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Spallation-driven superfluid helium UCN source

• Spallation produces free neutrons
(hot) T >~ 1 MeV = 109 K

• Moderation, reflection

(thermal, cold) T <~ 
1

40
eV = 300 K

• Downscattering
(ultracold) T < 300 neV = 0.003 K

– Cold neutrons produce phonons in the 
superfluid (1 K) and lose all their energy

• Transport by neutron guides out to room 
temperature experiments. Courtesy O. Zimmer
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UCN Facility at TRIUMF - Overview

Facility as of today – shielding blocks removed for clarity.



The UCN source we use today:
Vertical He-II UCN source

Spallation target/neutron source

Room temp D2O
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Planned improvements:
• Increased beam power, improved 

room temp moderators.
• Material potential He-II is 18 neV, 

use near-horizontal extraction
• Cold moderator upgrade.
• Improved cooling power (bigger 

pumps, conductance).
• Thinner Al, Mg, or Be walls for bottle 

(beta and gamma heating)



Channel of He-II transports heat. Heat from spallation target

Cooling by 3He refrigerator

Superfluid surface

Plan for 2021: New 3rd generation He-II 
cryostat being built in Japan



UCN Losses in Superfluid Helium (He-II)

• Key question for this project:

– At design beam current 10 Watts of heat enter the He-II

– Can we keep the He-II cold enough, at far end of long channel?

Losses dominated by 
2-phonon UCN 
upscattering
loss rate ~ T7

superfluid

Leung et al., PRC 93, 025501 (2016) measurements from ILL Grenoble

UCN are always far 
from thermal 
equilibrium:
Tneutron < 0.003 K
Tsuperfluid ~ 1 K



Two-fluid model of He-II

• He-II is made up of 

– Superfluid component ρs 

(entropy = 0, viscosity = 0)

– Normal fluid component ρn

• Good at explaining
viscosity contradictions, 
thermal transport properties, 
second sound, …



Thermal “Counterflow”

• Superfluid component flows towards heat source, normal 
component flows away.

• Normal component carries away entropy.

• Basis of heat transport is thermal counterflow of normal vs. 
superfluid components.

Nature 141, 243-244 (1938)

Fountain
Effect



Turbulent He-II and Quantum Vortices

Vortices in rotating He-II Vortices in thermal counterflow

Images from van Sciver, Helium Cryogenics.
Hydrogen particles attached to vortices.  𝑝 ∙ 𝑑  𝑞 = 𝑛ℎ

Circulation is quantized.



Turbulence in Thermal Counterflow

• For large heat flux, |vn-vs| is large.

• Friction force between normal and 
superfluid creates vortex tangles.

• Normal component, which carries 
away heat, is impeded by mutual 
friction with vortices.

viscous turbulent

Conclusion:  Turbulent He-II does not conduct heat like a usual material ~ q3, indicates presence of vortices.



Heat conduction of turbulent He-II

• Empirical fits to data for 
“thermal conductivity 
function”

• Strong peak in f-1 at 1.9 K

– Basis of e.g. LHC

• Small “conductivity” at lower 
temperatures.

Our experiment
0.8 – 1.0 K

Most measurements

m =~ 3
According to expt.



Calculation for our UCN Source
based on Gorter-Mellink fits

• For 10 W heat input, 
UCN production volume 
cannot be cooled below 
1.1 K, no matter how 
much refrigeration 
power available.

• Strongly dependent on 
channel diameter ~ d6

d = 10 cm

Refrigerator temperature (K)
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Example of calculations by T. Okamura, KEK
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Can we use our 
present UCN source 
cryostat to measure 

the temperature 
gradient in He-II?



Heat applied by heater coil

Top view of 
UCN bottle 
and 3He pot

Heat removed by
Evaporation of 3He



Results of Heat Test
Nov. 2017

• Colors:  measurements and 
theory in different temperature 
ranges.

• Vertical Errors:
– disagreement between sensors 
– sensor resolution

• Horizontal Errors:
– uncertainty in background heat

– correlated error

• Conclusion:
– Errors are large, but data 

consistent with scale of 
expected temperature 
gradient.

Florian Rehm - Heat Conductivity in Superfluid Helium & Ultracold Neutron Source Cryogenics
(Bachelor thesis, Coburg University of Applied Sciences and Arts, Jan. 2018)



Plan to measure in controlled experiment

• Prediction for this channel.

T. Okamura, S. Kawasaki, Y. Makida, 
and K. Hosoyama (KEK)



Conclusion

• Superfluid He-II does not have infinite thermal conductivity!

• Quantum turbulence in He-II will limit this UCN source design
• THe-II ~ 1.1-1.2 K  (UCN lifetime in He-II ~ 60-35 s)  (UCN source CDR 2018)

• New measurements of heat conduction in turbulent He-II are being 
conducted in order to finalize the design.  More generally, our existing 
vertical UCN source can be used to learn about many design issues.

• Design goal of 10-27 e-cm measurement of nEDM is in reach.
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Other superfluid helium UCN sources



• Neutrons that are moving so slowly that they bounce off surfaces 
and can be held in room-temperature bottles.
• v < 8 m/s = 30 km/h

• T < 4 mK

• K.E. < 300 neV

• Interactions:
• Gravity: V = mgh mg = 100 neV/m

• Magnetic: V = -μ•B μ =  60 neV/T

• Weak: τn = 886 s = 15 mins.

• Strong: V = Veff Veff < 335 neV

Ultracold Neutrons (UCN)



Phases of 4He

• He-I = normal liquid, 2.177 < T < 4.2 K

• He-II = superfluid, T < 2.177 K

• If all the particles are in the same 
quantum state:

– Zero entropy

– Zero viscosity

• These properties are seen 
experimentally in He-II

Atmospheric 
pressure



The superfluid phase of helium, He-II:
Zero viscosity, … or not???

• Film flow (Rollin film)

• Superleak

• But… a contradiction?
Rotating viscometer



Fountain Effect and Thermal “Counterflow”

• Fountain of He-II when heater turned on.

• Easy to explain in two-fluid model.

– Superfluid flows towards heat source, 
normal component flows away.

– Normal component carries entropy and heat 
away.

• Basis of heat transport is thermal 
counterflow of normal vs. superfluid 
components.

Nature 141, 243-244 (1938)



Where we get our neutrons

• TRIUMF, Vancouver, Canada

• 500 MeV cyclotron delivers 
40 uA current producing 
neutrons by spallation.



Survey of UCN Sources Worldwide

Place Neutrons UCN converter Status

ILL Reactor, CN Turbine Running

J-PARC Spallation Doppler shifter Running

ILL SUN-2 Reactor, CN Superfluid He Running

ILL SuperSUN Reactor, CN Superfluid He Future

RCNP/KEK/TRIUMF Spallation Superfluid He Installing/Future

Gatchina WWR-M Reactor Superfluid He Future

LANL Spallation Solid D2 Running/Upgrading

Mainz Reactor Solid D2 Running

PSI Spallation Solid D2 Running

NSCU Pulstar Reactor Solid D2 Installing

FRM-II Reactor Solid D2 Future

KEK-TRIUMF combination of spallation target and superfluid helium is unique.
Upgrade schedule is competitive with other leading sources of UCN.



Slides courtesy of
O. Zimmer and P. Geltenbort





Idea:  magnetic confinement



Slides courtesy of A. Serebrov





Landau Theory

• Collective 
excitations of He-II:  
phonons and 
rotons

• Explains e.g. 
specific heat, 
entropy, 
correspondence 
with two-fluid 
model.

• Important for 
neutron scattering!



Helium as a quantum fluid

• Heisenberg uncertainty principle prevents solidification of He 
at T = 0 K:

– Energy uncertainty >> Interatomic potential energy

– Quantum mechanics will be important for this material at low 
temperature.

• 4He forms a (kind of) Bose condensate at low temperature, 
but with some interactions, a “superfluid”.


