

Achromatic Telescopic Squeezing (ATS) scheme: principle, by-products and experience with beams

S. Fartoukh (BE/ABP)

Chamonix Talk outlines, TCC, 21/12/2017

Content

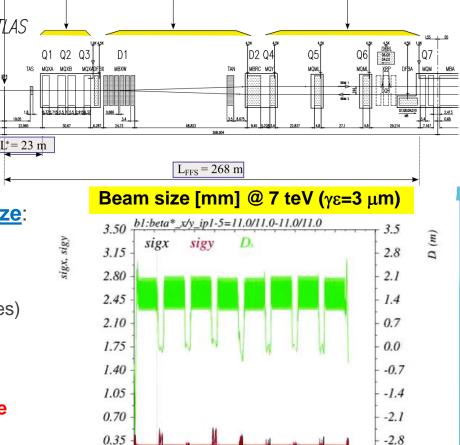
Recap: ATS principle, by-products and MD's in Run I

ATS MD's in 2016/2017 (round & flat optics)

2017 ATS LHC optics: Check-up after one operational year (2017 vs. 2016)

ATS driven limitations for future LHC operation

Recap: ATS principle, by products, MDs in Run I


The ATS scheme is the most cost-effective, if not the only way, to reach the targeted HL-LHC β^* of 10-15 cm

Why: To be focused at the IP, the beam must ATTAS first be widely expanded in the triplet, something intrinsically limited by the finite length of the matching section

How: a squeeze in two steps \rightarrow

- An "almost" standard squeeze, the Pre-squeeze: 1.
- \rightarrow acting on the matching quads of IR1 and IR5 with new matching constraints on the left/right IR phase,
- \rightarrow till reaching some limits on matching guads (or sextupoles)
- 2. A further reduction of β^* , the Tele-Squeeze:
- \rightarrow acting only IR2/8 for squeezing IR1 and IR4/6 for IR5,

 \rightarrow inducing β -beating bumps in s81/12/45/56 to boost the sextupole efficiency, but also the octupoles (see later).

Matching section Q4/5/6

IP5 S. Fartoukh, ATS Chamonix Talk summariz

IP6

IP8

IP1

IP2

0.0

Triplet Q1/2/3 Separation dipoles D1/D2

-3.5 30.0

ICC

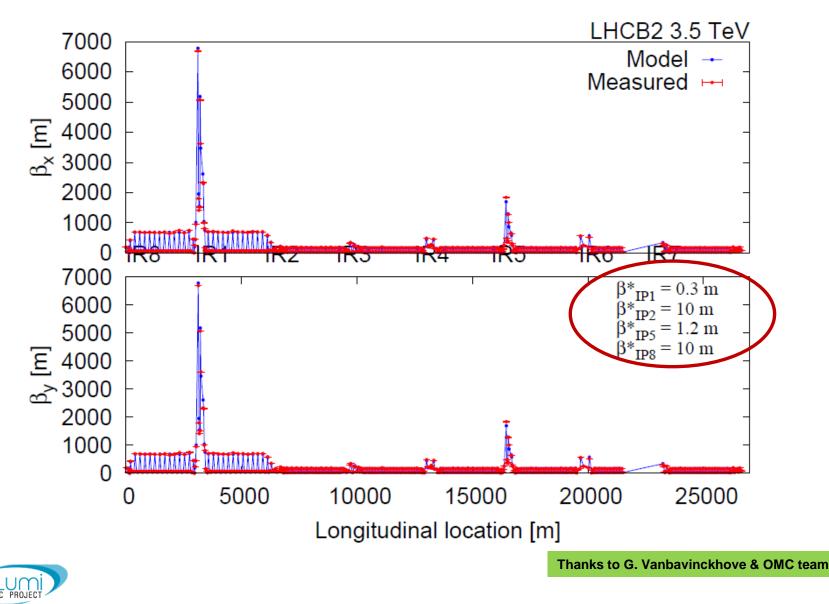
Recap: ATS principle, by products, MDs in Run I

By-products coming from the (controlled) β -beating induced in the IR1/5 adjacent arcs, and from the phasing of these arcs w.r.t the triplet

♦ Q' correction at constant sextupole strength: $β_{MS} □ 1/β^*$

 \rightarrow no β^* limits from Q' correct-ability

 Very clean compensation of chromatic aberrations, such as off-momentum βbeating, non-linear chromaticity, spurious dispersion from crossing angle


→ preservation of off-momentum triplet aperture, IR7 hierarchy preservation over the RF bucket (no degradation of TCP/TCS retraction), control of chromatic tune spread (Q", Q"",..), other exotic effects avoided like strong pacman effect on Q'

Lattice octupoles boosted at constant strength: ΔQ_{spread} □ (β_{MO})² □1/β^{*2}
 → More Landau damping to cope with impedance/intensity increase,

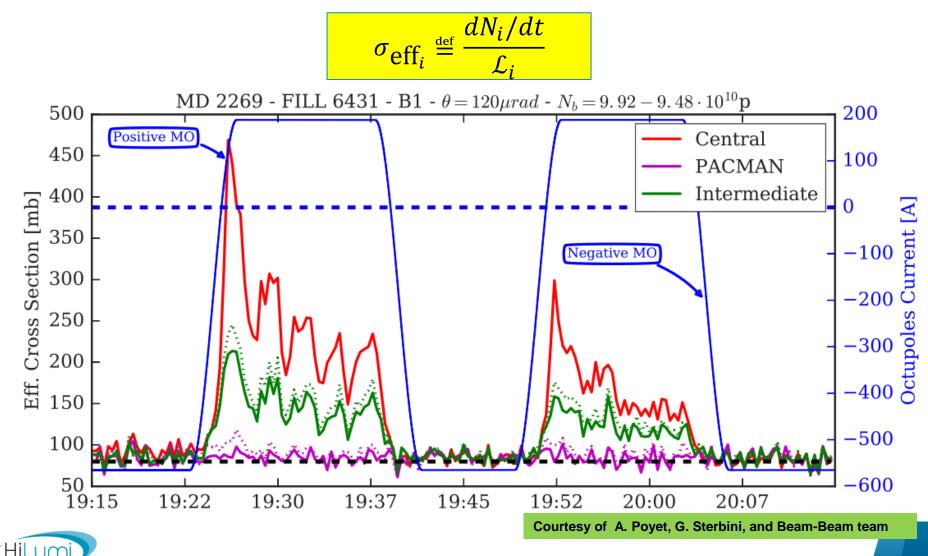
 \rightarrow Using the octupoles in SB for BBLR mitigation \rightarrow X-angle reach

First demonstration with beam in 2011 (.. already with 30 cm β^* !) \rightarrow <u>Telescopic principle (×4) demonstrated in IR1</u>

Highlights from ATS MD's in 2016/2017

ATS MD's in Run I (2011-12) demonstrated <u>the basics</u>,

down to 10 cm β^* (in non-operational machine conditions, e.g. w/o X-angle) With


(i) low intensity beams and

(ii) not always with state of the art optics correction

- ATS MD's in Run II (2016-17-..18) developed a new version of the ATS optics (optimized for machine protection aspects) on 3 fronts
- Round telescopic optics with pushed pre-squeezed β^{*} (40 cm), limiting the <u>high intensity tests to "small" tele-index</u>
 → for LHC (r_{tele} ~ 4/3 @ β^{*} ~ 30 cm)
- 2. Round telescopic optics with larger pre-squeezed β^{*} (1 m), enabling <u>high intensity tests @ large tele-index</u>
 → for (HL-)LHC (r_{tele}~ 3 @ β^{*} ~ 30 cm)
- 3. Flat optics (just started) → for (HL-)LHC

- Tele index of 3 @ β^* =35 cm (tele-squeeze from 1 m)
- → First demonstration of BBLR mitigation with octupole (MO)

17 ATS LHC Optics vs. 2016: check-up after 1 year

Optics correct-ability: as excellent as before

Collimation: even improved (not due to the ATS but to the tighter collimator settings)

- Luminosity Life time: qualitatively very similar (even slightly improved)
- Integrated Performance .. we know: of course not only the 30 cm helped, but at least the ATS did not degrade !
- Also take into a account the **many other changes**:
 - New beam types from injector in 2017 (8b4e, 8b4e BCS)
 - X-angle change (150 mrad in 2017 vs. 185/140 mrad in 2016)
 - X-angle anti-levelling in 2017 with \geq 4 steps (150/140/130/120)
 - Lumi Levelling with parallel separation

Limitations for future operation and mitigation

Operation at 7.0 TeV: magnet strength limitations \rightarrow None except some RSD circuits @600A++ and Q5.L6

Target currents (<u>w/o margin)</u> for various cases	LHC: round optics (20 cm) Telescope (x2Hx2V)	HL-LHC: round optics with Telescope (x4Hx4V)	LHC: Flat optics (15/60 cm) Telescope (x3-4Hx1V)	HL-LHC Flat optics with Telescope (x5Hx2V)
Q5.L6b1	< 3610 A	~ 3800 A	~3700-3800 A	~ 3900 A
Q5.L6b2	< 3610 A	~ 3700 A	<3610 A	~ 3700 A

→ Various options, HW tests requested asap to take decisions

Operation with LIU beam and large telescope

 \rightarrow The β 's are moving in IR6 (@TCDQ) during the tele-squeeze,

- \rightarrow The TCDQ gap is limited to 3.6 mm (or larger) at full bunch intensity
- \rightarrow A definite cure exists (on paper) via

(i) an upgrade of the BETS to enable TCDQ movement at flat top (in SB) (ii) a running scenario with combined β^* - TCDQ (& TCT) levelling

