

Compact magnet design

Daniel Schoerling

On behalf of EuroCirCol WP5 and the FCC-hh Magnet Development Program 13th of December 2017

Magnet Design Options

	800 mm	600 mm	Magnet length	14.3 m
Cosine-theta (baseline)			Free physical aperture	50 mm
			Inter-beam distance	204 mm
			Field amplitude	16 T
			Margin on the load-line @ 1.9K	14 %
			Total time margin	40 ms
Block-type coils Common-coils			Critical current density @ 1.9 K, 16T	2300 A/mm ²
		mm	Conductor fit (J_c/B)	EuroCirCol fit
			Degradation due to cabling	3%
	• •		Minimum Cu/nonCu	0.8
			Maximum strand diameter	1.2 mm
	6 38		Maximum stress on conductor at warm	150 MPa
		· ((E E))=	Maximum stress on conductor at cold	200 MPa
			Maximum hot spot temp. (@ 105% I _{nom})	350 K
00		27	Maximum number of strands in a cable	40 - 60
	2015	2017	Maximum voltage to ground (magnet)	1.2 kV
			Maximum TOTAL voltage to ground	2.5 kV
CCT (PSI with LBNL and CERN)			Conductor cost (performance based)	5 Euro/kAm

Curved compact dipole magnets

- LHC dipole magnets were produced straight and then curved in a press before welding the outer shell
- The current baseline foresees a bladder and key structure with approximately 0.8 m long aluminum shells
- Making the segments shorter 'Aluminum collar shell' may allow bending the structure without concentrating the stress at few positions
- Using Invar (FeNi36) as yoke material may allow to replace the Al shell (sufficient pre-stress and compensating the lower magnetic saturation may not allow for smaller overall size, studies are on-going)
- Collaring and using yoke materials with larger stress limit may allow to further reduce the overall size (explorative studies will start soon)

