My “Track”

Results

Dark Matter Evidence

Idea

Model

Future
How Much Evidence do we Need?

Light ≠ Mass

Zwicky 1930’s

Rubin 1970’s

\[V_{\text{rot}} \propto \frac{1}{\sqrt{r}} \]

Image, https://ned.ipac.caltech.edu/level5/March02/Abell/Abell3_3.html

C. Amole et al. Dark Matter Search Results from PICO-60 C$_2$F$_6$ Bubble Chamber, Phys. Rev. lett. 118, June 2017
How does this...
How does this Become

C. Amole et al. Dark Matter Search Results from PICO-60 C$_2$F$_6$ Bubble Chamber, Phys. Rev. lett. 118, June 2017
Storytelling

• A disturbance is a small perturbation of the equilibrium condition to start the bubble growth.
• A disturbance is a small perturbation of the equilibrium condition to start the bubble growth
• Separation between disturbances
• ≈11 orders of magnitude of difference for the interface velocity

A disturbance is a small perturbation of the equilibrium condition to start the bubble growth.

Separation between disturbances

≈ 11 orders of magnitude of difference

Slight side-track... There seems to be information contained in the bubble growth.

A disturbance is a small perturbation of the equilibrium condition to start the bubble growth.

Separation between disturbances

≈11 orders of magnitude of difference

What about C$_3$F$_8$???
The Model

Detector:

1. Temperature
2. Pressure

1. Energy threshold
2. Equilibrium bubble radius
The Model

SUPERHEAT

Detector:

1. Temperature
2. Pressure

1. Energy threshold
2. Equilibrium bubble radius
The Model

SUPERHEAT

Detector:
1. Temperature
2. Pressure

1. Energy threshold
2. Equilibrium bubble radius

P \rightarrow \text{Boiling Temperature } (T_b) \rightarrow T-T_b = \text{Superheat}
The Model

Superheat

Detector:

1. Temperature
2. Pressure

1. Energy threshold
2. Equilibrium bubble radius

P → Boiling Temperature \((T_b) \) → \(T - T_b = \text{Superheat} \)
The Model

Detector: 1. Temperature 2. Pressure

THRESHOLD

1. Min. energy to form a bubble
2. Equilibrium bubble radius
The Model

1. Min. energy to form a bubble
2. Equilibrium bubble radius

Region in which the energy needs to be deposited

Detector:
1. Temperature
2. Pressure

THRESHOLD
The Model

Detector:

1. Temperature
2. Pressure

Superheat

1. Min. energy to form a bubble
2. Equilibrium bubble radius

Region

Region in which minimum energy needs to be deposited
The Model

Detector:

1. Temperature
2. Pressure

Superheat

1. Min. energy to form a bubble
2. Equilibrium bubble radius

Region

Region in which minimum energy needs to be deposited

Alpha track

Neutron interaction

Carbon or Fluorine track
The Model

Detector:

Superheat
1. Temperature
2. Pressure

Region
1. Min. energy to form a bubble
2. Equilibrium bubble radius

Threshold Energy

Excess Energy

Region in which minimum energy needs to be deposited

Alpha track

Neutron interaction

Carbon or Fluorine track
The Model

Detector:

1. Temperature
2. Pressure

Superheat

Region

1. Min. energy to form a bubble
2. Equilibrium bubble radius

Threshold Energy
Excess Energy
Region in which minimum energy needs to be deposited

The excess energy can be converted into the temperature disturbance!
Bubble Growth in C_3F_8, Interface Velocity

- There is still a 10 order magnitude separation

1.75 keV
High Superheat: 88 K 1/10 atm.
Low Superheat: 22 K ~5 atm.

- Alpha Temp. dist.: 10^{-1} K
- Neutron Temp. dist.: 10^{-12} K
Bubble Growth in C₃F₈, Interface Velocity

1.75 keV
High Superheat: 88 K 1/10 atm.
Low Superheat: 22 K ~5 atm.

• There is still a 10 order magnitude separation
• There is a difference in rise time

Alpha Temp. dist.: 10⁻¹ K
Neutron Temp. dist.: 10⁻¹² K
Bubble Growth in C$_3$F$_8$, Interface Velocity

1.75 keV
High Superheat: 88 K 1/10 atm.
Low Superheat: 22 K ~5 atm.

- There is still a 10 order magnitude separation
- There is a difference in rise time
- There is a difference in the decay

Alpha Temp. dist.: 10^{-1} K
Neutron Temp. dist.: 10^{-12} K
Bubble Growth in C\textsubscript{3}F\textsubscript{8}, Interface Velocity

There seems to be a possibility to distinguish

But extremely hard

1.75 keV
High Superheat: 88 K 1/10 atm.
Low Superheat: 22 K ~5 atm.

Alpha Temp. dist.: 10-1 K
Neutron Temp. dist.: 10-12 K
Bubble Growth in C$_3$F$_8$, Acoustic Intensity

- Pressure waves propagate through the medium
- Energy is transmitted to the materials and can be measured
- The amount of energy traversing a unit surface per unit time in a fluid is the Acoustic Intensity

\[I = P \times \nu \]

P is the hydrodynamic pressure
\(\nu \) is the velocity field

For an incompressible fluid the velocity is given by

\[\nu = \left(\frac{R}{r} \right)^2 \dot{R} \]

R is the interface position (bubble wall)
r is the radial position
\(\dot{R} \) is the interface velocity
Bubble Growth in C_3F_8, Acoustic Intensity

- Pressure waves propagate through the medium
- Energy is transmitted to the materials and can be measured
- The amount of energy traversing a unit surface per unit time in a fluid is the Acoustic Intensity

\[I = P \ast \nu \]

- P is the hydrodynamic pressure
- ν is the velocity field

For an incompressible fluid the velocity is given by

\[\nu = \left(\frac{R}{r} \right)^2 \dot{R} \]

- R is the interface position (bubble wall)
- r is the radial position
- \dot{R} is the interface velocity
Bubble Growth in C$_3$F$_8$, Acoustic Intensity

- Pressure waves propagate through the medium
- Energy is transmitted to the materials and can be measured
- The amount of energy traversing a unit surface per unit time in a fluid is the Acoustic Intensity

\[I = P \ast v \]

- P is the hydrodynamic pressure
- v is the velocity field

For an incompressible fluid the velocity is given by

\[v = \left(\frac{R}{r} \right)^2 \hat{R} \]

- R is the interface position (bubble wall)
- r is the radial position
- \hat{R} is the interface velocity
Bubble Growth in C$_3$F$_8$, Acoustic Intensity

- Pressure waves propagate through the medium
- Energy is transmitted to the materials and can be measured
- The amount of energy traversing a unit surface per unit time in a fluid is the Acoustic Intensity

\[I = P \ast \nu \]

P is the hydrodynamic pressure
\(\nu \) is the velocity field

For an incompressible fluid the velocity is given by

\[\nu = \left(\frac{R}{r} \right)^2 \dot{R} \]

R is the interface position (bubble wall)
r is the radial position
\(\dot{R} \) is the interface velocity
Bubble Growth in C_3F_8, Acoustic Intensity

- Complete loss of separation

1.75 keV
- High Superheat: 88 K 1/10 atm.
- Low Superheat: 22 K ~5 atm.

Neutron T dist.: 10^{-12} K
Alpha T dist.: 10^{-1} K

Condition	Disturbance
Low superheat | $10E-1$ K
Low superheat | $10E-12$ K
THERE IS STILL HOPE
Future Work

• There is more than one model for what happens with the excess energy
Future Work

- There is more than one model for what happens with the excess energy
- 1-D and incompressibility might be too stringent of a simplification
Future Work

• There is more than one model for what happens with the excess energy
• 1-D and incompressibility might be too stringent of a simplification
• 3-D and fluid compressibility would naturally have acoustic waves
Future Work

• There is more than one model for what happens with the excess energy
• 1-D and incompressibility might be too stringent of a simplification
• 3-D and fluid compressibility would naturally have acoustic waves
• There might work-arounds with two cameras to see a separation