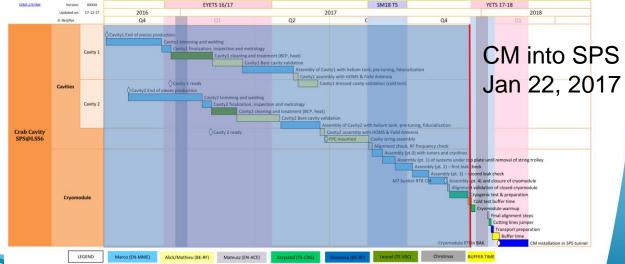


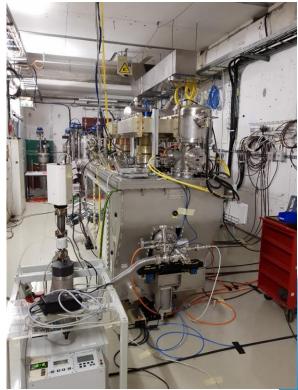
SPS Crab Cavity Tests

SPS Infrastructure & Hardware Status Test Goals Foreseen MD Time


On behalf of WP4 CERN

LHC Performance Workshop, Chamonix 2018

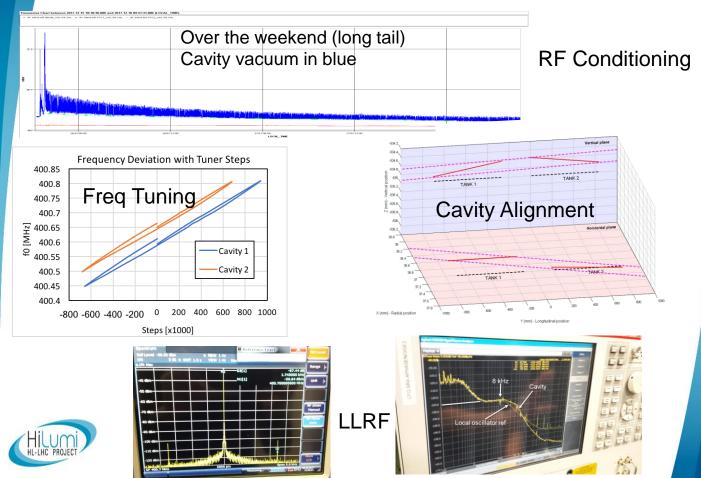
Since Chamonix 2017



SM18 Tests

SM18 Tests successful !

Big thanks: BE-RF, EN-MME, TE-CRG/VSC & all services

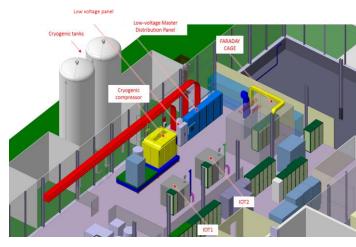

Overview SM18 Tests

Week: 47-48	Week: 49-51	Xmas	Week: 02-04	Week: 4-7	Week: 8-9
SM18	SM18	TS	RF/Align Checks,	SPS	SPS
Installation	Cool-down	15	Transport	Installation	Cool-down

- Cryomodule tests in SM18
 - Two cool-down cycles performed (18 W static load)
 - Moderate RF conditioning, cavity tuning & LLRF tests successfully completed
- SPS installation
 - YETS activity in BA6 already began & is on schedule
 - Missing days are now gained with night shifts HC

SM18 Tests, Summary

5


SPS Infrastructure (YETS)

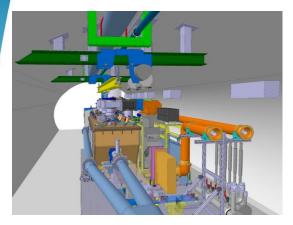
Effective duration now 7 weeks First week (51) only partial access, extra cabling

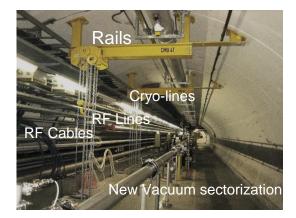
BA6-Surface Installation

IOT RF Amplifier

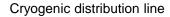
HC PRO

Faraday cage


Transformer and GHe tanks



Low Voltage distribution


SPS-LLS6 Tunnel Installation

Transfer Table

Valve Box

Week 51

BA6 zone:

- Install ODH racks
- Drilling of wall for cryolines
- Warm pipework under the false floor (Rampower)
- Cables for electrical distribution
- EN-EL
 TE-VSC
 TE-CRG
 Criotec & Ramp.
 BE-ICS (ODH)
 EN-EA

LSS6 CC zone:

- Dismount vacuum line
- Install heater tank
- Position VB#2
- Connect VB#2 to cryoline
- Install cameras + ODH

Cable connectors in RAL

Cables – 2018 campaign starts

TA6 zone:

- Install scaffold
- Install LN2 line and phase separator
- Warm lines installation (Rampower)
- Position VB#1 if possible (anyway before mid wk2)

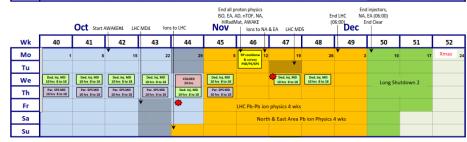
DAY

DAY/ NIGHT

Expected SPS Test Sequence

	What	When	MD slots
0	RF commissioning (no-beam)	Mar-Apr	~ 4 weeks
1	RF-beam synchronization	Apr-May	2-4 x 10h
2	Transparency to beam	Jun-Jul	2-4 x 10h
3	Performance & Stability	Aug-Sep	4 x 10h
4	High intensity RF operation	October	2 x 10h

- Steps 1) & 2) mandatory to declare success for the 2018 SPS tests (will be dedicated MDs)
- Due to the complex movement of "cold" cryomodule in the bypass and hardware setup, early beam commissioning is essential for MD program into 2018
- Crab-bypass is designed for full remote control: no need for access for MDs



SPS 2018 (Draft) Schedule

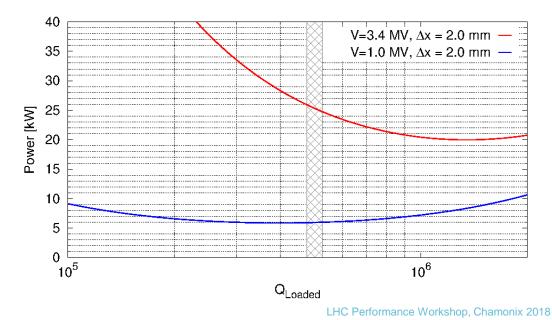
First MD slots in Apr 18 & May 2 foreseen

	Beam to LHC	Start NA p Start ISOLDI Start AD p Start AW/	E physics physics	End A		4 RR				June	LHC MD1	Start	AWAKE#2
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Мо	Easter Mon 2	DSO test LEIR 9	Beam to LEIR 16	23	Pb beam to PS 30	7	14	Whitsun 21	28	Pb beam to SPS 4	11	UA9 18 Cool-down	¥ 25
Tu	Beam to NA close LEIR				1st May	Par. SPS MD 10 hrs 8 to 18					Par. SPS MD 10 hrs 8 to 18	Technical stop	
We	Beam to AD beamlines		Ded. Inj. MD 10 hrs 8 to 18	*	Restart	Ded. Inj. MD 10 hrs 8 to 18							
Th			Par. SPS MD 10 hrs 8 to 18	Par. SPS MD 10 hrs 8 to 18	Par. SPS MD 10 hrs 8 to 18	Ascension	Par. SPS MD 10 hrs 8 to 18	Par. SP5 MD 10 hrs 8 to 18	Par. SPS MD 10 hrs 8 to 18	Par. SPS MD 10 hrs 8 to 18		COLDEX 24 hrs	Par. SPS MD 10 hrs 8 to 18
Fr													
Sa													
Su													

	July	End A	WAKE#2	LHC M	D2 Aug			Start /	WAKE#3	Sep ин	MD3	End AW	AKE#3
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	2	9	¥ 16	23	30	6	13	20	¥ 27	3	10	UA9 Cool-down	7 24
Tu										Par. SPS MD 10 hrs 8 to 18	Par. SPS MD 10 hrs 8 to 18	Technical stop	
We	Ded. Inj. MD 10 hrs 8 to 18	Ded. Inj. MD 10 hrs 8 to 18	Ded. Inj. MD 10 hrs 8 to 18		Ded. Inj. MD 10 hrs 8 to 18	¥	Restart	Ded. Inj. MD 10 hrs 8 to 18					
Th	Par. SPS MD 10 hrs 8 to 18	Par. SPS MD 10 hrs 8 to 18	Par. SP5 MD 10 hrs 8 to 18		Par. SPS MD 10 hrs 8 to 18	Jeune G.		COLDEX 24 hrs	Par. SPS MD 10 hrs 8 to 18				
Fr													
Sa													
Su													

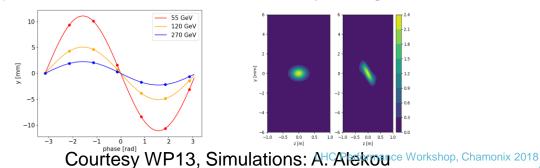
LHC Performance Workshop, Chamonix 2018

How to synchronize Crab-RF?


- Tuning range verification at 2K
 - Freq (400.53 400.78 MHz): 26 450 GeV
- At Injection: LSS6 LSS3 RF synchronization
 - Beam capture with at ~10% of the voltage (26 GeV)
 - Closing of RF loops at injection plateau
 - Beam centering, crab-RF phase & RF power calibration

Cavity Parameter	Units	Value
Resonance frequency	MHz	$400.6 \pm 200 \text{ kHz}$
V _T / cavity (cw)	MV	2.5
R/Q	Ω	420
Low field Q_0	-	4×10^{9}
Dynamic Load at 2.5 MV (3.4 MV)	W	5 (12)
		LHC Performance Workshop, Cl

Sizing of RF Power (in SPS)


- Maximum required power with $I_b = 350 \text{ mA}$ (200 bunches, $N_b = 1.7 \times 10^{11} \text{p/b}$)
- Available maximum is 40 kW including in LHC

Is the Instrumentation Sufficient?

- At 26 GeV, orbit response of ±20 mm and implies ±2 mm at 270 GeV (2.5 + 2.5 MV)
 - **BPMs**: Orbit mode resolution ± 0.1 mm, and trajectory mode ± 0.4 mm. Effect of RF non-linearity under investigation
 - **Head-tail monitor**: $\pm 100 \ \mu m$ orbit resolution, we can observe a pk-to-pk $\pm 600 \ \mu m$ oscillation at 270 GeV
 - Wire-scanners: Change in the projected emittance from $1 \ \mu m$ to $1.5 \ \mu m$ should be easily seen
 - Synchrotron light monitor: Non-destructively measure the projected emittance as a function cavity voltage

What is the preferred Energy ?

- Available "coast" energies (55, 120, 270 GeV)
- SPS energy ramp (26 450 GeV):
 - Time for Energy ramp $\sim 2 \text{ s} \rightarrow 250 \text{ kHz}$ in freq. swing
 - Fixed crab cavity freq with beam re-tuning
- The crab kick (or tilt) inversely proportional to γ
- Effect more visible at injection, but beam better behaved at higher energies (shorter bunches & natural emittance)
- Beam-crab commissioning majority at injection and use 270 GeV coast for long term stability

*LHC ramp: ~20min, 1kHz

Transient Effects ?

- Injection & beam centering
 - Injection oscillations (mm over ? turns)
 - RF power calibration between the two cavities
- Cavity alignment strategy for LHC (+ FSI)
 - Realize (measure) the $\pm 0.5 \text{ mm}$ cavity-to-cavity offset
 - Implication of large orbit shifts in LHC (~ 5 mm)
- Counter-phasing & re-phasing
 - The fastest feedback is limited to RF roundtrip delay (1.3 μ s loop delay with $R_{\min} = 1 \text{ M}\Omega$)
 - Counter-phasing for a "invisibility" (ex: ±90⁰) including transient phase of energy ramp & squeeze
 - Re-phase the cavities adiabatically

Where are we with Emittance Growth ?

- After numerous MDs over the last years
 - The sweet spot for long term behavior is 270 GeV (or 120 GeV)
 - IBS explains only part of the growth, there is a natural residual growth similar in both planes ($\leq 0.5 \,\mu/hr$) reproducible!
 - Chromaticity plays an important role, especially in the vertical plane
 - Identified source of de-bunching from RF feedback with low intensities
- Growth sensitive to beam energy but not to intensity, optics & initial conditions
 - A good candidate for the natural vertical emittance growth is the residual gas scattering
- Present estimate from existing crab electronics in SM18 (very noisy!)
 - Phase noise: $2 8 \,\mu m/hr$ (bunch length: 1.0-2.0 ns)
 - Amplitude noise: $0.8 1.4 \,\mu m/hr$ (bunch length: 1.0-2.0 ns)

From SM18 measurements, we expect noise to be visible

4) High Intensity Operation

- Beam induced failure scenarios as a function of bunch high intensity and number of bunches
 - Beam aperture near crabs needs some special attention (i.e. LHC extraction not possible)
- Cavity stability, trip rate, cavity quenches including fast transients to the beam
 - Trip scenarios are difficult to foresee, no obvious signs from SM18 until "quench field" ~ 3.3 MV
- Special attention to injection & ramp (parasitic impedance to beam)
- HOM power interlock at 200 W from any of the 6 couplers (RF feedthrough limit)

