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Classical Kramers-Kronig relation:

 
  Re(𝜀) ~ phase velocity of light  
  Im(𝜀) ~ absorption by medium

Absorptive part determines propagation
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t~energy

u-channel cut t-channel cut●

simplest scenario:  analytic in E-plane outside two cuts

M(s, t) =
1

2⇡i

I
dt0

t0 � t
M(s, t0)

2->2 scattering « Dispersion relation »



t~energy

●

M(s, t) = Polys(t) +

Z 1

tmin

dt0

⇡(t� t0)
DiscM(s, t0)

+(t $ u)

⇒

2->2 scattering



What is it good for?

absorptive part Disc M is often 
easier to compute/measure

Tree-level:

One-loop: Disc + +

Figure 4. The one-loop amplitude in ten-dimensional type IIB supergravity is the sum of three scalar
boxes integrals.
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Figure4.Theone-loopamplitudeinten-dimensionaltypeIIBsupergravityisthesumofthreescalar
boxesintegrals.
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Disc = x
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Physical input: causality  (⇒analyticity at complex energy)

Recall:  = why forces must come from exchanging particles 
(doesn’t allow instantaneous interactions at a distance!)

Dispersion relations: reconstructs forces from exchanged stuff

cf many state-of-the-art amplitude techniques 
  (BCFW recursion, generalized unitarity…)

e- e-

𝛾 ⇒ x



Conformal Field Theories
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- Describe scale-invariant systems 
   (ie. near phase transitions)  
 
- Many interesting theories are near-conformal  
  (ie. QCD at high energies)  

- AdS/CFT:  define quantum gravity in AdS



●●

Key object is 4-point correlator
●

●∞

0
z

1
hO1O2O3O4i = G(z, z̄)

(can always conformally map 3 points to 0,1,∞)

hOiOjOki / fijk

hOi(x1)Oj(x2)i =
�ij

|x1 � x2|
2�i

« critical exponent »

« OPE coefficients »

Conformal 2- and 3-point correlators: pure numbers

OPE:

0

z 1

∞

OkG(z, z̄) =
X

k

f12kf34kGJk,�k(z, z̄)



CFTs don’t have stable particle nor S-matrix.  
We can’t use standard dispersion relations.  

s-channel  
OPE data

absorptive part

Claim:

c(J,�) =

Z

⌃

⇥
special function

⇤
⇥

⇥
dDiscG

⇤

[SCH, ’17]

see also: [Simmons-Duffin, Stanford&Witten ‘17]
[Simmons-Duffin& Kravchuk ’18]



Crux is large (real/complex) energy  ⇒  large boost

We’ll study Lorentzian 4-point correlator in CFTd

x

xx

x

z

z̄

[we’ll stay inside Rindler wedges]
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Intuition:  Lorentzian correlator

x2

x3

x4

x1

= amplitude for 13 to scatter to 24 final state 

time

Bounded by ‘amplitude without scattering’:

|G|  GE



x2
x3

x4
x1

What’s ‘absorptive part’?

h0|�2�3�1�4|0i ⌘ GE

Positive & bounded

dDiscG ⌘ 1
2 h0|[�2,�3][�1,�4]|0i

cf: [Maldacena, Shenker&Stanford ‘bound on chaos’] 
[Hartman,Kundu&Tajdini ‘proof of ANEC’]

h0|T�1 · · ·�4|0i ⌘ G = GE + iM
h0|T̄�1 · · ·�4|0i ⌘ G⇤ = GE � iM⇤

dDiscG ≡ GE − 1
2G− 1

2G
∗ = “ImM”

equal to double-commutator:



partial waves:

disp. relation: M(s, t) =

Z
dt0

⇡(t� t0)
ImM(s, t0)

+(t $ u)

backbone of Regge theory

+(�1)j(t $ u)

What do we extract?  OPE data

+

=

analyticity in spin

aj(s) =

∫ 1

−1
d cos θ Pj(cos(θ))M(s, t(cos θ))

aj(s) =

∫ ∞

1
d cosh ηQj(cosh(η))ImM

[Froissart-Gribov ~60]
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Euclidean Lorentzian

SO(2)

SO(3)

SO(d+1,1)

SO(d,2)

Rotation symmetry:

SO(1,1)

SO(2,1)

Conformal symmetry:

Gj,�(z, z̄)

e�j⌘

Qj(cosh ⌘)Pj(cos ✓)

cos(j✓)

Taylor series:
E�JEJ

G∆+1−d,J+d−3(z, z̄)

‘special function’: fill the missing box



s-channel  
OPE coefficients

absorptive 
part

block with  
J and Δ 

exchanged

converges for J>1 (boundedness in Regge limit)

c(J,�) =

Z

⌃

⇥
Inverse block

⇤
⇥

⇥
dDiscG

⇤

CFT Froissart-Gribov formula

[SCH ’17]



Application to 3D Ising
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3D Ising Model: IR fixed point of Z2-symmetric  
scalar field theory

L = (@�)2 +m2�2 + ��4
⇥
+ �6 . . .

⇤

Lightest operators:

/609

Existing approaches to 3D Ising 

• RG methods

3D Ising CFT

perturbed by
free scalar

[slide from Rychkov]

/60

  

24

puting the conformal partial waves appearing in four-point functions of scalars for CFTs in
any dimension (including D = 3). In Section 5 we present bounds on 3D CFTs that follow
from crossing symmetry and compare them to what is known about the 3D Ising model.
Finally, we discuss our results and future directions for this program in Section 6.

2 Operator Content of the 3D Ising Model

We assume that the reader is familiar with the basic facts about the Ising model and the
critical phenomena in general, see [24–27, 1].

In this paper, we will be aiming for a solution of the 3D Ising model in the continuum
limit and at the critical temperature T = Tc. While the 2D Ising model was solved exactly
on the lattice and for any temperature by Onsager and Kaufman in the 1940’s, the 3D lattice
case has resisted all attempts for an exact solution. Istrail [28] proved in 2000 that solving
the 3D Ising model on the lattice is an NP-complete problem. However, this theorem does
not exclude the possibility of finding a solution in the continuum limit.

The standard way to think about the continuum theory is in terms of local operators (or
fields). At T = Tc, the theory has scale (and, as we discuss below, conformal) invariance,
and each operator is characterized by its scaling dimension � and O(3) spin. The operators
of spin higher than 1 are traceless symmetric tensors.

In Table 1 we list a few notable local operators, which split into odd and even sectors
under the global Z2 symmetry (the Ising spin flip). The operators ⇤ and ⇧ are the lowest
dimension Z2-odd and even scalars respectively—these are the continuum space versions of
the Ising spin and of the product of two neighboring spins on the lattice. The two next-
to-lowest scalars in each Z2-sector are called ⇤� and ⇧�. Their dimensions are related to
the irrelevant critical exponents ⌅A and ⌅ measuring corrections to scaling. The operator
⇧�� is analogously related to the next-to-leading Z2-even irrelevant exponent ⌅2. The stress
tensor Tµ⇤ has spin 2 and, as a consequence of being conserved, canonical dimension �T = 3.
The lowest-dimension spin 4 operator Cµ⇤�⇥ has a small anomalous dimension, related to
the critical exponent ⌅NR measuring e⇥ects of rotational symmetry breaking on the cubic
lattice.

Operator Spin l Z2 � Exponent

⇤ 0 � 0.5182(3) � = 1/2 + �/2
⇤� 0 � � 4.5 � = 3 + ⌅A

⇧ 0 + 1.413(1) � = 3� 1/⇥
⇧� 0 + 3.84(4) � = 3 + ⌅
⇧�� 0 + 4.67(11) � = 3 + ⌅2

Tµ⇤ 2 + 3 n/a
Cµ⇤�⇥ 4 + 5.0208(12) � = 3 + ⌅NR

Table 1: Notable low-lying operators of the 3D Ising model at criticality.

3

3D Ising CFT describes also liquid-vapor critical point:

emergent Z2 symmetry

To get to this point one has to finetune 2 parameters: P, T =
the total number of relevant scalars (one Z2-even and one Z2-odd)

2 Numerics and the lightcone limit

2.1 A numerical picture of the 3d Ising spectrum

Numerical bootstrap methods have become powerful enough to estimate several operator
dimensions and OPE coe�cients in the 3d Ising CFT. The strategy is as follows. Consider
the four-point functions h����i, h��✏✏i, and h✏✏✏✏i where � and ✏ are the lowest-dimension
Z2-odd and Z2-even scalars in the 3d Ising CFT, respectively. Crossing symmetry and
unitarity for these correlators forces the dimensions ��,�✏ and OPE coe�cients f��✏, f✏✏✏
to lie inside a tiny island given by [55]

�� = 0.5181489(10), f��✏ = 1.0518537(41),

�✏ = 1.412625(10), f✏✏✏ = 1.532435(19). (2.1)

We can then ask: given that (��,�✏, f��✏, f✏✏✏) lie in this island, what other operators
are needed for crossing symmetry? Although it is possible in principle to compute rigorous
bounds on more operators, it is di�cult in practice because we must scan over the dimensions
and OPE coe�cients of those additional operators.

Instead, we adopt the non-rigorous approach of [68], based on the extremal functional
method [7, 14, 20]. Consider N derivatives of the crossing equation around z = z = 1

2 ,
which we write as FN = 0, where FN is an N -dimensional vector depending on the CFT
data. We assume that OPE coe�cients are real and operator dimensions are consistent
with unitarity bounds [69]. By the argument of [3], there is an allowed region AN in the
space of CFT data such that any point outside AN is inconsistent with FN = 0.6 For every
point p on the boundary of AN , there is a unique “partial spectrum” SN(p): a finite list of
operator dimensions and OPE coe�cients that solve FN = 0. The number of operators in
SN(p) grows linearly with N .7

If p lies on the boundary of the Ising island and N is large, we might expect that SN(p) is
a reasonable approximation to the actual spectrum of the theory. However, it is not obvious
how to assign error bars to SN(p). Firstly, the actual theory lies somewhere in the interior
of the island, not on the boundary. It is important that the island is small enough that
points on the interior are close to points on the boundary. Secondly, SN(p) depends on p,
and there is no canonical choice of p.

In [68], we propose the following trick. We sample several di↵erent points p on the
boundary of the island, and compute SN(p) for each one. As we increase N and vary p,
some of the operators in SN(p) jump around, while others remain relatively stable. If an
operator remains stable, we can guess that it is truly required by crossing symmetry.

In [68], we used this strategy to estimate the dimensions and OPE coe�cients of a
few low-dimension operators in the 3d Ising CFT. In figures 1 and 2, we show a more

6The island (2.1) is the projection of A1265 onto (��,�✏, f��✏, f✏✏✏)-space, where we also assume that �
and ✏ are the only relevant scalars in the theory.

7It is impossible to solve the full crossing equations with a finite number of operators. SN (p) can be
finite because we have truncated the crossing equations to FN = 0.

4

Z2 odd
Z2 even
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Lots of data available from numerical bootstrap.  
(Input: series expansions must match)

We find that the resulting Z2-even spectrum shows a dramatic transition in the vicinity
of �� = 0.518154(15), giving a high precision determination of the leading critical exponent
⌘. Focusing on the transition region, we are able to extract precise values of the first
several Z2-even operator dimensions and of their OPE coe�cients, see Table 1. We also
give reasonable estimates for the locations of all low dimension (� . 13) scalar and spin 2
operators in the Z2-even spectrum.

spin & Z2 name � OPE coe�cient

` = 0, Z2 = � � 0.518154(15)
` = 0, Z2 = + ✏ 1.41267(13) f

2
��✏ = 1.10636(9)

✏
0 3.8303(18) f

2
��✏0 = 0.002810(6)

` = 2, Z2 = + T 3 c/cfree = 0.946534(11)
T

0 5.500(15) f
2
��T 0 = 2.97(2) ⇥ 10�4

Table 1: Precision information about the low-lying 3d Ising CFT spectrum and OPE
coe�cients extracted in this work. See sections 3.4 and 3.6 for preliminary information about
higher-dimension ` = 0 and ` = 2 operators. See also section 4 for a comparison to results by
other techniques.

The transition also shows the highly intriguing feature that certain operators disappear
from the spectrum as one approaches the 3d Ising point. This decoupling of states gives
an important characterization of the 3d Ising CFT. This is similar to what occurs in the
2d Ising model, where the decoupling of operators can be rigorously understood in terms of
degenerate representations of the Virasoro symmetry. To better understand this connection,
we give a detailed comparison to the application of our c-minimization algorithm in 2d,
where the exact spectrum of the 2d Ising CFT and its interpolation through the minimal
models is known. We conclude with a discussion of important directions for future research.

2 A Conjecture for the 3d Ising Spectrum

Consider a 3d CFT with a scalar primary operator � of dimension ��. In [1], we studied
the constraints of crossing symmetry and unitarity on the four-point function h����i.
From these constraints, we derived universal bounds on dimensions and OPE coe�cients of
operators appearing in the � ⇥� OPE. Figure 1, for example, shows an upper bound on the
dimension of the lowest-dimension scalar in � ⇥ � (which we call ✏), as a function of ��.
This bound is a consequence of very general principles - conformal invariance, unitarity, and
crossing symmetry - yet it has a striking “kink” near (��, �✏) t (0.518, 1.412), indicating
that these dimensions have special significance in the space of 3d CFTs. Indeed, they are
believed to be realized in the 3d Ising CFT.

The curves in Figure 1 are part of a family of bounds labeled by an integer N (defined
in section 2.3), which get stronger as N increases. It appears likely that the 3d Ising CFT

3

[El-Showk,Paulos,Poland,  
Rychkov,Simmons-Duffin&Vichi ’14]



Large-spin expansion

Easiest at large-J: integral pushed to corner

large spin in s-channel  ↔ low twist in t-channel

⇒ Solve crossing in asymptotic series in 1/J
[Komargodski&Zhiboedov,  

Fitzpatrick,Kaplan,Poland&Simmons-Duffin,
Alday&Bissi&…,  

Kaviraj,Sen,Sinha&…,
Alday,Bissi,Perlmutter&Aharony,…]

(z, z̄) ! (0, 1)

Organizing principle for CFT spectrum:  analyticity in spin



1/J expansion in 3D Ising

j +�

2

2��

where we used equation (5.48) for the Jacobian @h

@`
that relates f��[��]0 to ���[��]0 . The

actual operator dimensions are determined by solving h� 2h� � �(h) = 0, 2, 4, . . . .

A comparison between the above formula and numerics for ⌧[��]0 = 2��+2�[��]0 is shown
in figure 7. The discrepancy between analytics and numerics is 3 ⇥ 10�3 and 5 ⇥ 10�4 for
spins ` = 2, 4, respectively, and ⇠ 5 ⇥ 10�5 for ` > 4. Including additional higher-twist
operators (primaries or descendants) in (6.1) and (6.2) does not improve the fit for low
spins, and barely a↵ects it for high spins.

10 20 30 40
h

1.00

1.01

1.02

1.03

1.04
τ

τ[σσ]0(h)

Figure 7: A comparison between the analytical prediction (6.5) (blue curve) and numerical
data (blue dots) for ⌧[��]0 . The two agree with accuracy 3 ⇥ 10�3 and 5 ⇥ 10�4 for spins
` = 2, 4, respectively, and ⇠ 5⇥ 10�5 for ` > 4. The grey dashed line is the asymptotic value
⌧ = 2��. The curve (2.3) from [1] looks essentially the same.

6.1.1 Di↵erences from [1]

Let us comment briefly on the (inconsequential) di↵erences between the above calculation
and the series (2.3) computed in [1]. Firstly, we have not included descendants of ✏, T ,

namely terms of the form W (0)����
O,m

and V (0)����
O,m

with m � 1, whereas [1] included descen-
dants at first order in z. This is because it doesn’t make sense to include level-1 descendants
of ✏, T without also including the double-twist operators [✏T ]0, [TT ]0, which contribute at
the same order in the large-h expansion. Also, because we organize everything as a series in
y instead of z, the contributions of descendants will di↵er somewhat (though the sum over

32

[Plot from Simmons-Duffin ’16;  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new: -formula shows there can’t be outliers  
       -all states (at least with J>1) must lie on trajectory
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6.2.3 Comparison to numerics

We plot the twists ⌧[�✏]0 = �� + �✏ + 2�[�✏]0 in figure 13 and OPE coe�cients f�✏[�✏]0 in
figure 14, comparing the formulae (6.33) and (6.34) to numerical results. In both cases,
analytics matches numerics to high precision (⇠ 10�4) at large h, and moderate precision
(< 10�2) for all h. The agreement is particularly impressive because the corrections are
large compared to Mean Field Theory, in contrast to the case of [��]0. Correctly summing
the family [��]0 is crucial for achieving this.

10 20 30 40
h

1.7

1.8

1.9

2.0

2.1

2.2
τ

τ[σϵ]0(h)

Figure 13: Comparison between numerical data and the analytical prediction (6.33, 6.34) for
⌧[�✏]0 . The blue curve and points correspond to even-spin operators and the orange curve and
points correspond to odd-spin operators. The dashed line is the asymptotic value ⌧ = ��+�✏.

7 Operator mixing and the twist Hamiltonian

7.1 Allowing for mixing

The naive large-h expansion of section 5 describes the operators [��]0 and [�✏]0 nicely.
However, it fails badly for [��]1 and [✏✏]0. As mentioned in the introduction, the numerics
indicate large mixing between these families. As a striking illustration, we plot the ratios
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+(�1)j

𝜎𝜀

𝜎𝜀

𝜀
Z2-odd operators

𝜎𝜀

𝜎 𝜀

J even

J odd

Works great for J>1, but              seems not even close!

2 Numerics and the lightcone limit

2.1 A numerical picture of the 3d Ising spectrum

Numerical bootstrap methods have become powerful enough to estimate several operator
dimensions and OPE coe�cients in the 3d Ising CFT. The strategy is as follows. Consider
the four-point functions h����i, h��✏✏i, and h✏✏✏✏i where � and ✏ are the lowest-dimension
Z2-odd and Z2-even scalars in the 3d Ising CFT, respectively. Crossing symmetry and
unitarity for these correlators forces the dimensions ��,�✏ and OPE coe�cients f��✏, f✏✏✏
to lie inside a tiny island given by [55]

�� = 0.5181489(10), f��✏ = 1.0518537(41),

�✏ = 1.412625(10), f✏✏✏ = 1.532435(19). (2.1)

We can then ask: given that (��,�✏, f��✏, f✏✏✏) lie in this island, what other operators
are needed for crossing symmetry? Although it is possible in principle to compute rigorous
bounds on more operators, it is di�cult in practice because we must scan over the dimensions
and OPE coe�cients of those additional operators.

Instead, we adopt the non-rigorous approach of [68], based on the extremal functional
method [7, 14, 20]. Consider N derivatives of the crossing equation around z = z = 1

2 ,
which we write as FN = 0, where FN is an N -dimensional vector depending on the CFT
data. We assume that OPE coe�cients are real and operator dimensions are consistent
with unitarity bounds [69]. By the argument of [3], there is an allowed region AN in the
space of CFT data such that any point outside AN is inconsistent with FN = 0.6 For every
point p on the boundary of AN , there is a unique “partial spectrum” SN(p): a finite list of
operator dimensions and OPE coe�cients that solve FN = 0. The number of operators in
SN(p) grows linearly with N .7

If p lies on the boundary of the Ising island and N is large, we might expect that SN(p) is
a reasonable approximation to the actual spectrum of the theory. However, it is not obvious
how to assign error bars to SN(p). Firstly, the actual theory lies somewhere in the interior
of the island, not on the boundary. It is important that the island is small enough that
points on the interior are close to points on the boundary. Secondly, SN(p) depends on p,
and there is no canonical choice of p.

In [68], we propose the following trick. We sample several di↵erent points p on the
boundary of the island, and compute SN(p) for each one. As we increase N and vary p,
some of the operators in SN(p) jump around, while others remain relatively stable. If an
operator remains stable, we can guess that it is truly required by crossing symmetry.

In [68], we used this strategy to estimate the dimensions and OPE coe�cients of a
few low-dimension operators in the 3d Ising CFT. In figures 1 and 2, we show a more

6The island (2.1) is the projection of A1265 onto (��,�✏, f��✏, f✏✏✏)-space, where we also assume that �
and ✏ are the only relevant scalars in the theory.

7It is impossible to solve the full crossing equations with a finite number of operators. SN (p) can be
finite because we have truncated the crossing equations to FN = 0.
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Theories with AdS gravity duals have:

- Large-N expansion (small ℏ in AdS)

- Few light single-traces, all with small spin ≤2 
   (up to a very high dimension               )∆gap ≫ 1

simple statement for dDisc:

kills double-traces kills heavy

[HPPS ‘09]

theories with local  
AdS dual ⇔ dDisc saturated 

by few light primaries

dDiscG =
∑

J ′,∆′

sin2(π2 (∆
′ − 2∆))

(
1−√

ρ

1 +
√
ρ

)∆′+J ′ (
1−

√
ρ̄

1 +
√
ρ̄

)∆′−J ′
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R
+ crossed =+

Figure 3. The inversion integral produces the full correlator, given on the left as a sum over Witten
diagrams, from the double-discontinuity in a single channel (and more generally, the t and u channels).

For the connected tree (second line of (3.6b)) the integral is very similar but there is an

extra log. We can simplify our life somewhat by writing it using Casimir operators:
✓

z

1� z
� 2z2

(1� z)2
� 2z3 log z

(1� z)3

◆
= �1

2
D(D � 2)

z log z

1� z
, D = z2@z(1� z)@z . (3.11)

The Casimir operators can be integrated by parts and simply give a multiplicative factor equal

to their eigenvalue on the blocks, namely: (h� 2)(h� 1)h(h+1). A similar trick will greatly

simplify things at one-loop, as shown below. We do not need to worry about boundary terms

in z since poles originate only from z ! 0. To perform the integral over z log z
1�z we then simply

expand it in powers of z/(1� z) and apply the formula (3.8) termwise. Dropping terms with

no poles we obtain a very simple result:

c(1)(h, h̄) =
⇡2

sin(⇡h)2
(h� 2)(h� 1)h(h+ 1)

2
. (3.12)

Comparing with (3.5) then give the (summed) anomalous dimension and OPE coe�cient:

⌦
a(0)�(1)

↵
n,`

= �2n,
⌦
a(1)

↵
n,`

= �@nn (3.13)

which again are in precise agreement with the results quoted in the preceding section.

Let us now interpret the results (3.9), (3.12). They express the result of the inversion in-

tegral (3.4) applied to strongly coupled super Yang-Mills theory (where one has only neglected

terms with no poles at positive h). We stress that this data determines the full tree-level

supergravity correlator: plugging the resulting anomalous dimensions and OPE coe�cients

into eq. (2.5) we checked that it reproduces precisely the OPE expansion of the known result

[16]:

G = 1 +
1

v2
+

1

c

✓
1

v
� u2D̄2,4,2,2(z, z̄)

◆
+O(1/c2). (3.14)

It is remarkable that the present computation did not use any input from supergravity: the

only assumption was the sparseness of the single-trace spectrum. Specifically, we included

in the t-channel only the protected half-BPS operators (the stress tensor multiplet and its

second Kaluza-Klein excitation), which are responsible for the singular part of Gshort(v, u)

recorded in eq. (2.8).
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Figure 3. The inversion integral produces the full correlator, given on the left as a sum over Witten
diagrams, from the double-discontinuity in a single channel (and more generally, the t and u channels).
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Let us now interpret the results (3.9), (3.12). They express the result of the inversion in-

tegral (3.4) applied to strongly coupled super Yang-Mills theory (where one has only neglected

terms with no poles at positive h). We stress that this data determines the full tree-level

supergravity correlator: plugging the resulting anomalous dimensions and OPE coe�cients

into eq. (2.5) we checked that it reproduces precisely the OPE expansion of the known result
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Figure 1. Correlators in any large-N theories can be reconstructed from singularities that are
saturated by single-trace operators. Theories with a gravity dual correspond to the case where the
sum is e↵ectively finite.

where the regular terms contain at most a single logarithm as v ! 0, in contrast with terms

which we will call “singular” due to either poles or double logarithms at v ! 0. So far the

discussion has been general. In the present paper we will consider solutions consistent with

crossing in a large central charge expansion, in the regime of large t’ Hooft coupling �:

H(u, v) = H(0)(u, v) +
1

c
H(1)(u, v) +

1

c2
H(2)(u, v) + · · · (2.9)

In this regime the intermediate operators contributing to H(u, v) are double trace operators

with twist four and higher. The pole terms as v ! 0 present on the r.h.s. of (2.8) arise

from the protected, single-trace sector. Following general arguments, we see that these poles

are consistent with, and actually require, the existence of double trace operators of twist

�� ` = 4+2n. As we will see, their precise form at c = 1 su�ces to fix the OPE coe�cients

to

⌦
a(0)

↵
n,`

= 2(`+ 1)(6 + `+ 2n) . (2.10)

We use the bracket to denote the sum over all operators of approximate twist 4 + 2n and

spin `, emphasizing the fact that in general many nearly-degenerate operators contribute.

As we take into account 1/c corrections both the scaling dimensions and OPE coe�cients of

individual operators acquire corrections

�n,` = 4 + 2n+ `+
1

c
�(1)n,` +

1

c2
�(2)n,` + · · · (2.11)

an,` = a(0)n,` +
1

c
a(1)n,` +

1

c2
a(2)n,` + · · · (2.12)

As we will see in the next two sections �(1)n,` and a(1)n,` are again fully determined by the singular

terms in (2.8). We obtain

⌦
a(0)�(1)

↵
n,`⌦

a(0)
↵
n,`

= � n
(1 + `)(6 + `+ 2n)

,
⌦
a(1)

↵
n,`

=
1

2
@n

⌦
a(0)�(1)

↵
n,`

, (2.13)
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Figure 1. Correlators in any large-N theories can be reconstructed from singularities that are
saturated by single-trace operators. Theories with a gravity dual correspond to the case where the
sum is e↵ectively finite.
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which we will call “singular” due to either poles or double logarithms at v ! 0. So far the

discussion has been general. In the present paper we will consider solutions consistent with

crossing in a large central charge expansion, in the regime of large t’ Hooft coupling �:

H(u, v) = H(0)(u, v) +
1

c
H(1)(u, v) +

1

c2
H(2)(u, v) + · · · (2.9)

In this regime the intermediate operators contributing to H(u, v) are double trace operators
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from the protected, single-trace sector. Following general arguments, we see that these poles

are consistent with, and actually require, the existence of double trace operators of twist
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Figure 1. Correlators in any large-N theories can be reconstructed from singularities that are
saturated by single-trace operators. Theories with a gravity dual correspond to the case where the
sum is e↵ectively finite.

where the regular terms contain at most a single logarithm as v ! 0, in contrast with terms

which we will call “singular” due to either poles or double logarithms at v ! 0. So far the

discussion has been general. In the present paper we will consider solutions consistent with
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In this regime the intermediate operators contributing to H(u, v) are double trace operators

with twist four and higher. The pole terms as v ! 0 present on the r.h.s. of (2.8) arise

from the protected, single-trace sector. Following general arguments, we see that these poles

are consistent with, and actually require, the existence of double trace operators of twist
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Figure 1. Correlators in any large-N theories can be reconstructed from singularities that are
saturated by single-trace operators. Theories with a gravity dual correspond to the case where the
sum is e↵ectively finite.
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• New: control over contact ambiguities (‘cR4’)  
usingCFT only 

• In progress: general S5 Kaluza-Klein modes.  
Nice 10D structure…

 29

⇥=
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Figure 2. At one-loop order in the 1/N expansion, the singularities caused by double-trace exchanges
are equal to products of single-trace tree amplitudes.

where n = (n + 1)(n + 2)(n + 3)(n + 4). This coincides with the well known supergravity

result. In principle one could also add a solution consistent with crossing with finite support

in the spin. As we will show, such solutions can be forbidden using bounds on the Regge

limit behavior.

Although in this paper we will only focus on the correlator at hand, in principle the same

can be done for more general correlators, of the form hOpOpOqOqi. In this way one should

recover the supergravity result from the singular contribution of the protected sector.

At order 1/c2 something interesting happens. On one hand the 1/c expansion of the

protected contribution stops at order 1/c. On the other hand, the anomalous dimensions at

order 1/c of double trace operators in the t-channel produce the following singular term to

order 1/c2:

H(2)(v, u) =
1

8
log2 v

X

n,`

⌦
a(0)

�
�(1)

�2↵
n,`

gn,`(v, u) + regular (2.14)

In order to compute the sum at each n, ` one has to solve a mixing problem which can be

done from the explicit answers of the general correlators mentioned above. The result will

be recorded in section ?? below. As we show in sections 3 and 4 the CFT data at order 1/c2

again follows from this singular part.

How much shall we say about the flat space limit, analytic results, etc? think!

3 CFT data from the Froissart-Gribov inversion integral

Recently, an integral formula has been derived which reconstructs the OPE data of any CFT

from the double-discontinuity of correlators [10]. For identical external operators in four

dimensions, this inversion integral was written in that paper as

c̃(`,�) =
1 + (�1)`

4
̃(�+`

2 )

Z 1

0

dz

z2
dz

z2

✓
z � z

zz

◆2

g̃`+3,��3(z, z) dDisc [G(z, z)], (3.1)

with ̃(h) = �(h)4

2⇡2�(2h�1)�(2h) , and where we notice that the block has spin and dimension

interchanged compared to the one entering the OPE. The formula is analytic in spin expect

– 5 –

Result matches perfectly supergravity Witten diagrams

[D’Hoker, Freedman, Mathur, Matusis& Rastelli, ~99]

+…

Given the double discontinuity (3.6a), the inversion integral (3.4) factorizes and can be

done using the preceding formulas. This gives directly the disconnected OPE data:

c(0)(h, h) = ⇡ cot(�⇡h)
�
h(h� 1)� h(h� 1)

�
. (3.9)

At the zeroth order we can neglect the anomalous dimension in eq. (3.5) which thus gives

⌦
a(0)

↵
n,`

= �2Resh=n+3 c
(0)(h, h+ `+ 1) = 2(`+ 1)(6 + `+ 2n) (3.10)

exactly as in eq. (2.10).

For the connected tree (second line of (3.6b)) the integral is very similar but there is an

extra log. We can simplify our life somewhat by writing it using Casimir operators:
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� 2z2

(1� z)2
� 2z3 log z

(1� z)3

◆
= �1

2
D(D � 2)

z log z

1� z
, D = z2@z(1� z)@z . (3.11)

The Casimir operators can be integrated by parts and simply give a multiplicative factor

equal to their eigenvalue on the blocks, namely: (h � 2)(h � 1)h(h + 1). We do not need to

worry about boundary terms in z since the poles originate from z ! 0. A similar trick will

greatly simplify things below at one-loop. To perform the integral over z log z
1�z we then simply

expand in powers of z/(1 � z) and apply the formula (3.8) termwise. Dropping terms with

no poles we obtain a very simple result:

c(1)(h, h) =
⇡2

sin(⇡h)2
(h� 2)(h� 1)h(h+ 1)

2
. (3.12)

Comparing with (3.5) then give the (average) anomalous dimension and OPE coe�cient:

⌦
a(0)�(1)

↵
n,`

= �2n,
⌦
a(1)

↵
n,`

= �@nn (3.13)

which again are in precise agreement with the results quoted in the preceding section.

Let us now interpret the results (3.9), (3.12). They express the result of the inversion in-

tegral (3.4) applied to strongly coupled (super) Yang-Mills theory (and neglecting terms with

no poles at positive h). We stress that this data determines the full tree-level supergravity

correlator: plugging the resulting anomalous dimensions and OPE coe�cients into eq. (2.5)

we checked that it reproduces precisely the OPE expansion of the known result []:

G = 1 +
1

v2
+

1

c

✓
1

v
� u2D̄2,4,2,2(z, z)

◆
+O(1/c2). (3.14)

It is remarkable that the present computation did not use any input from supergravity: the

only assumption was the sparseness of the single-trace spectrum. Specifically, we included in

the t-channel only the protected half-BPS operators (the stress tensor multiplet and its first

Kaluza-Klein excitation) which are responsible for the singular part of Gshort(v, u) recorded

in eq. (??). [comment on literature]
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[Rastelli&Zhou 16,  
Drummond et al. 17]

[SCH & Anh-Khoi Trinh, …]

see also:
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Figure 2. At one-loop order in the 1/N expansion, the singularities caused by double-trace exchanges
are equal to products of single-trace tree amplitudes.

where n = (n + 1)(n + 2)(n + 3)(n + 4). This coincides with the well known supergravity

result. In principle one could also add a solution consistent with crossing with finite support

in the spin. As we will show, such solutions can be forbidden using bounds on the Regge

limit behavior.

Although in this paper we will only focus on the correlator at hand, in principle the same

can be done for more general correlators, of the form hOpOpOqOqi. In this way one should

recover the supergravity result from the singular contribution of the protected sector.

At order 1/c2 something interesting happens. On one hand the 1/c expansion of the

protected contribution stops at order 1/c. On the other hand, the anomalous dimensions at

order 1/c of double trace operators in the t-channel produce the following singular term to

order 1/c2:

H(2)(v, u) =
1

8
log2 v

X

n,`

⌦
a(0)

�
�(1)

�2↵
n,`

gn,`(v, u) + regular (2.14)

In order to compute the sum at each n, ` one has to solve a mixing problem which can be

done from the explicit answers of the general correlators mentioned above. The result will

be recorded in section ?? below. As we show in sections 3 and 4 the CFT data at order 1/c2

again follows from this singular part.

How much shall we say about the flat space limit, analytic results, etc? think!

3 CFT data from the Froissart-Gribov inversion integral

Recently, an integral formula has been derived which reconstructs the OPE data of any CFT

from the double-discontinuity of correlators [10]. For identical external operators in four

dimensions, this inversion integral was written in that paper as

c̃(`,�) =
1 + (�1)`

4
̃(�+`

2 )

Z 1

0

dz

z2
dz

z2

✓
z � z

zz

◆2

g̃`+3,��3(z, z) dDisc [G(z, z)], (3.1)

with ̃(h) = �(h)4

2⇡2�(2h�1)�(2h) , and where we notice that the block has spin and dimension

interchanged compared to the one entering the OPE. The formula is analytic in spin expect
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Product of trees:
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Aprile,Drummond,Heslop&Paul]
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high-energy behavior of the amplitude was given in [17]. Setting � = 2 and d = 4 in eq. (5.5)

there this relation reads:

zz(z � z)Gcont = � i

2

Z 1

0
!2d! e2i!x

p
sA5(s, t) , (5.25)

where ! represents the energies of each incoming particle in units of the AdS radius L, the

Mandelstam variable s = 4!2/L2 is the center-of-mass energy, and �t/s = 1�cos ✓
2 encodes

the scattering angle. This formula gives the leading singular term at x ⇠ z � z ! 0 for each

order in 1/c. To make contact with the OPE on the CFT side, we use the usual partial wave

expansion for the five-dimensional (flat space) amplitude A5(s, t):

A5(s, t) =
128⇡p

s

X

` even

(`+ 1)2b`(s)P`(cos ✓) (5.26)

with cos ✓ = 1 + 2t
s and P` is as defined below eq. (5.6). The prefactor is simply one over

the phase space volume for two identical particles, ensuring that b(0)` = 1 in the absence of

interactions. Comparing (5.6), (5.25) and (5.26), one concludes that the leading behavior of

the OPE data is:

lim
n!1

⌦
ae�i⇡�

↵
n,`⌦

a(0)
↵
n,`

= b`(s) , (5.27)

with L
p
s/2 = n. This relation between the phase shift and flat space amplitude is familiar

when there is no operator mixing, and was derived for example in the eikonal limit [] or to

first order in 1/c [].

At energy scales between the AdS and string scales, the flat space amplitude A5(s, t) can

be reliably computed using perturbative quantum gravity in flat space, viewed as an e↵ective

field theory. We notice that in this limit the AdS5⇥S5 geometry is however fundamentally

ten-dimensional, so we have to use the ten-dimensional IIB supergravity. Fortunately, the one-

loop flat space integrand in this theory was worked out in any dimension in []. It is a simple

sum of scalar boxes, thanks to the so-called no-triangle property of maximal supergravity:

Asugra
10 (s, t) = 8⇡GN

s3

tu
+

(8⇡GN )2

(4⇡)5
(Ibox(s, t) + Ibox(s, u) + Ibox(t, u)) +O(G3

N ) , (5.28)

where GN = ⇡4L8

2c is the ten-dimensional Planck constant, with c = N2
c�1
4 and L the AdS

radius. To be fully precise, let us specify which polarization we have chosen for the external

gravitons: to match with the correlator G(105), which corresponds to two identical complex

scalars, one should choose the polarizations of gravitons 1 and 2 to be two identical null

tensors orthogonal to all the momenta. (Note that due to supersymmetry, all other choices

are equivalent up to an overall factor.)
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p
s = 2n/L

�1

1

�⇢

⇢

⇢

(a) (b)

Figure 3. (a) Four-point kinematics in the complex ⇢-plane. (b) The kinematics on the Lorentzian
cylinder. In the “bulk-point” limit z ! z, particles are e↵ectively beamed onto a point in the AdS
interior of the cylinder.

Flat space physics can be accessed using suitable wavepackets focused onto a point in

the bulk [? ? ]. To be self-contained, we give a brief exposition. The kinematics are most

conveniently described using the ⇢-coordinates introduced in [] and depicted in eq. (??), see

also section 5 of [? ]. In Euclidean kinematics, ⇢ and ⇢̄ are complex conjugate to each

other and log(⇢⇢̄) represents time in radial quantization. The bulk-point limit exists in real

Minkowski signature where that time is taken imaginary and approaches �i⇡. Adding a

rotation by ⇡ the corresponding cross-ratios are

⇢ =
1�

p
1� z

1 +
p
1� z

= ei✓�2⇡i+ix, ⇢̄ =
1�

p
1� z

1 +
p
1� z

= e�i✓+ix, (5.1)

where x ! 0 in the limit (which implies z, z ! 2
1+cos ✓ with z� z ⇠ x). Fast particles moving

at the speed of light can then scatter in the bulk while conserving momentum. Since the

s-channel conformal block expansion converges for |⇢|  1, |⇢̄|  1 [? ], the bulk point limit

can be approached using the OPE but it lies at the boundary of its radius of convergence.

Thus singularities can arise from the tail of the sum.

If one were to ignore the phase e�2⇡i representing the time evolution, the correlator would

admit the usual decomposition in super-conformal blocks

H(u, v) =
X

�,`

a�,` g�,`(u, v) . (5.2)

The time evolution has the e↵ect of multiplying each conformal block by a phase

Hcont.(u, v) =
X

�,`

e�i⇡(��`) a�,` g�,`(u, v) (5.3)

To understand the tail of the sum one may use the asymptotics of the hypergeometric functions

(see [? ]):

lim
h!1

kh(z) =
(4⇢)hp
1� ⇢2

(1 +O(1/h)) (5.4)
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We obtained the full 1-loop OPE data,  
and studied ‘bulk point’ limit

[HPPS]

large-∆ OPE data ⇔ flat-space partial waves:

[Alday,SCH ’17]
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+ +

Figure 4. The one-loop amplitude in ten-dimensional type IIB supergravity is the sum of three scalar
boxes integrals.

which leads to the large-n behavior (for any x)

lim
n!1

a(0)n,` gn,` =
�64i⇡n2

zz(z � z)

(`+ 1) sin((`+ 1)✓)p
sin2 ✓ � sin2 x

eix(2n+`+6). (5.5)

One sees that each block has a 1/(z�z) ⇠ 1/x singularity. However, any stronger singularity

would have to be caused by the large-n tail of the sum. In a non-perturbative regime the extra

phases in Hcont.(u, v) have been conjectured to display a chaotic behaviour, ensuring that the

singularity of the correlator is not enhanced compared with that of individual blocks. In a

large N perturbative regime this is not true anymore, since phases are small and in fact quite

regular. In the following we will focus on the dominant singularity at x ! 0 at each order in

the 1/c expansion. In this limit the dependence of the blocks on anomalous dimensions can

be neglected at it produces subleading d/dn terms, and the above gives simply

zz(z � z)Gcont.(u, v) ⇡ �64i⇡
X

n

n2 e2ixn
X

` even

(`+ 1)2P`(cos ✓)

⌦
ae�i⇡�

↵
n,`⌦

a(0)
↵
n,`

(5.6)

where P`(✓) =
sin(`+1)✓
(`+1) sin ✓ are a four-dimensional version of Legendre polynomials. [comment

on literature] This formula can be readily tested at the leading order: with the anomalous

dimension �(1) ⇡ �n3

2(`+1) one finds zz(z�z)G(1)
cont. ⇡ �30⇡2

x6 sin2✓
, which is in precise agreement with

the analytic continuation of the D̄ function in eq. (3.14).

5.1 Large-n limit

The discussion above is the main motivation to study the averages
⌦
ae�i⇡�

↵
n,`

in the large n

limit. We will do so in two di↵erent ways. First from our explicit results, and then directly

from the inversion integral.

5.1.1 Large-n limit from explicit results

Up to order 1/c2 the average in question is equivalent to

⌦
ae�i⇡�

↵
n,`

=
⌦
a(0)

↵
n,`

+
1

c

⇣⌦
a(1)

↵
n,`

� i⇡
⌦
a(0)�(1)

↵
n,`

⌘
(5.7)

+
1

c2

✓⌦
a(2)

↵
n,`

� i⇡
⌦
a(1)�(1) + a(0)�(2)

↵
n,`

� ⇡2

2

⌦
a(0)

�
�(1)

�2↵
n,`

◆
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high-energy behavior of the amplitude was given in [17]. Setting � = 2 and d = 4 in eq. (5.5)

there this relation reads:

zz(z � z)Gcont = � i

2

Z 1

0
!2d! e2i!x

p
sA5(s, t) , (5.25)

where ! represents the energies of each incoming particle in units of the AdS radius L, the

Mandelstam variable s = 4!2/L2 is the center-of-mass energy, and �t/s = 1�cos ✓
2 encodes

the scattering angle. This formula gives the leading singular term at x ⇠ z � z ! 0 for each

order in 1/c. To make contact with the OPE on the CFT side, we use the usual partial wave

expansion for the five-dimensional (flat space) amplitude A5(s, t):

A5(s, t) =
128⇡p

s

X

` even

(`+ 1)2b`(s)P`(cos ✓) (5.26)

with cos ✓ = 1 + 2t
s and P` is as defined below eq. (5.6). The prefactor is simply one over

the phase space volume for two identical particles, ensuring that b(0)` = 1 in the absence of

interactions. Comparing (5.6), (5.25) and (5.26), one concludes that the leading behavior of

the OPE data is:

lim
n!1

⌦
ae�i⇡�

↵
n,`⌦

a(0)
↵
n,`

= b`(s) , (5.27)

with L
p
s/2 = n. This relation between the phase shift and flat space amplitude is familiar

when there is no operator mixing, and was derived for example in the eikonal limit [] or to

first order in 1/c [].

At energy scales between the AdS and string scales, the flat space amplitude A5(s, t) can

be reliably computed using perturbative quantum gravity in flat space, viewed as an e↵ective

field theory. We notice that in this limit the AdS5⇥S5 geometry is however fundamentally

ten-dimensional, so we have to use the ten-dimensional IIB supergravity. Fortunately, the one-

loop flat space integrand in this theory was worked out in any dimension in []. It is a simple

sum of scalar boxes, thanks to the so-called no-triangle property of maximal supergravity:

Asugra
10 (s, t) = 8⇡GN

s3

tu
+

(8⇡GN )2

(4⇡)5
(Ibox(s, t) + Ibox(s, u) + Ibox(t, u)) +O(G3

N ) , (5.28)

where GN = ⇡4L8

2c is the ten-dimensional Planck constant, with c = N2
c�1
4 and L the AdS

radius. To be fully precise, let us specify which polarization we have chosen for the external

gravitons: to match with the correlator G(105), which corresponds to two identical complex

scalars, one should choose the polarizations of gravitons 1 and 2 to be two identical null

tensors orthogonal to all the momenta. (Note that due to supersymmetry, all other choices

are equivalent up to an overall factor.)
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one-loop IIB amplitude is simple:

We expand it over 5D partial waves: A5 = A10/vol S5
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correlator

G(z, z)
amplitude

A5(s, t)

dispersion

relation

discontinuity

Disc [A5]

inversion

integral

double-disc.

dDisc [G]

flat space

flat space

Figure 5. A commutative diagram which explains the agreement between the one-loop CFT and
supergravity calculations: the discontinuities, which determine the outcome of both calculations, match
each other.

Finally, it turns out the average
⌦
a(2)

↵
n,`

is subleading for large n, and will not be important

for our purposes.

5.1.2 Large-n limit from inversion integral

The simplicity of the preceding result suggests a more direct route and in fact we now show

how to take this limit directly from the Froissart-Gribov inversion integral (3.4). The key is

to use that the poles in c(h, h) originate only from the z ! 0 limit of integration. Therefore

just by rotating the z contour clockwise by 2⇡, and dropping an arc at |z| = 1 which produces

no pole, we can eliminate the phase:

e�2⇡ihc(h, h) =

Z 1

0

dz

z2
k1�h(z)

rh

Z 1

0

dz

z2
rh

h� 1
2

kh(z)
dDisc [zz(z � z)G(z�, z)]

4⇡2
+ pole-free

⌘ c�(h, h) . (5.19)

The notation indicates that the correlator is evaluated with z rotated clockwise around the

origin. Recall that the double-discontinuity (3.2) is itself computed as an analytic continua-

tion, but with respect to the other variable (and around z = 1), so these two continuations

commute with each other.

Our interest is in the asymptotic spectral density of c(h, h)
�
. This can be defined math-

ematically by taking the di↵erence slightly above and below the real axis

⌦
ae�i⇡�

↵
n,`

⇡ 1

i⇡

�
c�(h⇥ ei↵, h)� c�(h⇥ e�i↵, h)

�
(5.20)

where ↵ > 0 is a small phase. This analytic function is what would enter, for example, in

the Watson-Sommerfeld representation in eq. (??) of [appendix B of Polchinski et al]. For

the first term, one sees that the integral (5.19) would decay exponentially if the z contour

could be rotated clockwise, however this is obstructed by the singularity at z = z. The

second term however decays exponentially because there are no singularities obstructing a
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⇥=
P
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traces

Figure 2. At one-loop order in the 1/N expansion, the singularities caused by double-trace exchanges
are equal to products of single-trace tree amplitudes.

where n = (n + 1)(n + 2)(n + 3)(n + 4). This coincides with the well known supergravity

result. In principle one could also add a solution consistent with crossing with finite support

in the spin. As we will show, such solutions can be forbidden using bounds on the Regge

limit behavior.

Although in this paper we will only focus on the correlator at hand, in principle the same

can be done for more general correlators, of the form hOpOpOqOqi. In this way one should

recover the supergravity result from the singular contribution of the protected sector.

At order 1/c2 something interesting happens. On one hand the 1/c expansion of the

protected contribution stops at order 1/c. On the other hand, the anomalous dimensions at

order 1/c of double trace operators in the t-channel produce the following singular term to

order 1/c2:

H(2)(v, u) =
1

8
log2 v

X

n,`

⌦
a(0)

�
�(1)

�2↵
n,`

gn,`(v, u) + regular (2.14)

In order to compute the sum at each n, ` one has to solve a mixing problem which can be

done from the explicit answers of the general correlators mentioned above. The result will

be recorded in section ?? below. As we show in sections 3 and 4 the CFT data at order 1/c2

again follows from this singular part.

How much shall we say about the flat space limit, analytic results, etc? think!

3 CFT data from the Froissart-Gribov inversion integral

Recently, an integral formula has been derived which reconstructs the OPE data of any CFT

from the double-discontinuity of correlators [10]. For identical external operators in four

dimensions, this inversion integral was written in that paper as

c̃(`,�) =
1 + (�1)`

4
̃(�+`

2 )

Z 1

0

dz

z2
dz

z2

✓
z � z

zz

◆2

g̃`+3,��3(z, z) dDisc [G(z, z)], (3.1)

with ̃(h) = �(h)4

2⇡2�(2h�1)�(2h) , and where we notice that the block has spin and dimension

interchanged compared to the one entering the OPE. The formula is analytic in spin expect
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Figure 4. The one-loop amplitude in ten-dimensional type IIB supergravity is the sum of three scalar
boxes integrals.

which leads to the large-n behavior (for any x)

lim
n!1

a(0)n,` gn,` =
�64i⇡n2

zz(z � z)

(`+ 1) sin((`+ 1)✓)p
sin2 ✓ � sin2 x

eix(2n+`+6). (5.5)

One sees that each block has a 1/(z�z) ⇠ 1/x singularity. However, any stronger singularity

would have to be caused by the large-n tail of the sum. In a non-perturbative regime the extra

phases in Hcont.(u, v) have been conjectured to display a chaotic behaviour, ensuring that the

singularity of the correlator is not enhanced compared with that of individual blocks. In a

large N perturbative regime this is not true anymore, since phases are small and in fact quite

regular. In the following we will focus on the dominant singularity at x ! 0 at each order in

the 1/c expansion. In this limit the dependence of the blocks on anomalous dimensions can

be neglected at it produces subleading d/dn terms, and the above gives simply

zz(z � z)Gcont.(u, v) ⇡ �64i⇡
X

n

n2 e2ixn
X

` even

(`+ 1)2P`(cos ✓)

⌦
ae�i⇡�

↵
n,`⌦

a(0)
↵
n,`

(5.6)

where P`(✓) =
sin(`+1)✓
(`+1) sin ✓ are a four-dimensional version of Legendre polynomials. [comment

on literature] This formula can be readily tested at the leading order: with the anomalous

dimension �(1) ⇡ �n3

2(`+1) one finds zz(z�z)G(1)
cont. ⇡ �30⇡2

x6 sin2✓
, which is in precise agreement with

the analytic continuation of the D̄ function in eq. (3.14).

5.1 Large-n limit

The discussion above is the main motivation to study the averages
⌦
ae�i⇡�

↵
n,`

in the large n

limit. We will do so in two di↵erent ways. First from our explicit results, and then directly

from the inversion integral.

5.1.1 Large-n limit from explicit results

Up to order 1/c2 the average in question is equivalent to

⌦
ae�i⇡�

↵
n,`

=
⌦
a(0)

↵
n,`

+
1

c

⇣⌦
a(1)

↵
n,`

� i⇡
⌦
a(0)�(1)

↵
n,`

⌘
(5.7)

+
1

c2

✓⌦
a(2)

↵
n,`

� i⇡
⌦
a(1)�(1) + a(0)�(2)

↵
n,`

� ⇡2

2

⌦
a(0)

�
�(1)

�2↵
n,`

◆

– 19 –

→
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Dispersion relation is positive definite after UV-completion,  
so divergence can’t be fully canceled:

CR4 � ⇤2
UV ⌘ (�gap/LAdS)

2

Minimal subtraction is in the swampland

One-loop UV divergence:  low-spins ill-defined



• Dispersion relation for OPE coefficients:

• -Organizes spectrum into analytic families 
-Efficient cutting rules for AdS/CFT  

• Open directions:  
- interplay with numerical bootstrap?  
- why/when does it work for J≤1?  
- study non-AdS / non-CFT?  
- heavy-light correlators and black holes?

Summary

s-channel cross-channels
c(j,�) ⌘

Z 1

0
d⇢d⇢̄ g�,j dDiscG
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-5 5
Δ -

3

2

2

4

6

8

J
Z2 even states

(fit accounts for possible square-root branch point)



dDiscG

1⇠ 1/�2
gap

0

1

⇠ 1/N2
c

light
(known)

unknown
(heavy&non-  
perturbative)

cj,� =

Z
Fj,� dDiscG

⇢ ⇠ ⇢̄

‘minimal  
solution’

correction
small for j>2

= cj,�
���
light

+ cj,�
���
heavy

[see also: Alday,Bissi&Perlmutter;  
Li,Meltzer&Poland]



‘Heavy’ part depends on nonperturbative UV completion.  

It’s weighed by              .  Use positivity + boundedness:

“
�1

s��2
gap

” 1

�2
gap

+
s

�4
gap

+ . . .

��c(j, d
2 + i⌫)heavy

��  1

cT

#

(�2
gap)

j�2

⇠ (⇢⇢̄)J/2

This establishes, from CFT,  an EFT power-counting in AdS.


