s HOW DO DATA LAKES WORK? =

The concept can be compared to a water body, a lake, where water flows in, filling up a reservoir and flows out.

The incoming flow represents
muitiple raw data archives ranging

from emails, spreadsheets, ' f

STRUCTURED DATA social media content, etc.

1. Information in rows and columns * a
| A~
2. Easily ordered and processed H M ‘
with data mining tools é

UNSTRUCTURED DATA

1. Raw, unorganized data

2. Emails

3. POF files

4. Images, video and audio
5. Social media tools

The reservoir of water is a dataset,
where you run analytics on all the data.

e The outflow of water is the analyzed data

Through this process, you are
able to “sift™ through all the
data quickly to gain key

business insights.

andreas.Joachim.peters@cern.ch
Qu'est-ce que le Data Lake, le nouveau concept "Big Data" en vogue

E O S d eV fO r X D C & www.journaldunet.com » Web & Tech » DSI ¥ Diese Seite libersetzen
09.01.2017 - Le Data Lake doit permettre, enfin, de casser les silos des systémes d'information. C'est
D -t L k S t aussi un moyen de gagner en agilité. L'expert Vincent Heuschling répond aux questions du JDN.
“i\ndreas-J oachim Peters™

% CERN - IT
Storage Group

Data lake

From Wikipedia, the free encyclopedia

A data lake is a method of storing data within a system or repository, in its natural format,!"! that facilitates the collocation of data in various schemata and structural
forms, usually object blobs or files. The idea of data lake is to have a single store of all data in the enterprise ranging from raw data (which implies exact copy of
source system data) to transformed data which is used for various tasks including reporting, visualization, analytics and machine learning. The data lake includes
structured data from relational databases (rows and columns), semi-structured data (CSV, logs, XML, JSON), unstructured data (emails, documents, PDFs) and even
binary data (images, audio, video) thus creating a centralized data store accommodating all forms of data.[?!

A data swamp is a deteriorated data lake, that is inaccessible to its intended users and provides little value.[3l[4]

D B O} B R R e o

ok

mailto:andreas.joachim.peters@cern.ch?subject=

Overview

XDC/EOS Key components
1. Storage Workflows

2. Storage Adaptor

3. Managed Caches

EOS Development Items to operate a Data Lake
External Storage Mounts & Synchronisation
Extension of File Layout Concepts

complex layouts
exposed locations
Internal & External Workflows
File Layout, Distribution & Lifecycle Policies

CERN

{7

EOS - Distributed Architecture

data storage

distributed object store

file = object

data storage

hierarchical
structure

centralised MD store (QuarkDB)
& DDM centralised access control

"R
()

data storage

flat
structure

data storage

@ |

S
EOS - External Storage Mounts ”m\fﬁ]

data storage

distributed object store
file = object
mounted

external storage

with external
data storage

=
[(<>

\ hierarchical

3 3 structure
ES

— centralised MD store (QuarkDB)
@ & DDM centralised access control

flat
structure

Amazon S3
data storage

basic constraints:
write-once data

data storage PUT semantic

@ 4

>
EOS - External Storage Mounts *ﬁ“

Current closed mode|
LFN: /eos/public/myfile => inode X @ storage Y

global logical namespace
creates flat storage namespace

External model

LFN: /eos/amazon/myfile <= LFN:/bucket/myfile
LDN: /eos/amazon mounts s3://bucket/

-——

local external (flat or hierarchical) storage namespace
synchronises into global namespace with predefined
path and ownership mapping

change discovery mechanisms:
® using scans
e using notification (inotify, AWS notifications)

S
EOS - External Storage Mounts ”m\fﬁ]

data storage

distributed object store
file = object
mounted

external storage

with external
data storage

=
[(<>

\ hierarchical

3 3 structure
ES

— centralised MD store (QuarkDB)
@ & DDM centralised access control

flat
structure

Amazon S3
data storage

data storage

direct local access
with local authentication

@ |

S
EOS - External Storage Mounts ”m\fﬁ]

data storage

distributed object store
file = object
mounted

external storage

with external
data storage

M
‘r ‘”\. hierarchical

3 3 structure

e
store (QuarkDB)

e
d access control

—_ centralised
@ & DDM centra

flat
structure

Amazon S3
data storage

data storage

global access
with global authentication

@\ through stateless FST gateways
N Z

gz
.

i

EOS - Extended File Layouts

Today files described by static layout (type + parameters e.g replica:2)

EOS Console [root://localhost] |/eos/pps/users/apeters/> file info myfile
File: '/eos/pps/users/apeters/myfile' Flags: 0640
Size: 1431
Modify: Mon Dec 18 23:28:52 2017 Timestamp: 1513636132.90
Change: Mon Dec 18 23:28:52 2017 Timestamp: 1513636132.336292718
CUid: @ CGid: @ Fxid: @Obbcabae Fid: 196914094 Pid: 146768814
adler XS: 05 a7 f1 40 ETAG: 52858724615716864:05a71140
replica Stripes: 2|Blocksize: 4k LayoutId: 00600112

o,
LAY S o

Pxid: @8bf83ae

¥Ctanos
T

no.| fs-id host schedgroup path boot configstatus| drainstatus active geotag
0 6783 p05614923d80639.cern.ch default.33 /data39 booted rw nodrain 9918::R::0001::WB02
1 8345 Ixfsre@3a@4.cern.ch default.33 /data@5 booted rw nodrain ©0513::R::0050: :REQ3

New namespace backend (QuarkDB) allows to store additional meta data per file:
 extend the concept of layouts by distinguishing a static and a dynamic part
® static part allows to guarantee longterm durability

® dynamic part allows to track locations in caches, might be stale

static:

no.| fs-id host schedgroup path boot configstatus| drainstatus active geotag
0 6783 p05614923d80639.cern.ch default.33 /data39 booted rw nodrain online 9918::R::0001::WB02
1 8345 1xfsre@3a04.cern.ch default.33 /data@5 booted rw nodrain online 0513::R::0050: :RE03
dynamic:

2 8400 bucket.awsl.fzk aws /aws. fzk booted rw nodrain online AWS::DE::FZK

3 8401 bucket.aws2.fzk aws /aws.muc Booted rw nodrain online AWS: :DE::MUC

>
EOS - Layouts Life cycles *m]

automatic change of layouts over time [how, when, where]

—

on creation after 1 month after 3 month after 6 month
replica:3 + RAIN: (4,2) replica: 1 + 1 1 tape copy
dyn. caching no dyn. caching tape copy

ondisk 300% + dyn. 150% 100% 0%

ontape (0% 0% 100% 100%

need to extend language to express layout life cycles in extended attributes

\

>
EOS - Location Exposure *ﬁm

e today all files are ‘located’ at the namespace node
* need to integrate virtual location lookup with job scheduling system
to optimise cpu/disk proximity
® XRootD location query
® agree on using metalinks (?) created via smart files*

* smart files are virtual files creating contents on the fly by
executing an EOS command as implemented for WLCG
storage monitoring/description files

I

-
EOS - Internal workflows vfmn

* core component developed for tiered architecture (EOS+CTA)
® steer migration & recall

e core component for automatic layout lifecycle
e time based scheduling (avoids full table scans)
e workflow chains
e schedule workflow B when A was executed
e.g. when a file was converted after 1 week to a RAIN file
we schedule after 6 month to migrate to tape only

l

1

-
EOS - External workflows vﬁ[’n’l

 workflow implementation is changed now to send protobuf messages
to arbitrary external services e.g.
e will feed CTA service
e can feed FTS service
e can feed POPularity service to manually trigger layout lifecycles
® trigger automatic job submission when files are generated
* trigger automatic file registration in experiment databases
® aso.

>
EOS - FST read-through cache &GC vrm]

remote storage dynamic cache location

.4—@4— o

client local storage
existing static replica T

eviction policies

no passive untracked caches inside EOS

»

