A Dispersion Relation for Conformal Theories

Simon Caron-Huot

McGill University

I703.00278;
I7II. 0203 I with Fernando Alday;
work in progress with:
- Dean Carmi,Yiannis Tsiares; Anh-Khoi Trinh;
- Alex Maloney, Zarah Zarahee, Yan Gobeil
2018 CAP congress, Halifax

Outline

I. A dispersion relation for CFT
-Kramers-Kronig relations
-'Absorptive part'
2. Applications to 3D critical Ising model I/J expansion
3. Application to AdS/CFT strongly coupled theories and bulk locality

Classical Kramers-Kronig relation:

$$
\epsilon(\omega)=1+\int_{-\infty}^{\infty} \frac{d \omega^{\prime} \operatorname{Im} \epsilon\left(\omega^{\prime}\right)}{\pi\left(\omega^{\prime}-\omega-i 0\right)}
$$

$\operatorname{Re}(\varepsilon) \sim$ phase velocity of light
$\operatorname{Im}(\varepsilon) \sim$ absorption by medium

Absorptive part determines propagation

2->2 scattering « Dispersion relation »

simplest scenario: analytic in E-plane outside two cuts

$$
\mathcal{M}(s, t)=\frac{1}{2 \pi i} \oint \frac{d t^{\prime}}{t^{\prime}-t} \mathcal{M}\left(s, t^{\prime}\right)
$$

2->2 scattering

$$
\begin{array}{r}
\Rightarrow \mathcal{M}(s, t)=\operatorname{Poly}_{s}(t)+\int_{t_{\text {min }}}^{\infty} \frac{d t^{\prime}}{\pi\left(t-t^{\prime}\right)} \\
\operatorname{Disc} \mathcal{M}\left(s, t^{\prime}\right) \\
+(t \leftrightarrow u)
\end{array}
$$

What is it good for?
absorptive part Disc M is often
easier to compute/measure

Tree-level: Disc

One-loop: Disc

Physical input: causality (\Rightarrow analyticity at complex energy)

Recall: = why forces must come from exchanging particles (doesn't allow instantaneous interactions at a distance!)

Dispersion relations: reconstructs forces from exchanged stuff

cf many state-of-the-art amplitude techniques
(BCFW recursion, generalized unitarity...)

Conformal Field Theories

- Describe scale-invariant systems (ie. near phase transitions)
- Many interesting theories are near-conformal (ie. QCD at high energies)
- AdS/CFT: define quantum gravity in AdS

Conformal 2- and 3-point correlators: pure numbers

$$
\begin{aligned}
\left\langle\mathcal{O}_{i}\left(x_{1}\right) \mathcal{O}_{j}\left(x_{2}\right)\right\rangle & =\frac{\delta_{i j}}{\left|x_{1}-x_{2}\right|^{2 \Delta_{i}}} \\
\left\langle\mathcal{O}_{i} \mathcal{O}_{j} \mathcal{O}_{k}\right\rangle & \propto f_{i j k}
\end{aligned}
$$

Key object is 4-point correlator

$$
\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}\right\rangle=G(z, \bar{z})
$$

(can always conformally map 3 points to $0, I, \infty$)

OPE: $G(z, \bar{z})=\sum_{k} f_{12 k} f_{34 k} G_{J_{k}, \Delta_{k}}(z, \bar{z})$

CFTs don't have stable particle nor S-matrix. We can't use standard dispersion relations.

Claim:

$$
c(J, \Delta)=\int_{\diamond}[\text { special function }] \times \underset{\uparrow}{\operatorname{dDisc} G]} \underset{\text { s-channel }}{\operatorname{din}} \quad \text { absorptive part }
$$

[SCH, 'I7]

We'll study Lorentzian 4-point correlator in CFT $_{d}$

Crux is large (real/complex) energy \Rightarrow large boost

[we'll stay inside Rindler wedges]

Intuition: Lorentzian correlator

$=$ amplitude for 13 to scatter to 24 final state

Bounded by 'amplitude without scattering':

$$
|G| \leq G_{E}
$$

What's 'absorptive part'?

$$
\begin{gathered}
\langle 0| T \phi_{1} \cdots \phi_{4}|0\rangle \equiv G=G_{E}+i \mathcal{M} \\
\langle 0| \bar{T} \phi_{1} \cdots \phi_{4}|0\rangle \equiv G^{*}=G_{E}-i \mathcal{M}^{*}
\end{gathered}
$$

$$
\langle 0| \phi_{2} \phi_{3} \phi_{1} \phi_{4}|0\rangle \equiv G_{E}
$$

$\mathrm{dDiscG} \equiv G_{E}-\frac{1}{2} G-\frac{1}{2} G^{*}=" \operatorname{Im} \mathcal{M} "$
equal to double-commutator:

$$
\mathrm{dDisc} G \equiv \frac{1}{2}\langle 0|\left[\phi_{2}, \phi_{3}\right]\left[\phi_{1}, \phi_{4}\right]|0\rangle
$$

Positive \& bounded
cf: [Maldacena, Shenker\&Stanford 'bound on chaos'] [Hartman,Kundu\&Tajdini 'proof of ANEC']

What do we extract? OPE data

partial waves: $\quad a_{j}(s)=\int_{-1}^{1} d \cos \theta P_{j}(\cos (\theta)) \mathcal{M}(s, t(\cos \theta))$
$+$
disp. relation: $\quad \mathcal{M}(s, t)=\int \frac{d t^{\prime}}{\pi\left(t-t^{\prime}\right)} \operatorname{Im} \mathcal{M}\left(s, t^{\prime}\right)$

$$
+(t \leftrightarrow u)
$$

=
analyticity in spin

$$
a_{j}(s)=\int_{1}^{\infty} d \cosh \eta Q_{j}(\cosh (\eta)) \operatorname{Im} \mathcal{M}
$$

$$
+(-1)^{j}(t \leftrightarrow u)
$$

[Froissart-Gribov ~60]
backbone of Regge theory

'special function': fill the missing box

Euclidean

Lorentzian
Taylor series:

$$
E^{J}
$$

$$
E^{-J}
$$

Rotation symmetry:

$$
\begin{array}{llll}
\mathbf{S O}(2) \cos (j \theta) & \longrightarrow & e^{-j \eta} & \mathbf{S O}(\mathbf{I}, \mathbf{I}) \tag{I,I}\\
\mathbf{S O}(3) & P_{j}(\cos \theta) & \longrightarrow & Q_{j}(\cosh \eta)
\end{array} \mathbf{\operatorname { S O } (2 , \mathbf { I })}
$$

Conformal symmetry:

$$
\mathrm{SO}(\mathrm{~d}+\mathrm{I}, \mathrm{I}) \quad G_{j, \Delta}(z, \bar{z})
$$

$$
\longrightarrow G_{\Delta+1-d, J+d-3}(z, \bar{z})
$$

CFT Froissart-Gribov formula

$$
\begin{aligned}
& c(J, \Delta)=\int_{\diamond}[\text { Inverse block }] \times[\mathrm{dDisc} G] \\
& \uparrow_{\text {with }} \\
& \text { s-channel } \\
& \text { OPE coefficients } \\
& {[\text { Inverse block }] \times[\mathrm{dDisc} G]} \\
& \text { block with } \\
& \mathrm{J} \text { and } \Delta \\
& \text { exchanged } \\
& \text { absorptive } \\
& \text { part }
\end{aligned}
$$

converges for $\mathrm{J}>\mathrm{I}$ (boundedness in Regge limit)

Application to 3D Ising

3D Ising Model: IR fixed point of Z2-symmetric scalar field theory

$$
L=(\partial \phi)^{2}+m^{2} \phi^{2}+\lambda \phi^{4}\left[+\kappa \phi^{6} \ldots\right]
$$

free scalar perturbed by $m^{2} \phi^{2}+\lambda \phi^{4}$

[slide from Rychkov]

Lightest operators: $\begin{gathered}\Delta_{\sigma}=0.5181489(10), \quad \mathbf{Z}_{2} \text { odd } \\ \Delta_{\epsilon}=1.412625(10), \quad \mathbf{Z}_{2} \text { even }\end{gathered}$

Lots of data available from numerical bootstrap. (Input: series expansions must match)

spin $\& \mathbb{Z}_{2}$	name	Δ	OPE coefficient
$\ell=0, \mathbb{Z}_{2}=-$	σ	$0.518154(15)$	
$\ell=0, \mathbb{Z}_{2}=+$	ϵ	$1.41267(13)$	$f_{\sigma \sigma \epsilon}^{2}=1.10636(9)$
	ϵ^{\prime}	$3.8303(18)$	$f_{\sigma \sigma \epsilon^{\prime}}^{2}=0.002810(6)$
$\ell=2, \mathbb{Z}_{2}=+$	T	3	$c / c_{\text {free }}=0.946534(11)$
	T^{\prime}	$5.500(15)$	$f_{\sigma \sigma T^{\prime}}^{2}=2.97(2) \times 10^{-4}$

Large-spin expansion

Organizing principle for CFT spectrum: analyticity in spin

Easiest at large-J: integral pushed to corner $(z, \bar{z}) \rightarrow(0,1)$
large spin in s-channel \leftrightarrow low twist in t-channel
\Rightarrow Solve crossing in asymptotic series in I/J
[Komargodski\&Zhiboedov, Fitzpatrick,Kaplan,Poland\&Simmons-Duffin, Alday\&Bissi\&..., Kaviraj,Sen,Sinha\&..., Alday,Bissi,Perlmutter\&Aharony,...]

I/J expansion in 3D Ising

$$
\tau_{[\sigma \sigma]_{0}}(\bar{h})
$$

new: -formula shows there can't be outliers
-all states (at least with $\mathrm{J}>\mathrm{I}$) must lie on trajectory

Best Before J> 1

What about $\mathrm{J}=0$?

Z_{2}-odd operators

Works great for J>I, but $\Delta_{\sigma}=0.51$ seems not even close!

What's analytic in spin is shadow symmetric $(\Delta, d-\Delta)$ Z_2 odd states ([$\left.\sigma \epsilon] _0\right)$

more seems to be true!
[SCH, Gobeil, Maloney\& Zahraee, in progress]

Application to AdS/CFT

Theories with AdS gravity duals have:

- Large-N expansion (small \hbar in AdS)
- Few light single-traces, all with small spin ≤ 2 (up to a very high dimension $\Delta_{\text {gap }} \gg 1$) [HPPS ‘09] simple statement for dDisc:

$$
\mathrm{dDisc} G=\sum_{J^{\prime}, \Delta^{\prime}} \sin ^{2}\left(\frac{\pi}{2}\left(\Delta^{\prime}-2 \Delta\right)\right)\left(\frac{1-\sqrt{\rho}}{1+\sqrt{\rho}}\right)^{\Delta^{\prime}+J^{\prime}}\left(\frac{1-\sqrt{\bar{\rho}}}{1+\sqrt{\bar{\rho}}}\right)^{\Delta^{\prime}-J^{\prime}}
$$

kills double-traces
kills heavy
theories with local AdS dual
dDisc saturated
$\Leftrightarrow \quad$ by few light primaries

S-matrix unitarity for Witten diagrams:

Correlator of $\operatorname{Tr}\left[Z^{2}\right] \mathrm{N}=4 \mathrm{SYM}:$

half-BPS block

[Alday\& SCH 'I7]
dDisc is just the polar part as $\mathrm{v}->0$ of one block:

$$
\mathcal{G}(u, v)=\frac{1}{v^{2}}+\frac{2 u^{2} \log u-3 u^{2}+4 u-1}{v(u-1)^{3}} \frac{1}{c}
$$

Plug into inversion integral gives all OPE data!!

$$
\left\langle a^{(0)}\right\rangle_{n, \ell}=2(\ell+1)(6+\ell+2 n)
$$

$$
\begin{aligned}
\left\langle a^{(0)} \gamma^{(1)}\right\rangle_{n, \ell} & =-(n+1)(n+2)(n+3)(n+4) \\
\left\langle a^{(1)}\right\rangle_{n, \ell} & =\frac{1}{2} \partial_{n}\left\langle a^{(0)} \gamma^{(1)}\right\rangle_{n, \ell}
\end{aligned}
$$

Result matches perfectly supergravity Witten diagrams

- New: control over contact ambiguities ('cR4) usingCFT only
- In progress: general S_{5} Kaluza-Klein modes. Nice IOD structure...

One-loop supergravity (from I/N CFT correlator):

Product of trees:

$$
\left\langle O_{2} O_{2} O_{p} O_{p}\right\rangle \times\left\langle O_{p} O_{p} O_{2} O_{2}\right\rangle
$$

Accounts for mixing between $O_{2} \square^{n} O_{2}$ and $O_{p} \square^{n^{\prime}} O_{p}$

Ongoing object of study by several groups

We obtained the full I-loop OPE data, and studied 'bulk point' limit
[Alday,SCH 'I7]

large- \triangle OPE data \Leftrightarrow flat-space partial waves:

$$
\lim _{n \rightarrow \infty} \frac{\left\langle a e^{-i \pi \gamma}\right\rangle_{n, \ell}}{\left\langle a^{(0)}\right\rangle_{n, \ell}}=b_{\ell}(s) \quad \sqrt{s}=2 n / L
$$

Flat space limit is IOD type-IIB supergravity
one-loop IIB amplitude is simple:

$$
A_{10}^{\text {sugra }}(s, t)=8 \pi G_{N} \frac{s^{3}}{t u}+\frac{\left(8 \pi G_{N}\right)^{2}}{(4 \pi)^{5}}\left(I_{b o x}(s, t)+I_{b o x}(s, u)+I_{b o x}(t, u)\right)
$$

We expand it over 5D partial waves:

$$
A_{5}=A_{10} / \mathrm{vol} \mathrm{~S}_{5}
$$

$$
A_{5}(s, t)=\frac{128 \pi}{\sqrt{s}} \sum_{\ell \text { even }}(\ell+1)^{2} b_{\ell}(s) P_{\ell}(\cos \theta)
$$

Perfect match!

$$
\lim _{n \rightarrow \infty} \frac{\left\langle a e^{-i \pi \gamma}\right\rangle_{n, \ell}}{\left\langle a^{(0)}\right\rangle_{n, \ell}}=b_{\ell}(s)
$$

CFT (N=4 SYM) $\quad \Rightarrow$

IIB supergravity at one-loop

One-loop UV divergence: low-spins ill-defined

Dispersion relation is positive definite after UV-completion, so divergence can't be fully canceled:

$$
C_{R^{4}} \geq \Lambda_{\mathrm{UV}}^{2} \equiv\left(\Delta_{\mathrm{gap}} / L_{\mathrm{AdS}}\right)^{2}
$$

Minimal subtraction is in the swampland

Summary

- Dispersion relation for OPE coefficients:

$$
\underset{\text { s-channel }}{c(j, \Delta)} \equiv \int_{0}^{1} d \rho d \bar{\rho} g_{\Delta, j} \mathrm{dDisc} G
$$

- -Organizes spectrum into analytic families -Efficient cutting rules for AdS/CFT
- Open directions:
- interplay with numerical bootstrap?
- why/when does it work for $\mathrm{J} \leq \mathrm{I}$?
- study non-AdS / non-CFT?
- heavy-light correlators and black holes?

Z2 even states

(fit accounts for possible square-root branch point)

$$
\begin{aligned}
& \text { dDisc } G \\
& 1 \text { \& } \\
& \text { (heavy\&non- } \\
& \text { perturbative) } \\
& \text { light } \\
& \text { (known) }{ }^{1 / N_{c}^{2}} \\
& c_{j, \Delta}=\int F_{j, \Delta} \mathrm{dDisc} G=\left.c_{j, \Delta}\right|_{\text {light }}+\left.c_{j, \Delta}\right|_{\text {heavy }} \\
& \text { 'minimal } \\
& \text { solution' } \\
& \text { correction } \\
& \text { small for } j>2
\end{aligned}
$$

'Heavy' part depends on nonperturbative UV completion.
It's weighed by $\sim(\rho \bar{\rho})^{J / 2}$. Use positivity + boundedness:

$$
\left|c\left(j, \frac{d}{2}+i \nu\right)_{\text {heavy }}\right| \leq \frac{1}{c_{T}} \frac{\#}{\left(\Delta_{\text {gap }}^{2}\right)^{j-2}}
$$

This establishes, from CFT, an EFT power-counting in AdS.

