10-16 June 2018
Dalhousie University
America/Halifax timezone
Welcome to the 2018 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2018!

POS-11 Determination of the effective parallel geomagnetic field along a path using Faraday rotation and total electron content from Automatic Dependent Surveillance Broadcast signals

12 Jun 2018, 18:00
1h 30m
SUB McInnes Hall (Dalhousie University)

SUB McInnes Hall

Dalhousie University

Poster Competition (Graduate Student) / Compétition affiche (Étudiant(e) 2e ou 3e cycle) Atmospheric and Space Physics / Physique atmosphérique et de l'espace (DASP-DPAE) DASP Poster Session & Finals: Poster Competition & Mingle Session with Industrial Partners (6) /Employers| Session d'affiches DPAE et finales: Concours d'affiches et rencontres avec partenaires industriels et employeurs (6)

Speaker

Alex Cushley

Description

A plane polarized electromagnetic (EM) wave that propagates through a plasma, (anti-)parallel to a magnetic field, experiences a gradual rotation of its plane of polarization called Faraday rotation (FR). Automatic Dependent Surveillance Broadcast (ADS-B) signals are linearly plane polarized and therefore are susceptible to FR as they traverse the ionospheric plasma, where they encounter a field-aligned component of the geomagnetic field and anisotropies in the ionospheric medium. An EM-wave ray tracing model was used to generate simulated ADS-B data to determine the wave path and the polarization state at incremental distances along the ray path resulting in estimates for the total electron content (TEC) and FR received at the satellite receiver position. Results will be discussed that use the TEC and FR values from multiple aircraft at different latitudes transmitting ADS-B signals to a satellite receiver to infer the effective parallel component of the geomagnetic field along the path.

Primary authors

Alex Cushley Dr Jean-Marc Noël (Royal Military College of Canada) Konstantin Kabin (RMC)

Presentation Materials

There are no materials yet.