'^-)} ,$$

(see talks by Monteil, Vale Silva)

$\Rightarrow b \rightarrow STT$


- LFU tests with FCNC B decays
- Surprising exp. situation (μ/e)
- Final Belle II precision <4%


$$R_H^{\ell\ell'} = \frac{\mathrm{BR}(B \to H\ell^+\ell^-)}{\mathrm{BR}(B \to H\ell'^+\ell'^-)} ,$$

2020

2025

year

(see talks by Monteil, Vale Silva)

- LFU tests with FCNC B decays
- Surprising exp. situation (μ/e)
- Motivates LFU tests with τ's
- Strongest current bound: (BaBar, PoS ICHEP 2010, 234)

$$R_H^{\ell\ell'} = \frac{\mathrm{BR}(B \to H\ell^+\ell^-)}{\mathrm{BR}(B \to H\ell'^+\ell'^-)} ,$$

$$BR(B \to K\tau^+\tau^-)_{[14.23,max]} < 3.3 \times 10^{-3}$$

Expected sensitivity at Belle II to BRs of O $(10^{-4}) \sim O(10^{-5})$

(see talks by Monteil, Vale Silva)

LFU tests with FCNC B decays

 $R_H^{\ell\ell'} = \frac{\mathrm{BR}(B \to H\ell^+\ell^-)}{\mathrm{BR}(B \to H\ell'^+\ell'^-)} ,$

- Surprising exp. situation (μ/e)
- Motivates LFU tests with τ's
- Example: BSM explanation of (μ/e) anomaly in terms of gauged τ-μ:

BR(
$$B^+ \to K^+ \tau^+ \tau^-$$
) $_{L_{\mu}-L_{\tau}} = (1.46 \pm 0.13) \times 10^{-7}$,
BR($B_d \to K^0 \tau^+ \tau^-$) $_{L_{\mu}-L_{\tau}} = (1.35 \pm 0.12) \times 10^{-7}$,
BR($B^+ \to K^{*+} \tau^+ \tau^-$) $_{L_{\mu}-L_{\tau}} = (1.53 \pm 0.23) \times 10^{-7}$,
BR($B_d \to K^{*0} \tau^+ \tau^-$) $_{L_{\mu}-L_{\tau}} = (1.40 \pm 0.21) \times 10^{-7}$,
(~40% enhancement over SM)

W. Altmannshofer et al., 1403.1269

(see talks by Monteil, Vale Silva)

⇒ b→stt

LFU tests with FCNC B decays

 $R_H^{\ell\ell'} = \frac{\mathrm{BR}(B \to H\ell^+\ell^-)}{\mathrm{BR}(B \to H\ell'^+\ell'^-)} ,$

- Surprising exp. situation (μ/e)
- Motivates LFU tests with τ's
- Generic NP in LH-currents: strong existing bounds from correlated mode

$$BR(B^+ \to K^+ \nu \bar{\nu}) < 1.6 \times 10^{-7}$$

Allowed contributions to rare semitaunic decays below projected Belle II sensitivity:

$$BR(B^{+} \to K^{+}\tau^{+}\tau^{-})_{LH} < 24.5 \times 10^{-7} ,$$

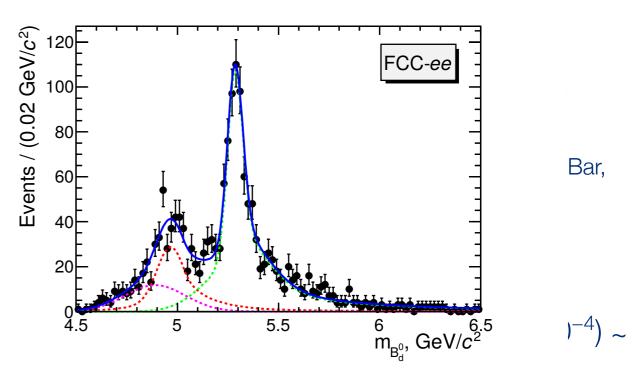
$$BR(B_{d} \to K^{0}\tau^{+}\tau^{-})_{LH} < 22.5 \times 10^{-7} ,$$

$$BR(B_{d} \to K^{*+}\tau^{+}\tau^{-})_{LH} < 22.8 \times 10^{-7} ,$$

$$BR(B_{s} \to \tau^{+}\tau^{-})_{LH} < 1.5 \times 10^{-5} ,$$

$$BR(B_{s} \to \tau^{+}\tau^{-})_{LH} < 1.5 \times 10^{-5} ,$$

(at most ~ x 20 enhancement over SM)

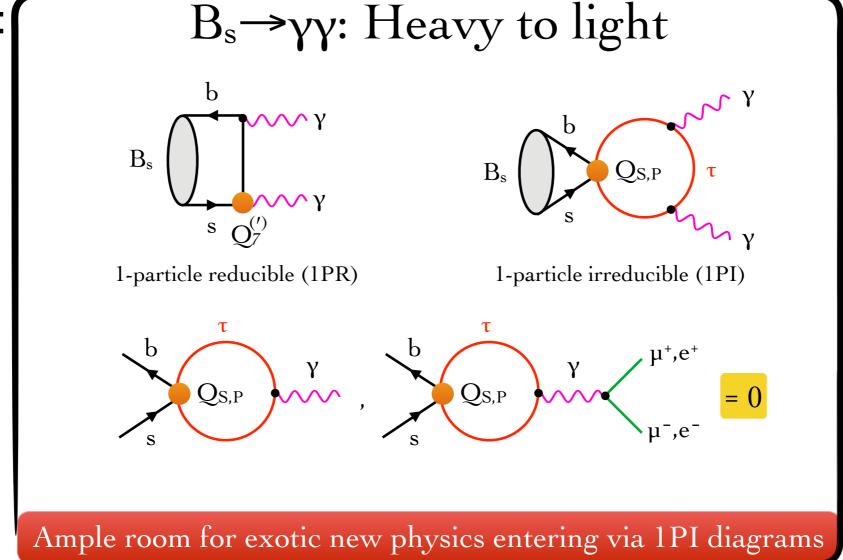

(see talks by Monteil, Vale Silva)

⇒ b→stt

First FCC-ee sensitivity study of B→K* τ τ

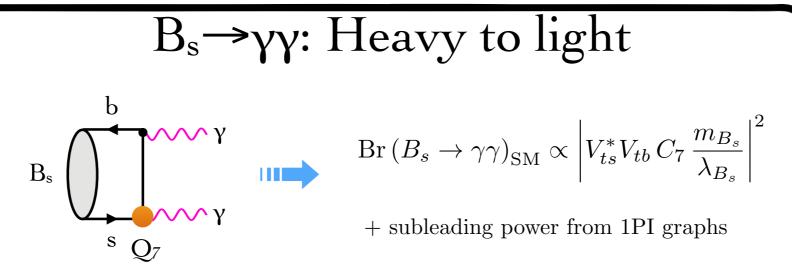
At SM rates expect up to O(1000) reconstructed events at FCC-ee

- Study of distributions
- Access to tau spin



J.F.K., Monteil, Semkiv & Vale Silva, 1705.11106

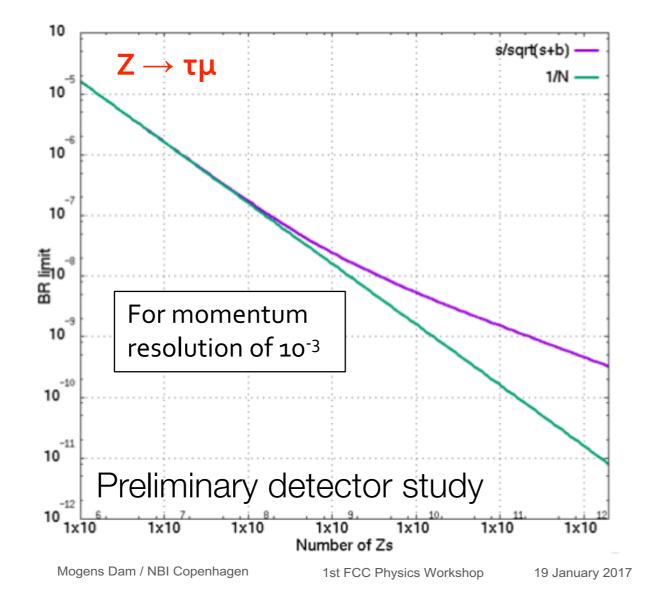
Decay modes involving B_s, B_c or b-baryon with neutral final state particles


• $B_s \rightarrow K_S K_S$, $B_{d,s} \rightarrow \gamma \gamma$, $B_s \rightarrow X \nu \nu$, CP violation in hadronic B_s decays with neutrals

Example:

Decay modes involving B_s, B_c or b-baryon with neutral final state particles

- $B_s \rightarrow K_S K_S$, $B_{d,s} \rightarrow \gamma \gamma$, $B_s \rightarrow X \nu \nu$, CP violation in hadronic B_s decays with neutrals
- Example:

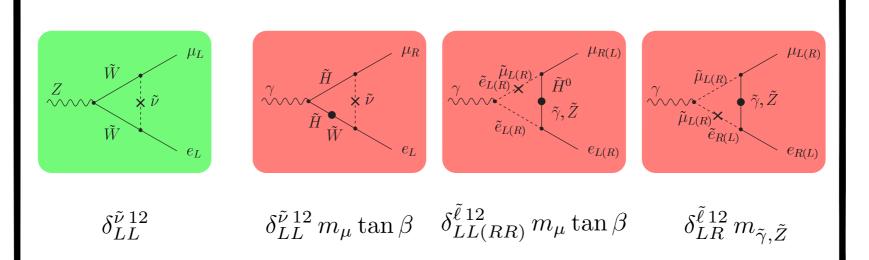


- Double-radiative decay also offers possibility to determine properties of B_s-meson light-cone distribution amplitude, in particular of its inverse moment λ_{Bs}
- Combining $B_s \rightarrow \gamma \gamma$ with $B \rightarrow \gamma l \nu$, $B_s \rightarrow \phi \gamma$, ... into global fit might allow to cancel common hadronic uncertainties

Further theoretical studies needed to strengthen physics case

 Direct lepton flavour violating processes Z→eμ,eτ,τμ, Lepton flavour violating τ decays, Lepton number violation

Example:

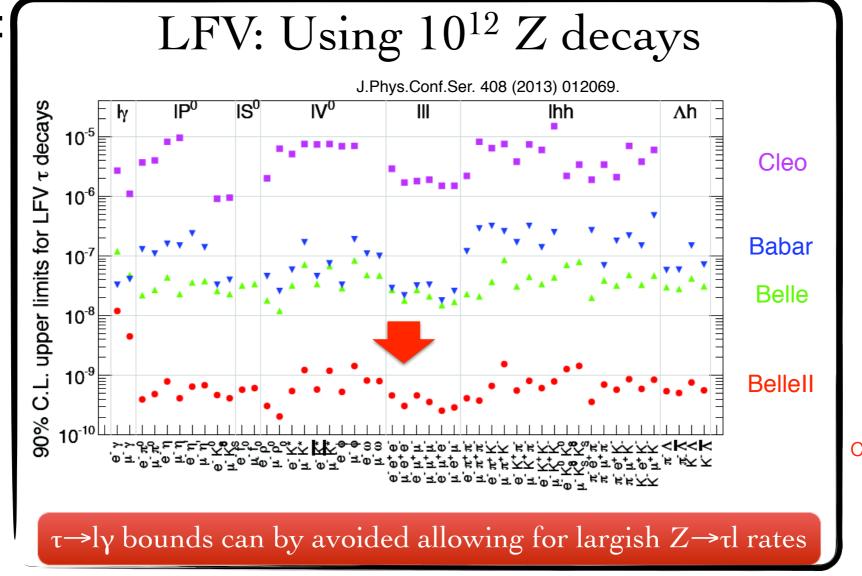

Lepton Flavour violating processes

(see talk by Dam)

 Direct lepton flavour violating processes Z→eμ,eτ,τμ, Lepton flavour violating τ decays, Lepton number violation

Example:

LFV: Using $10^{12} Z$ decays


for large mass insertions $\delta_{LL}^{\tilde{v} \, 13}$ ($\delta_{LL}^{\tilde{v} \, 23}$), small $\tan \beta$ & light sneutrinos of around 70 GeV, one gets $Br(Z \rightarrow \tau l) \sim Br(\tau \rightarrow l \gamma) = O(10^{-8})$

[Illiana & Masip, 0207328]

τ \rightarrow lγ bounds can by avoided allowing for largish $Z\rightarrow$ τl rates

 Direct lepton flavour violating processes Z→eμ,eτ,τμ, Lepton flavour violating τ decays, Lepton number violation

Example:

Also FCC-ee possibly with comparable sensitivity!

Lepton Flavour violating processes

- Direct lepton flavour violating processes Z→eμ,eτ,τμ, Lepton flavour violating τ decays, Lepton number violation
- Similar possibility in the quark sector? i.e. $Z o j_b j_{b/\!\!/}$
 - Motivation: Probing FCNC Z-penguins directly

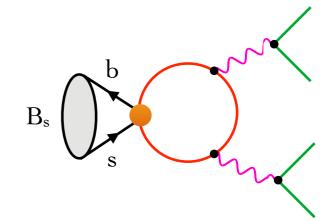
c.f. Isidori & Guadagnoli, 1302.3909

• In SM $\mathcal{B}(Z \to s\bar{b}) \sim 10^{-8}$

- could be probed to 1% level?

Need very efficient b-, s-tagging!

Preliminary study in context of LC


Duarte-Campderros G. Perez, M. Sclaffer, A. Soffer presented at Top physics at the LC 2017 June 2017

Multibody (meaning 4 and more) hadronic bhadron decays

- $B_s \rightarrow \psi \eta'$ or $\eta c\Phi$: flavour tagging required for weak mixing phase.
- $B_s \rightarrow D_s K$: PID required to isolate the signal.

see also R. Fleischer @ FCC-ee flavour WG meeting 3

- $B_{d,s,u,c} \rightarrow 4h+:$
 - interesting per se in a standard flavour physics case
 - also for dark portal explorations (can proceed through two scalars, vectors)...

Flavour at high-pT

$$W^+ \to c\bar{b}$$

- $\sigma(e^+e^- \to W^+W^-) \sim 10 \mathrm{pb}$ (in energy range of FCC-ee)
- With SM value of $\mathcal{B}(W^+\to c\bar{b})\sim 10^{-3}\,$ a precision of $\frac{\delta V_{cb}}{V_{cb}}\sim 1\%$ might be within reach...

Need efficient heavy flavour tagging or reconstruction

- Complementary to conventional measurements at B factories at the scale of m_W (running of CKM negligible in SM)
- In addition to more conventional measurements at Z pole

$$B \to X_c \ell \nu, \ B \to X_c \tau \nu$$

Conclusions

- FCC-ee could be a powerful and competitive probe of flavour physics post-2030
- Effort underway to understand the experimental precision with which rare decays of c- and b-hadrons and CP violation in the heavy-quark sector & LFV processes could be measured
 - Currently less explored directions: quarkonia physics, flavour tagging from Higgs, top decays,... (see talk by Bicudo)

Backup

Further FCC-ee & Flavour WG references

- References for the FCC-ee machine in:
 - http://tlep.web.cern.ch/content/accelerator-studies
- First look at the FCC-ee Physics Case:
 - arXiv:1308.6176 / JHEP01 (2014) 164.
- Flavour WG web: http://tlep.web.cern.ch/content/wg6-exp

FCC-ee Flavour WG meetings

FCC-ee Flavour Physics vidyo meetings:

https://indico.cern.ch/event/336998/,

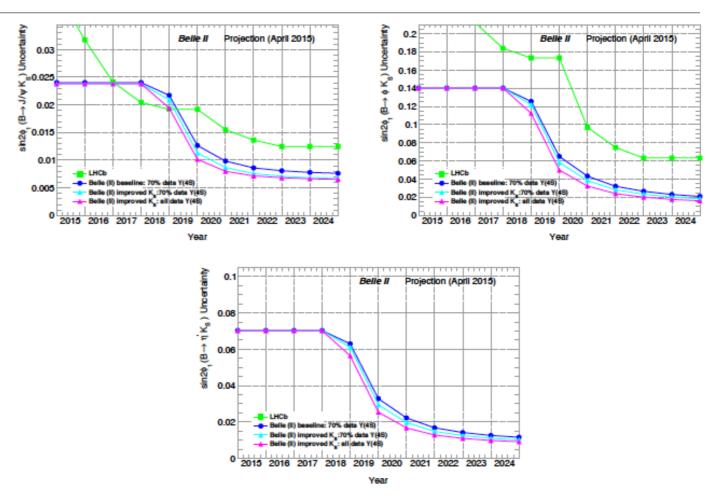
https://indico.cern.ch/event/359433/,

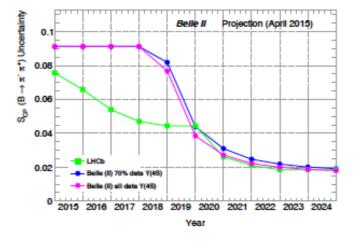
https://indico.cern.ch/event/380986/,

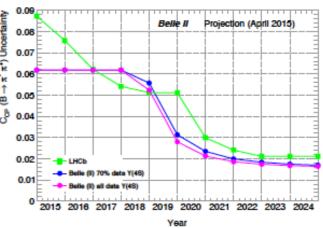
https://indico.cern.ch/event/403492/,

https://indico.cern.ch/event/462662/

• Subscribe to our mailing list!

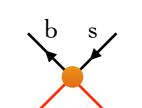

B physics


B_{s,d} - oscillations


 \Rightarrow sin2 β , α

Final Bellell & LHCb precision comparable & statistically dominated

Theory uncertainties (in sin2β) at ~1%



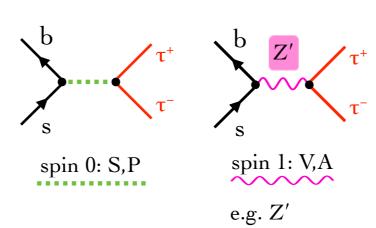
- B_{d,s}→ee,μμ,ττ, V_{ub} extraction, CP violation in mixing through semileptonic asymmetries, B_{u,c}→μν,τν, b→sττ
- Example: B_{d,s}→ττ
 - Apart from tensors, all bs(d)ττ Lorentz structures are tested
 - Present LHCb bounds LHCb-CONF-2016-011

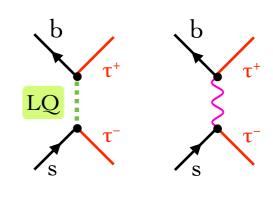
$$Br(B_s \to \tau^+\tau^-) < 3.0 \times 10^{-3}$$

 $Br(B_d \to \tau^+\tau^-) < 1.3 \times 10^{-3}$

 B_s τ^+

 $Q_{S,AB} = (\bar{s}P_A b) (\bar{\tau}P_B \tau)$ $Q_{V,AB} = (\bar{s}\gamma_\mu P_A b) (\bar{\tau}\gamma^\mu P_B \tau)$


U. Haisch @ FCC-ee flavour WG meeting 1


• In the SM: Bobeth et al., 1311.0903

BR(
$$B_s \to \tau^+ \tau^-$$
) = $(7.73 \pm 0.49) \times 10^{-7}$
BR($B_d \to \tau^+ \tau^-$) = $(2.22 \pm 0.19) \times 10^{-8}$

 Best probe for scalar and vector operators

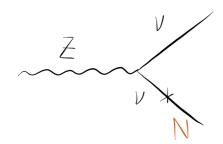
U. Haisch, 1206.1230

e.g. leptoquark (LQ)

Heavy Neutrinos & LNV $M_{\nu} = -M_D M_N^{-1} M_D$

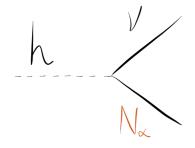
$$M_{\nu} = -M_D M_N^{-1} M_D$$

type I and III


on the Z-pole

Gronau, Leung, Rosner '84, ...

$$n_Z \sim 10^{12} - 10^{13}$$


large statistics
$$n_Z \sim 10^{12}-10^{13}$$
 over $n_Z \sim 10^6$ at LEP

Delphi '97

expect a limit of
$$\left(\frac{m_D}{m_N}\right)^2 < 10^{-11} - 10^{-12}$$
 Blondel, Graverini, Serra, Shaposhnikov 1411.5230

Higgs decays FCC-ee
$$\sqrt{s}=240~{
m GeV},\, {\cal L}=10~{
m ab}
ightarrow 2.4 imes 10^6~Zh$$

$$\frac{\Gamma_{h\to\nu N}}{\Gamma_{h\to b\bar{b}}}\simeq \frac{1}{N_c}\left(\frac{m_D}{m_N}\right)^2\left(\frac{m_N}{m_b}\right)^2<10^{-9}\qquad \text{competitive between Z and h?}$$

Heavy Neutrinos & LNV

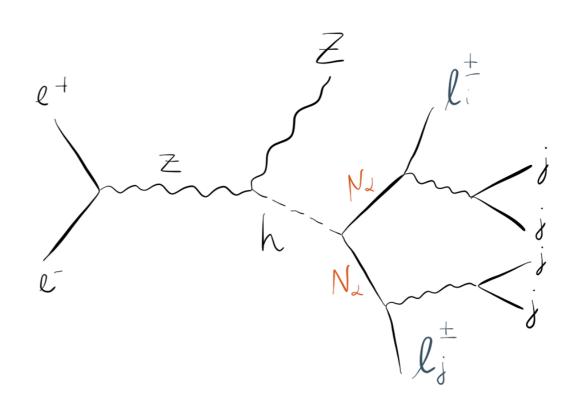
$$M_{\nu} = -M_D M_N^{-1} M_D$$

Left-Right

LNV Higgs decays fair background, need isolation + cuts

LHC Higgs slightly boosted $\gamma_h \simeq 3$

inefficient for small N mass


no significant background

FCC-ee

Higgs boost $\gamma_h = 1.08$

higher efficiency for lower masses

additional tagging Z

