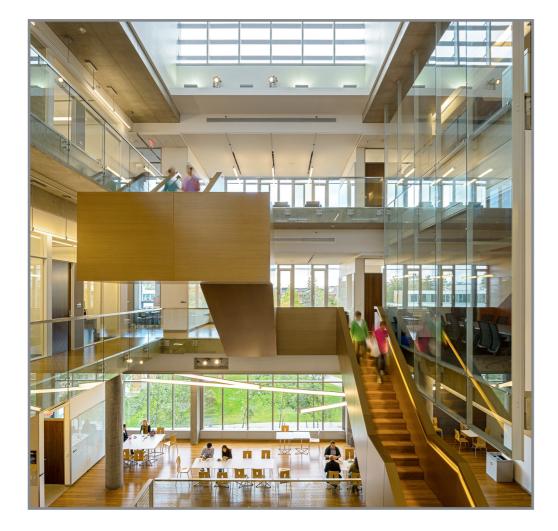
Quantum simulations of models from high energy physics

Christine Muschik

Quantum Optics Theory



Postdoc position available

How can we we use quantum systems to achieve a **quantum advantage?**

How can this be done **in practice?**

Quantum Networks

Quantum Simulations

Quantum Networks

Quantum Simulations

Entanglement distribution

New design concepts for 2D quantum networks

Robust quantum repeater architectures

Quest: faithfully transfer quantum states Vision: 'quantum internet'

Entanglement distribution

New design concepts for 2D quantum networks

Robust quantum repeater architectures

Quest: faithfully transfer quantum states Vision: 'quantum internet'

Self-stabilizing quantum systems

Autonomous quantum error correction

Nat. Commun. 8, 1822 (2017).

Entanglement distribution

New design concepts for 2D quantum networks

Robust quantum repeater architectures

Quest: faithfully transfer quantum states Vision: 'quantum internet'

Self-stabilizing quantum systems

Autonomous quantum error correction

Nat. Commun. 8, 1822 (2017).

Quest: keep a qubit alive Vision: self-correcting quantum technology

Quantum Networks

Quantum Simulations

QUANTUM SIMULATIONS FOR HIGH ENERGY PHYSICS

We want to understand:

- Why is there more matter than antimatter in the universe?
- What happens inside neutron stars?
- What happened in the early universe?
- What happens in heavy ion collisions in particle accelerators?

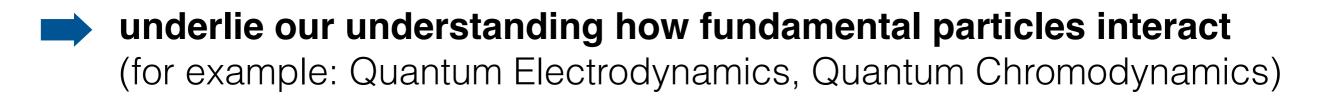
We want to understand:

- Why is there more matter than antimatter in the universe?
- What happens inside neutron stars?
- What happened in the early universe?
- What happens in heavy ion collisions in particle accelerators?

To find answers to these question we need:

New methods for **gauge theories**

Gauge Theories:



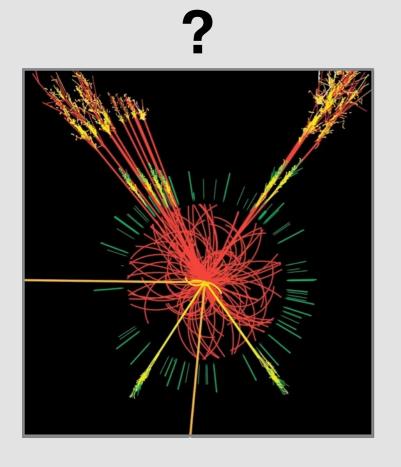
are the backbone of the standard model

play an important role in many areas of physics, including the description of **condensed matter systems** displaying frustration or topological order

Hard questions in gauge theories (plagued the sign-problem)

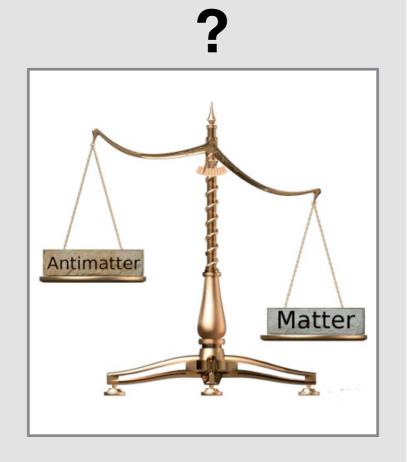
Dynamical problems:

What happens in heavy ion collisions



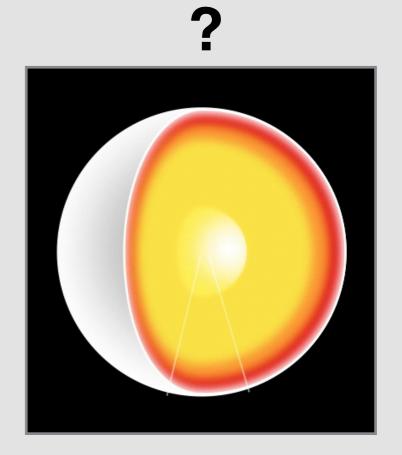
Topological terms:

How can we understand the large degree of CP violation in nature?



High baryon density:

What happens inside neutron stars



Gauge Theories:

Quest to find sign-problem free methods

- Quantum Simulations
- Numerical methods based on tensor network states

Gauge Theories:

Quest to find sign-problem free methods

- Quantum Simulations
- Numerical methods based on tensor network states

Two routes towards the same goal. Both paths are actively explored.

This talk: Quantum simulations

Use quantum methods to develop new tools for basic science

Short-term goal:

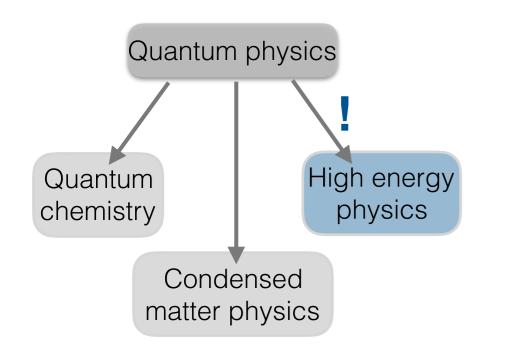
Develop a new type of Quantum Simulator

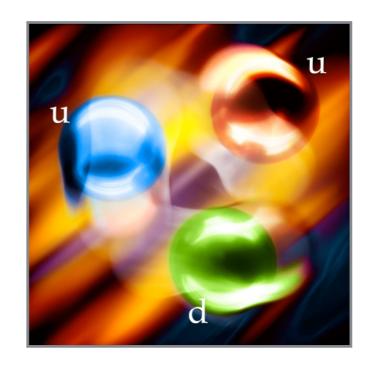
Perform proof-of-concept Experiments

Long-term vision:

Simulate Quantum Chromo Dynamics

Answer questions that can not be tackled numerically





Time

Develop a new type of quantum simulator

Simulated states and dynamics must be gauge-invariant

Review Articles: Ann. Phys. 525, 777 (2013); Rep. Prog. Phys. 79, 014401 (2016); Contemporary Physics 57 388 (2016).

Develop a new type of quantum simulator

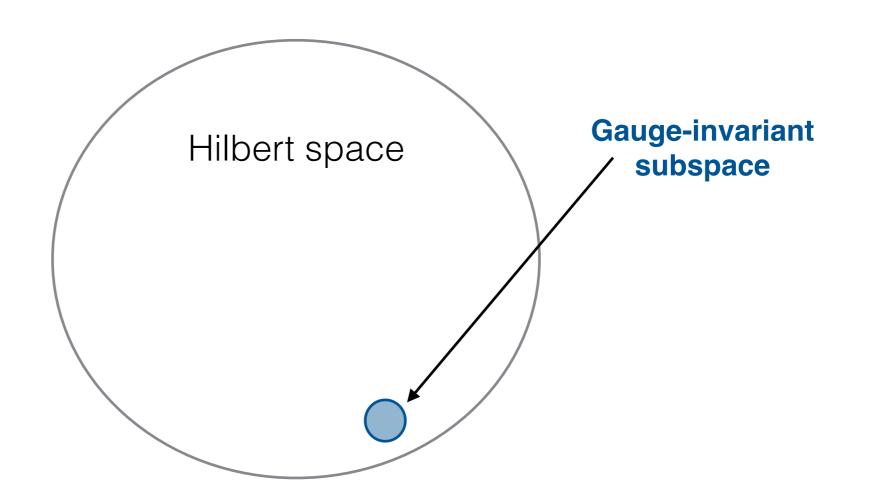
Simulated states and dynamics must be gauge-invariant

<u>Difficulty for realizing quantum simulations of lattice gauge theories</u>: Implement a quantum many-body Hamiltonian and a large set of local constraints ('Gauss law', in the case of QED: $\nabla E(r) = \rho(r)$)

Develop a new type of quantum simulator

Simulated states and dynamics must be gauge-invariant

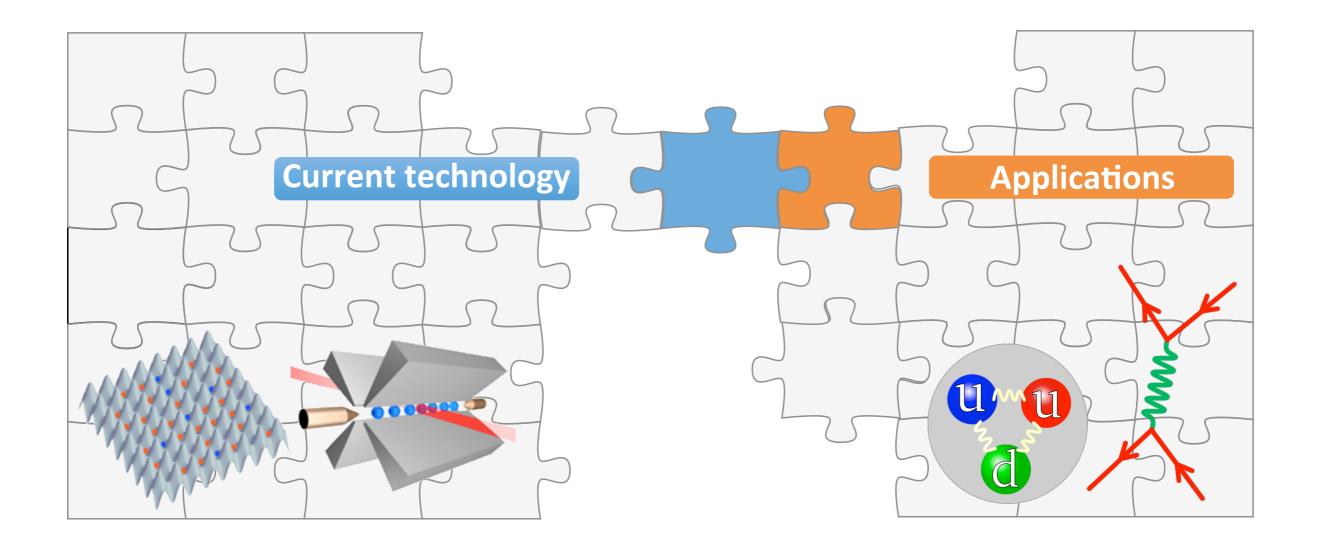
<u>Difficulty for realizing quantum simulations of lattice gauge theories</u>: Implement a quantum many-body Hamiltonian and a large set of local constraints ('Gauss law', in the case of QED: $\nabla E(r) = \rho(r)$)



Review Articles: Ann. Phys. 525, 777 (2013); Rep. Prog. Phys. 79, 014401 (2016); Contemporary Physics 57 388 (2016).

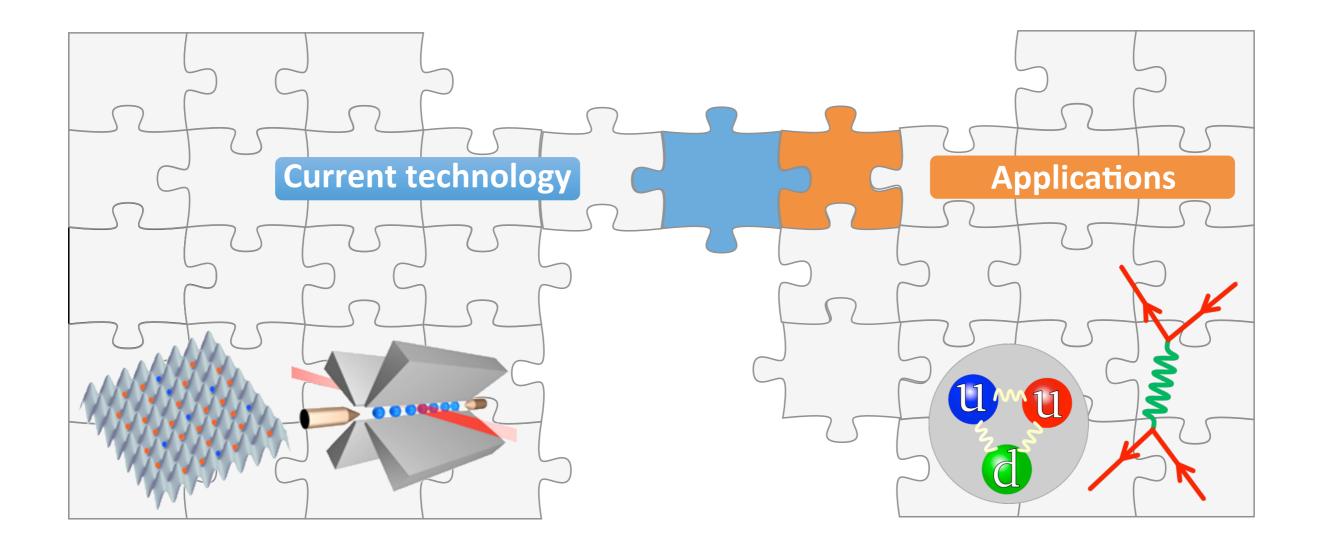
Quantum information science

High energy physics



Quantum information science

High energy physics



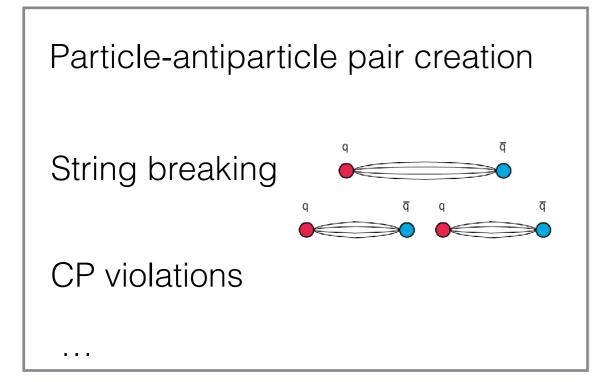
Review Articles: Ann. Phys. 525, 777 (2013); Rep. Prog. Phys. 79, 014401 (2016); Contemporary Physics 57 388 (2016).

Problems from high energy physics

Spin models and mini-quenches

Problems from high energy physics

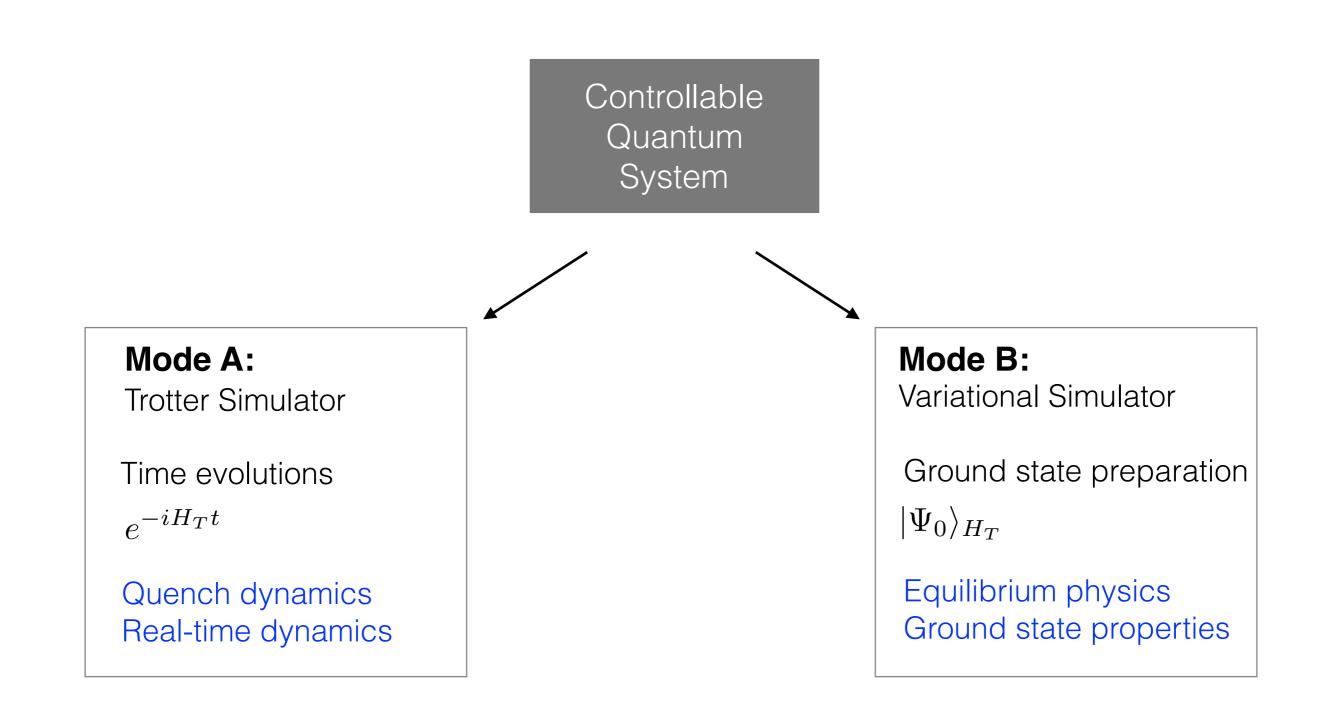
Spin models and mini-quenches



 $H = m \sum_{i} c_i \sigma_i^z$ + $w \sum_{i} \left(\sigma_{i}^{+} \sigma_{i+1}^{-} + h.c. \right)$ + $J \sum_{i < j} c_{ij} \sigma_{i}^{z} \sigma_{j}^{z}$

Low-dimensional toy models

'Demonstrator'



QED in (1+1) dimensions

Electromagnetic fields:

Vector potential: $A_0(x), A_1(x)$ Electric field: $E(x) = \partial_0 A_1(x)$ $[E(x), A_1(x')] = -i\delta(x - x')$

QED in (1+1) dimensions

Electromagnetic fields:

Vector potential: $A_0(x), A_1(x)$ Electric field: $E(x) = \partial_0 A_1(x)$ $[E(x), A_1(x')] = -i\delta(x - x')$

Matter fields:

$$\Psi(x) = \left(\begin{array}{c} \Psi_1(x) \\ \Psi_2(x) \end{array}\right)$$

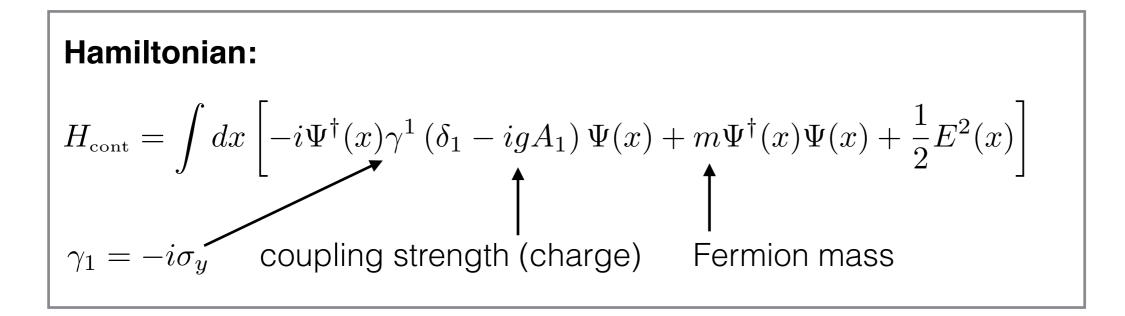
QED in (1+1) dimensions

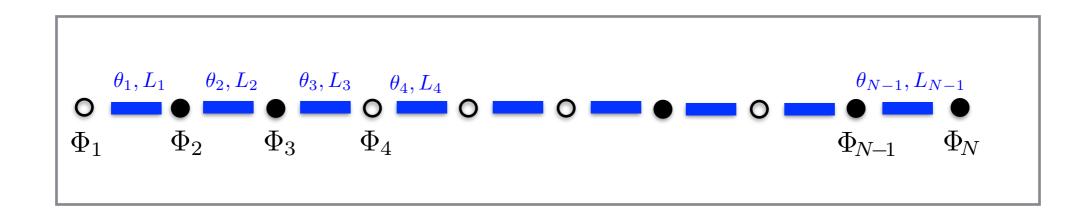
Electromagnetic fields:

Vector potential: $A_0(x), A_1(x)$ Electric field: $E(x) = \partial_0 A_1(x)$ $[E(x), A_1(x')] = -i\delta(x - x')$

Matter fields:

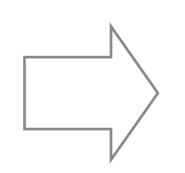
$$\Psi(x) = \left(\begin{array}{c} \Psi_1(x) \\ \Psi_2(x) \end{array}\right)$$





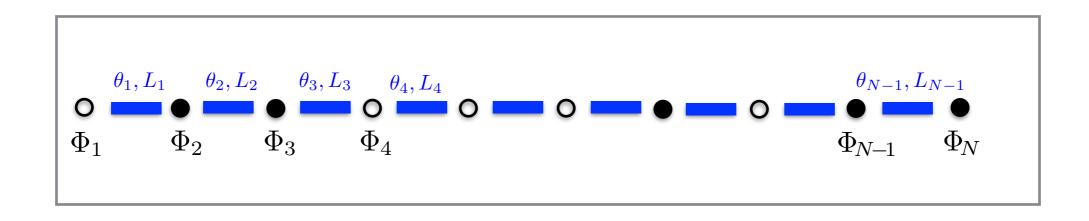
Continuum

Vector potential $A_1(x)$ Electric field E(x) $[E(x), A_1(x')] = -i\delta(x - x')$



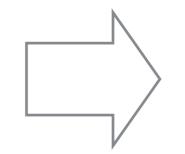
Lattice

 $\theta_n = agA_1(x_n)$ $L_n = \frac{1}{g}E(x_n)$ $[\theta_n, L_m] = i\delta_{n,m}$



Continuum

Vector potential $A_1(x)$ Electric field E(x) $[E(x), A_1(x')] = -i\delta(x - x')$



Dirac spinor

$$\Psi(x) = \left(\begin{array}{c} \Psi_1(x) \\ \Psi_2(x) \end{array}\right)$$

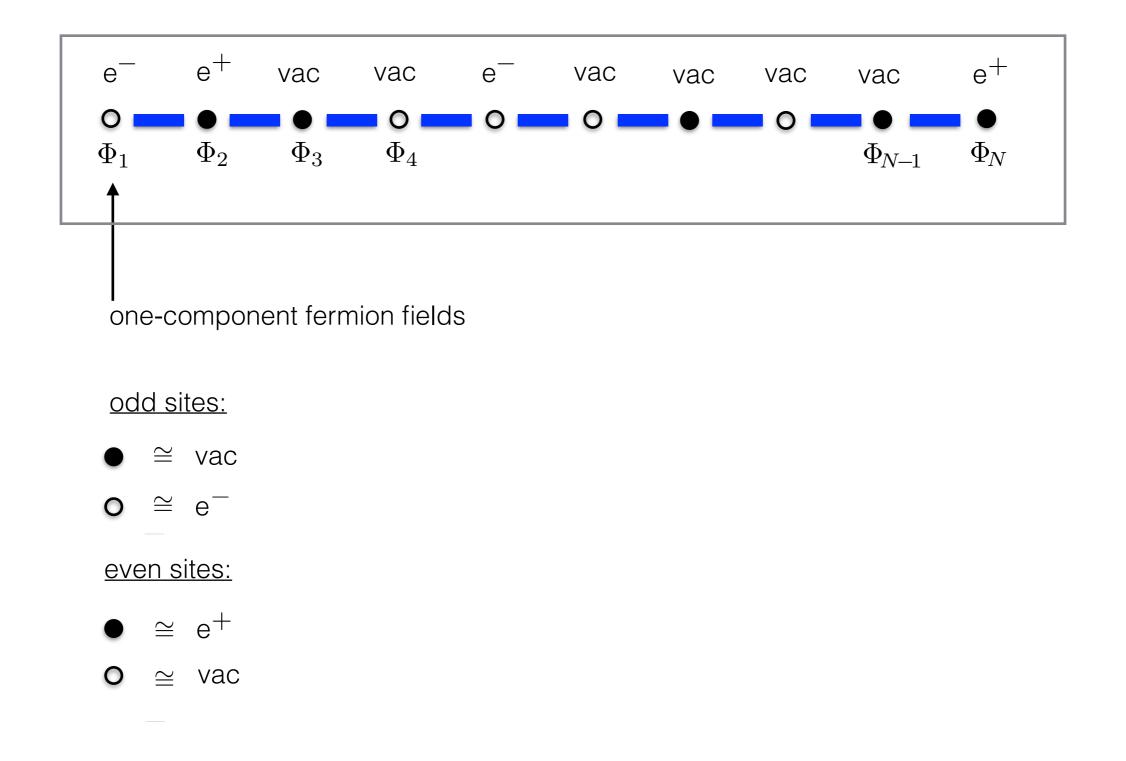
odd lattice sites: $\Phi_n = \sqrt{a}\Psi_1(x_n)$

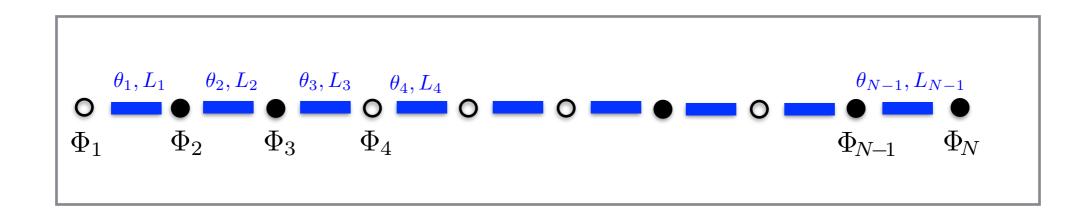
even lattice sites: $\Phi_n = \sqrt{a}\Psi_2(x_n)$

Lattice

$$\theta_n = agA_1(x_n)$$
$$L_n = \frac{1}{g}E(x_n)$$
$$[\theta_n, L_m] = i\delta_{n,m}$$

Wilson's staggered Fermions





Continuum

$$H_{\text{cont}} = \int dx \left[-i\Psi^{\dagger}(x)\gamma^{1} \left(\delta_{1} - igA_{1}\right)\Psi(x) + m\Psi^{\dagger}(x)\Psi(x) + \frac{1}{2}E^{2}(x) \right]$$

Lattice

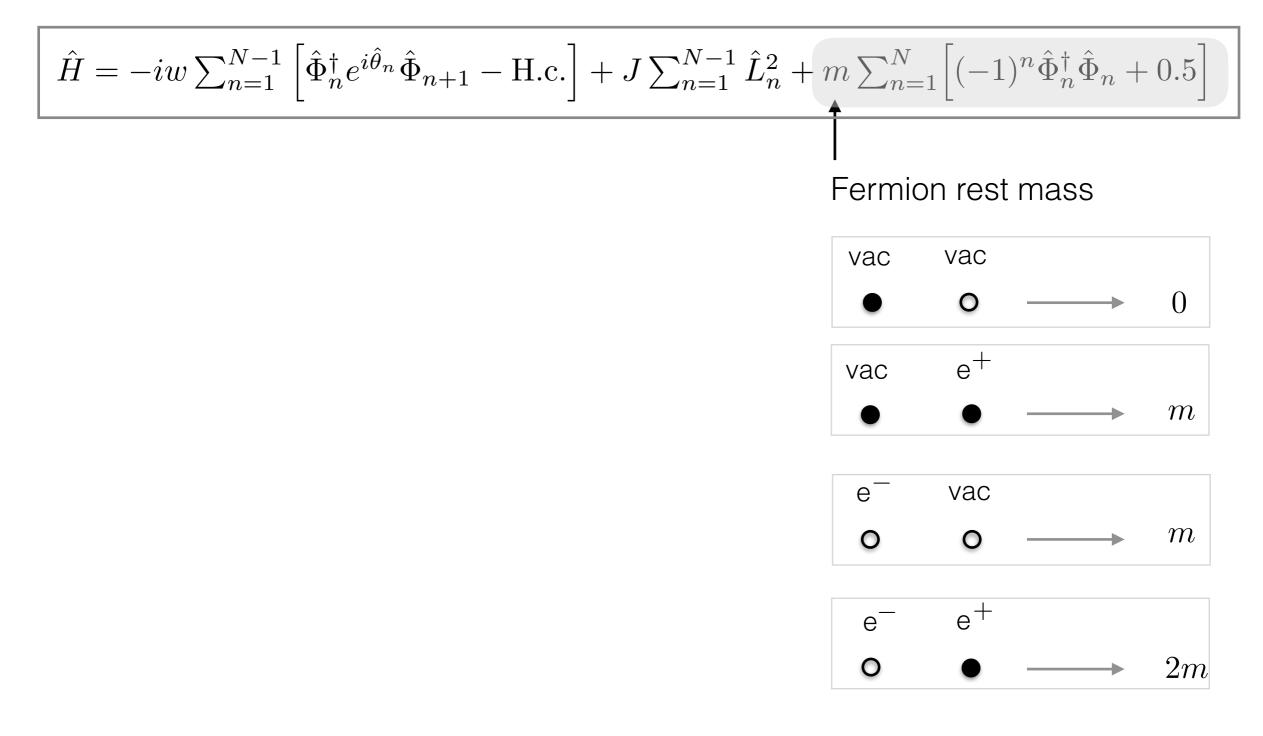
$$H_{\text{lat}} = -iw \sum_{n=1}^{N-1} \left[\Phi_n^{\dagger} e^{i\theta_n} \Phi_{n+1} - H.C. \right] + m \sum_{n=1}^{N} (-1)^n \Phi_n^{\dagger} \Phi_n + J \sum_{n=1}^{N-1} L_n^2$$
$$\oint_{w=\frac{1}{2a}} u = \frac{1}{2a}$$
$$J = \frac{g^2 a}{2}$$

J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).

The Schwinger model

Hamiltonian formulation of the Schwinger model:

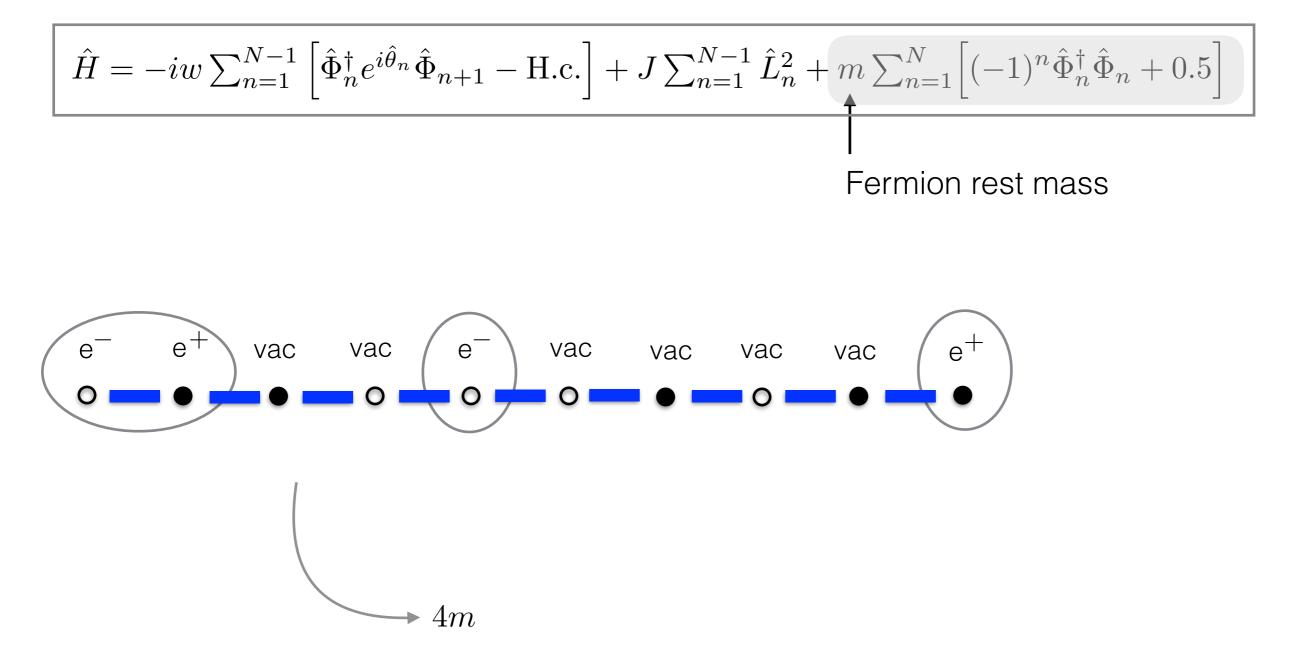
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).



The Schwinger model

Hamiltonian formulation of the Schwinger model:

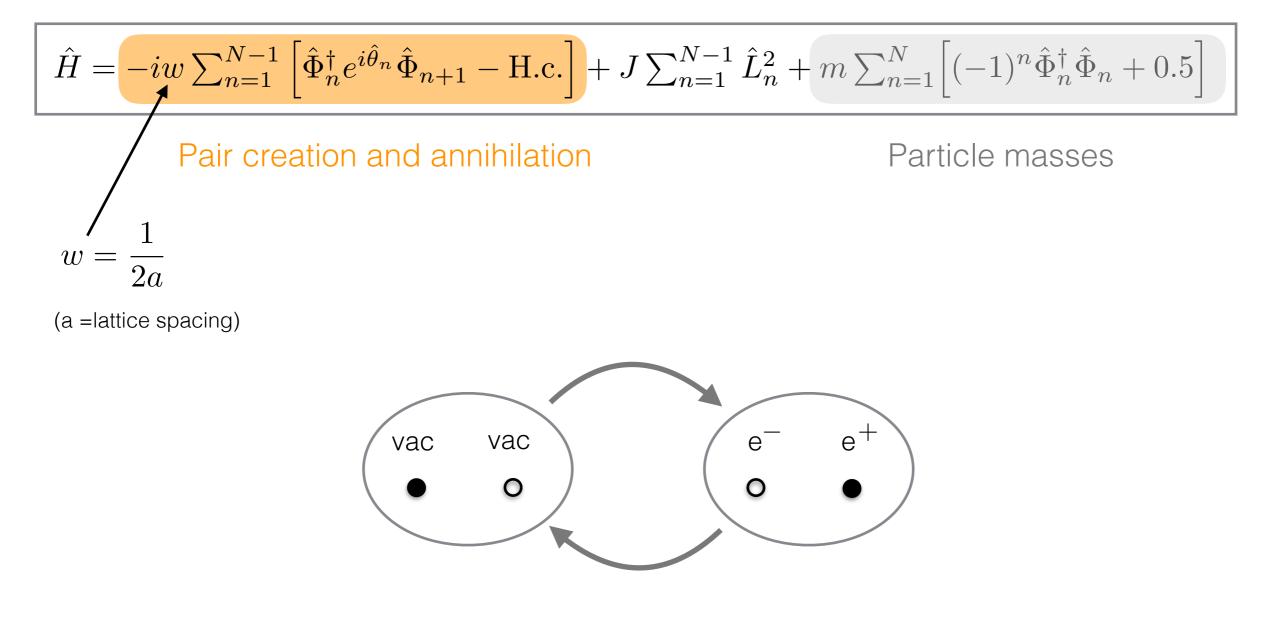
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).



The Schwinger model

Hamiltonian formulation of the Schwinger model:

J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).



The Schwinger model

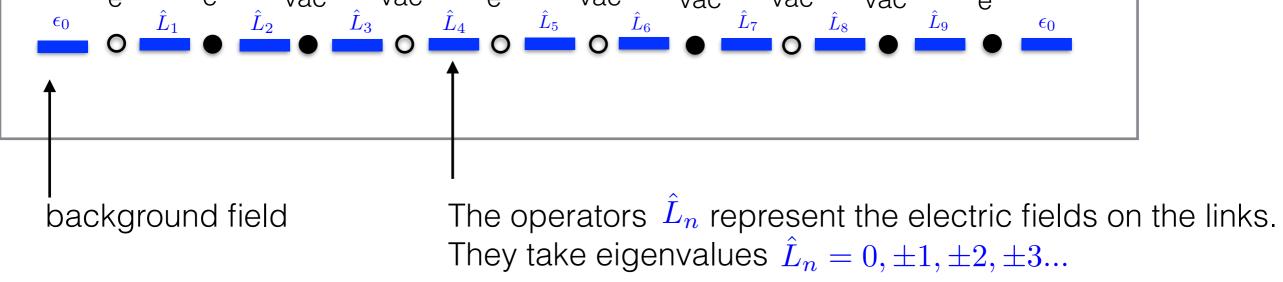
Hamiltonian formulation of the Schwinger model:

J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).

$$\hat{H} = -iw \sum_{n=1}^{N-1} \left[\hat{\Phi}_n^{\dagger} e^{i\hat{\theta}_n} \hat{\Phi}_{n+1} - \text{H.c.} \right] + J \sum_{n=1}^{N-1} \hat{L}_n^2 + m \sum_{n=1}^{N} \left[(-1)^n \hat{\Phi}_n^{\dagger} \hat{\Phi}_n + 0.5 \right]$$
Pair creation and annihilation
$$\int \text{E-field energy} \quad \text{Particle masses}$$

$$J = \frac{g^2 a}{2} \quad \text{a =lattice spacing} \quad \text{g = light-matter coupling}$$

$$\hat{U} = \frac{g^2 a}{2} \quad \hat{U} = \frac{g^2 a}{2}$$

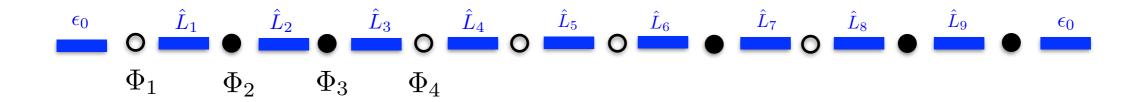


Hamiltonian formulation of the Schwinger model:

J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).

$$\hat{H} = -iw\sum_{n=1}^{N-1} \left[\hat{\Phi}_n^{\dagger} e^{i\hat{\theta}_n} \hat{\Phi}_{n+1} - \text{H.c.} \right] + J\sum_{n=1}^{N-1} \hat{L}_n^2 + m\sum_{n=1}^{N} (-1)^n \hat{\Phi}_n^{\dagger} \hat{\Phi}_n$$

The dynamics is constraint by the Gauss law: In the continuum in 3D: $\nabla E = \rho$ Here: $\hat{L}_n - \hat{L}_{n-1} = \hat{\Phi}_n^{\dagger} \hat{\Phi} - \frac{1}{2} [1 - (-1)^n]$



Local symmetry generators: $\{G_n\}$

Local symmetry generators: $\{G_n\}$

The Hamiltonian is invariant under gauge transformations of the form:

 $H' = \left(\Pi_n e^{i\alpha_n G_n}\right) H \left(\Pi_n e^{-i\alpha_n G_n}\right) \qquad [H, G_n] = 0$

In the following, we restrict ourselves to the zero-charge subsector: $\lambda_{G_n} = 0, \forall n$ (# of particles = # of antiparticles).

 $G_n |\Psi_{\text{physical}}\rangle = 0 \quad \forall n$

Local symmetry generators: $\{G_n\}$

The Hamiltonian is invariant under gauge transformations of the form:

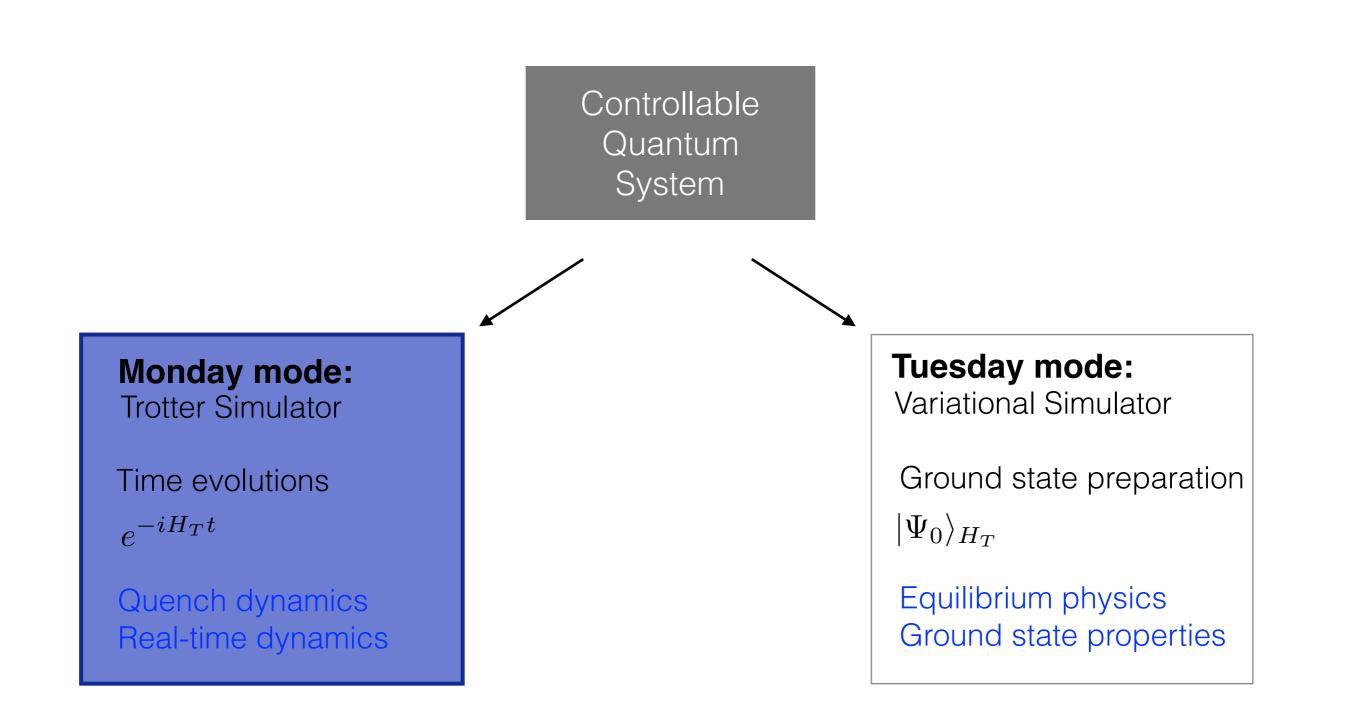
 $H' = (\Pi_n e^{i\alpha_n G_n}) H (\Pi_n e^{-i\alpha_n G_n}) \qquad [H, G_n] = 0$ For 1D QED: $G_n = L_n - L_{n-1} - \Phi^{\dagger} \Phi - \frac{1}{2} [1 - (-1)^n]$

Local symmetry generators: $\{G_n\}$ The Hamiltonian is invariant under gauge transformations of the form: $H' = (\prod_n e^{i\alpha_n G_n}) H (\prod_n e^{-i\alpha_n G_n}) [H, G_n] = 0$ For 1D QED: $G_n = L_n - L_{n-1} - \Phi^{\dagger}\Phi - \frac{1}{2}[1 - (-1)^n]$ The Hamiltonian does not mix eigenstates of G_n with different eigenvalues λ_n .

Local symmetry generators: $\{G_n\}$ The Hamiltonian is invariant under gauge transformations of the form: $H' = (\prod_n e^{i\alpha_n G_n}) H (\prod_n e^{-i\alpha_n G_n}) [H, G_n] = 0$ For 1D QED: $G_n = L_n - L_{n-1} - \Phi^{\dagger}\Phi - \frac{1}{2}[1 - (-1)^n]$ The Hamiltonian does not mix eigenstates of G_n with different eigenvalues λ_n .

In the following, we restrict ourselves to the zero-charge subsector: $\lambda_{G_n} = 0, \forall n$ (# of particles = # of antiparticles).

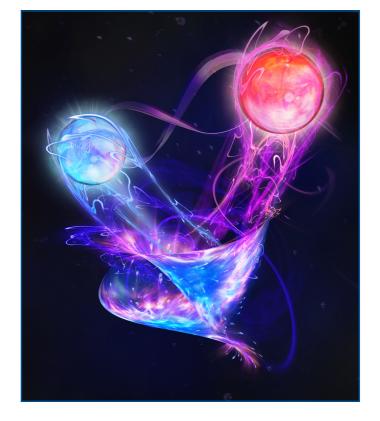
 $G_n |\Psi_{\text{physical}}\rangle = 0 \quad \forall n$



One-dimensional QED on a trapped ion quantum computer

We explore:

- Coherent real-time dynamics of particleantiparticle creation
- Entanglement generation during pair creation

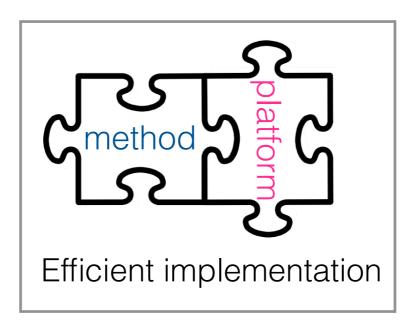


First experiment:

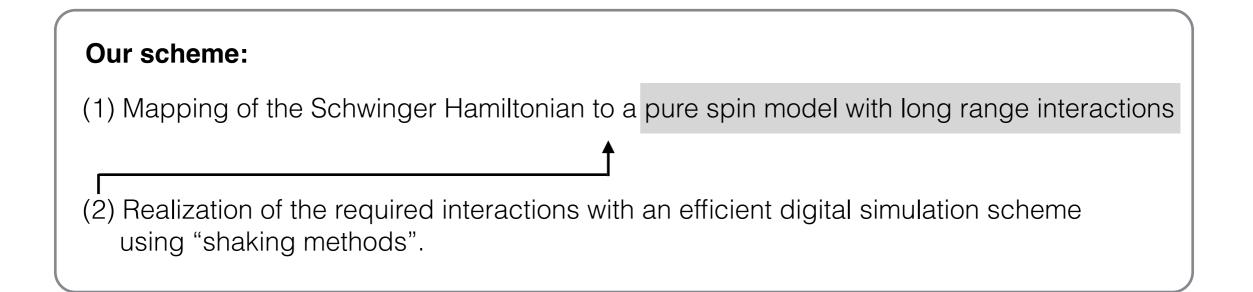
Real-time dynamics of lattice gauge theories on a few-qubit quantum computer E. Martinez*, C. Muschik* et al, Nature 534, 516 (2016).

U(1) Wilson lattice gauge theories in digital quantum simulators C. Muschik et al. New J. Phys. 19 103020 (2017).

Physics world: one of the top ten Breakthroughs in physics 2016



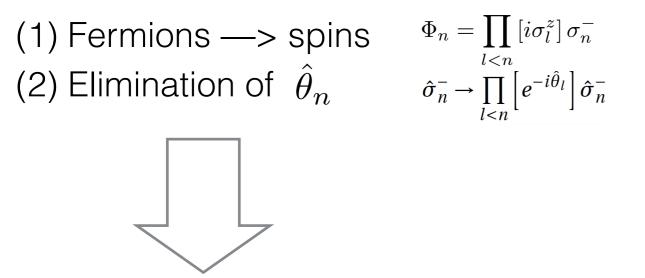
Our approach



Important features of the scheme

- Exact gauge invariance at all energy scales (by construction)
- Very efficient use of resources

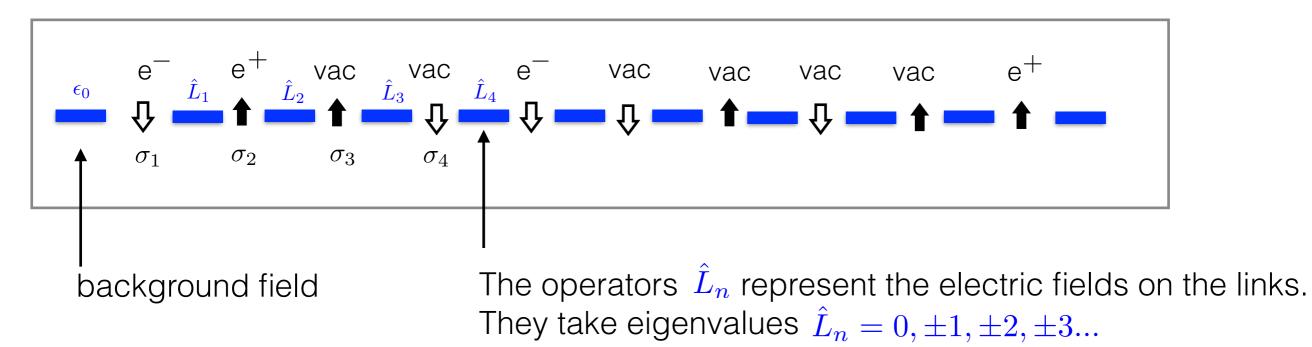
Two simple transformations:



Hamiltonian in terms of spins and electric fields

Transformed Hamiltonian:

$$\hat{H} = w \sum_{n=1}^{N-1} \left[\hat{\sigma}_n^+ \hat{\sigma}_{n+1}^- + \text{H.c.} \right] + J \sum_{n=1}^{N-1} \hat{L}_n^2 + m \sum_{n=1}^{N} (-1)^n \hat{\sigma}_n^z$$



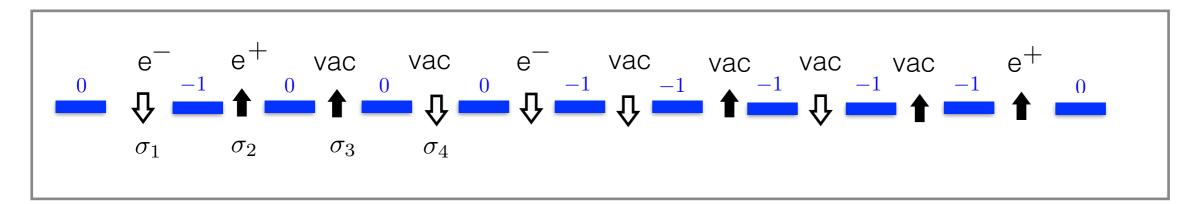
Odd lattice sites:

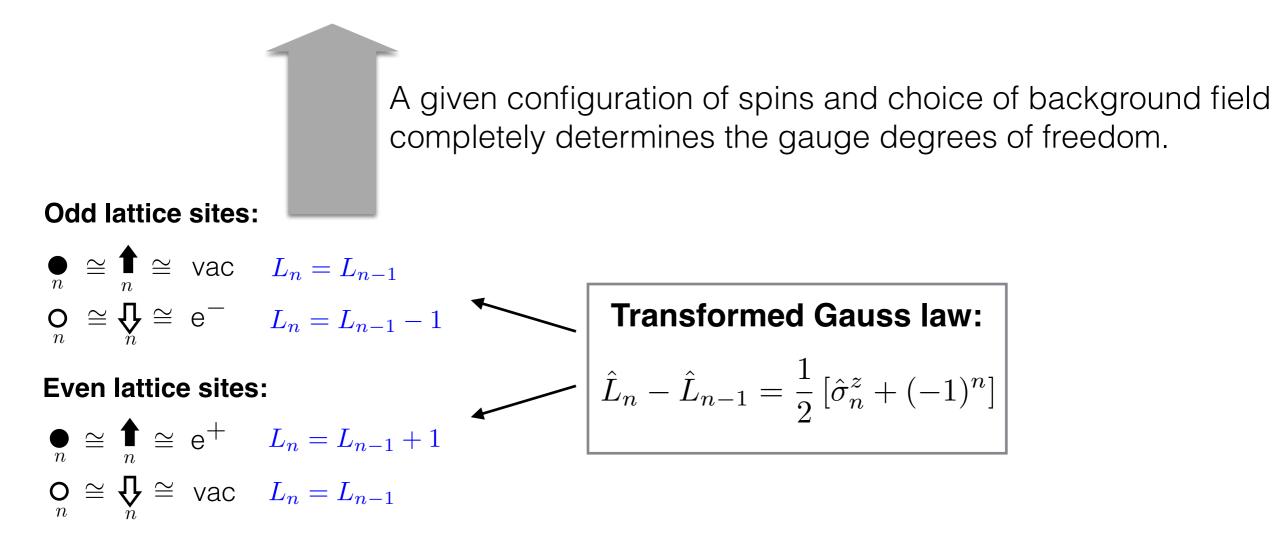
Even lattice sites:

$$\bullet_n \cong \bigcap_n \cong e^+ \quad L_n = L_{n-1} + 1$$
$$\bullet_n \cong \bigcap_n \cong \bigvee_n \cong \text{vac} \quad L_n = L_{n-1}$$

Transformed Hamiltonian:

$$\hat{H} = w \sum_{n=1}^{N-1} \left[\hat{\sigma}_n^+ \hat{\sigma}_{n+1}^- + \text{H.c.} \right] + J \sum_{n=1}^{N-1} \hat{L}_n^2 + m \sum_{n=1}^N (-1)^n \hat{\sigma}_n^z$$





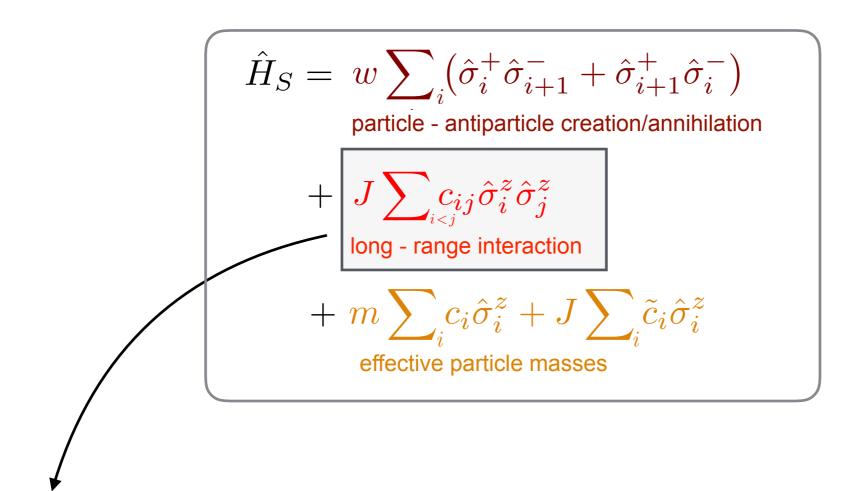
Elimination of the gauge fields **Pure** spin model with long-range interactions

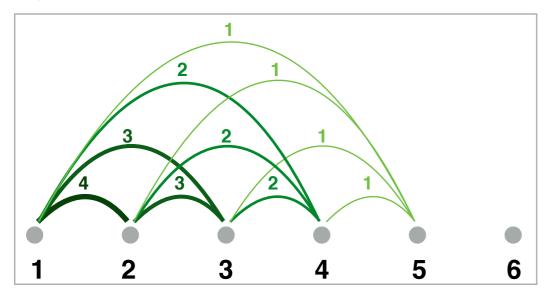
The gauge fields don't appear explicitly in the encoded description. Instead, they act in the form of a non-local interaction that corresponds to the Coulomb-interaction between the simulated charged particles.

The Schwinger model as exotic spin model

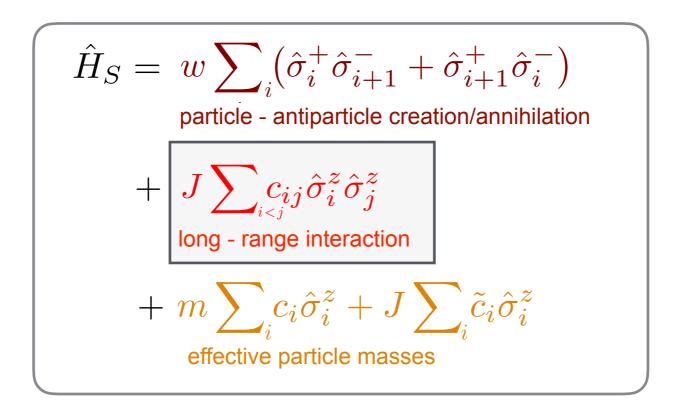
$$\begin{split} \hat{H}_{S} &= w \sum_{i} \left(\hat{\sigma}_{i}^{+} \hat{\sigma}_{i+1}^{-} + \hat{\sigma}_{i+1}^{+} \hat{\sigma}_{i}^{-} \right) \\ \text{particle - antiparticle creation/annihilation} \\ &+ J \sum_{i < j} c_{ij} \hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{z} \\ \text{long - range interaction} \\ &+ m \sum_{i} c_{i} \hat{\sigma}_{i}^{z} + J \sum_{i} \tilde{c}_{i} \hat{\sigma}_{i}^{z} \\ &\text{effective particle masses} \end{split}$$

The Schwinger model as exotic spin model





The Schwinger model as exotic spin model



- N spins simulate N matter fields and N-1 gauge fields
- Exotic spin interactions can be simulated efficiently: Digital scheme

Digital quantum simulation

Approximate time evolution by a stroboscopic sequence of gates

The evolution under a desired Hamiltonian is realised on a coarse-grained time scale

____I

 $H = H_1 + H_2$

$$U(t) \equiv e^{-iHt/\hbar} = e^{-iH\Delta t_n/\hbar} \dots^{-iH\Delta t_1/\hbar}$$

Trotter expansion:
$$e^{-iH\Delta t/\hbar} \simeq \underbrace{e^{-iH_1\Delta t/\hbar}}_{\text{first term}} \underbrace{e^{-iH_2\Delta t/\hbar}}_{\text{second term}} \underbrace{e^{\frac{1}{2}\frac{(\Delta t)^2}{\hbar^2}[H_1, H_2]}}_{\text{Trotter errors for non-commuting terms}}$$

S. Lloyd, Science 273, 1073 (1996).

Digital quantum simulation

Approximate time evolution by a stroboscopic sequence of gates

The evolution under a desired Hamiltonian is realised on a coarse-grained time scale

$$U_{\rm S} = e^{-i\hat{H}_{\rm S}t}$$

$$U_{\rm sim} = \left(e^{-iH_1t/n} \dots e^{-iH_nt/n}\right)^n$$

Operations that can be performed straightforwardly

Trotter error:
$$U_{\rm S} - U_{\rm sim} = \frac{t^2}{2n} \sum_{i,j} [H_i, H_j] + \epsilon_i$$

This scheme: Trotter errors do not violate gauge invariance

Our toolbox

Ion trap quantum computers:

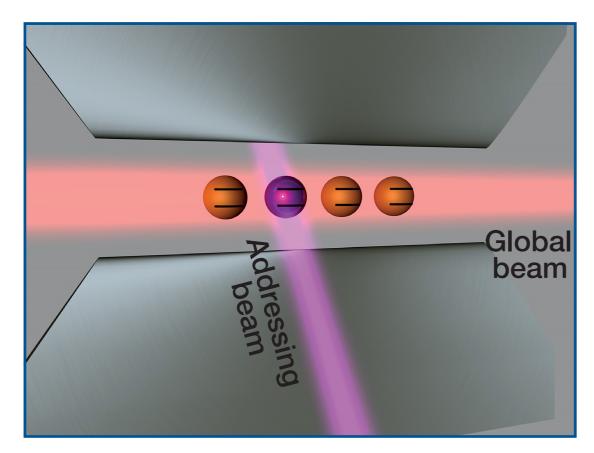
- Fast and accurate single qubit operations
 - Entangling gates: Mølmer-Sørensen interaction

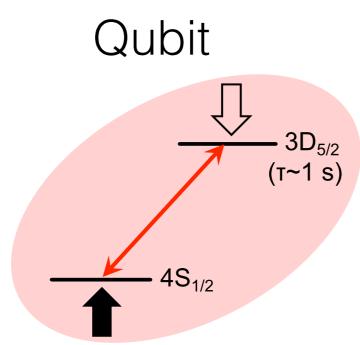
All-to-all 2-body interaction: $H_0 = J_0 \sum_{i,j} \sigma^x_i \sigma^x_j$

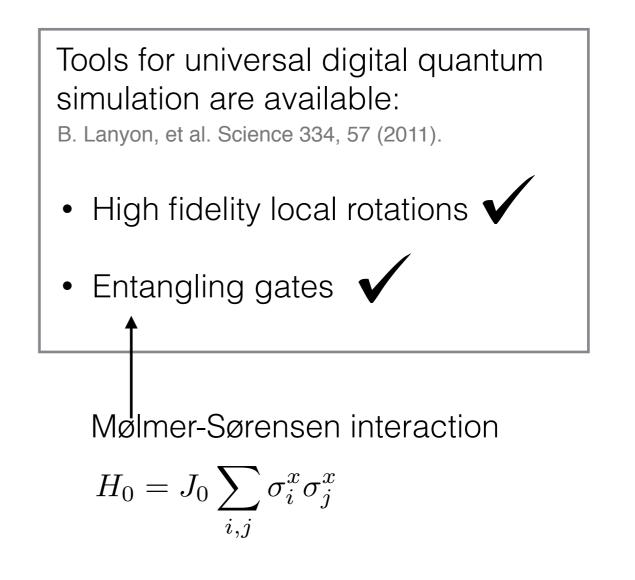
R. Blatt, & C. Roos, Nat. Phys. 8, 277 (2012).

Experiment

E. Martinez, P. Schindler, D. Nigg, A. Erhard, T. Monz, and R. Blatt





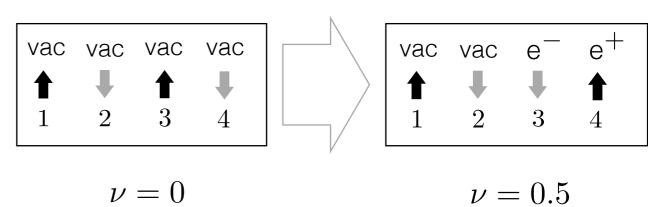


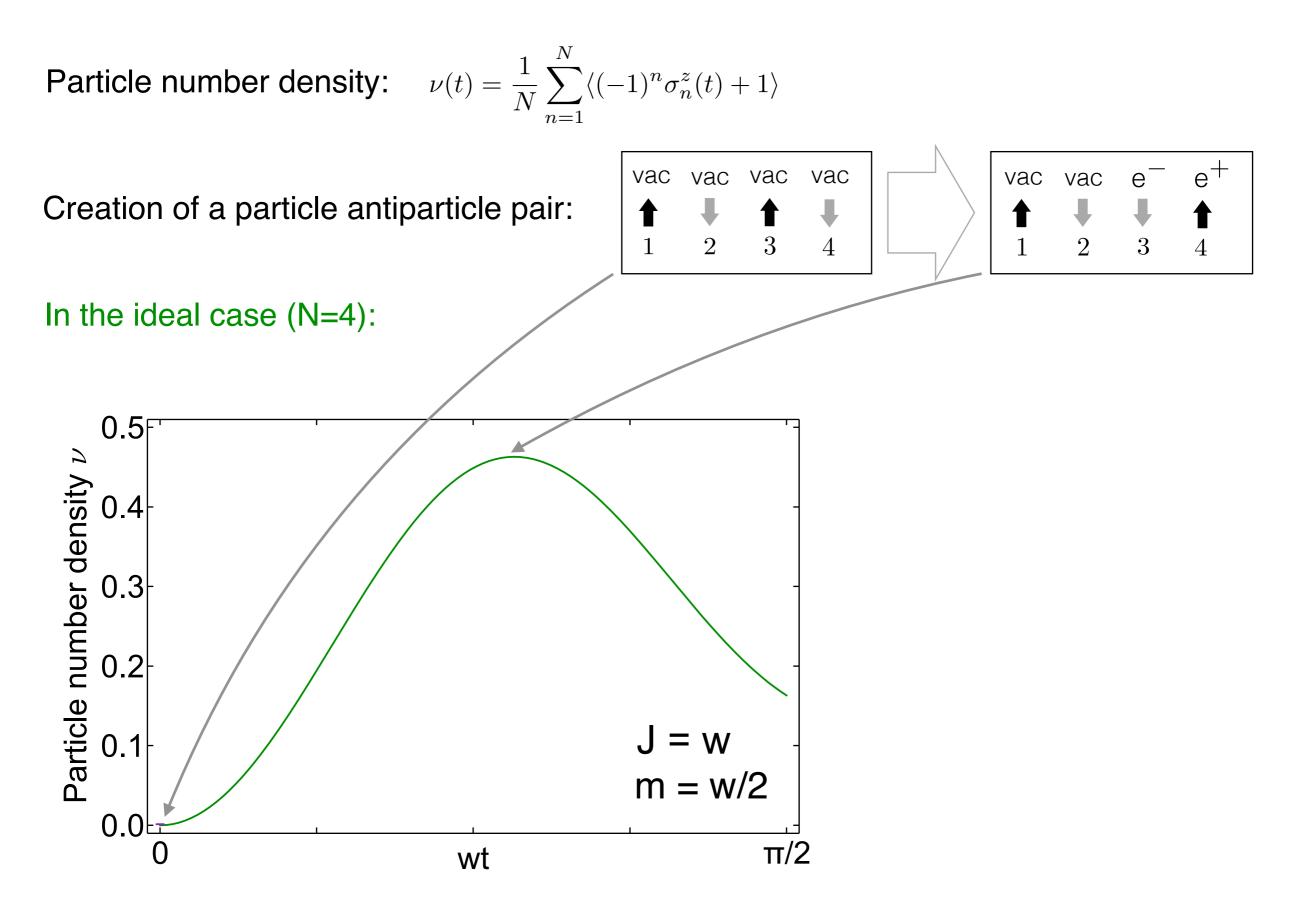
Quantum Simulation of pair creation

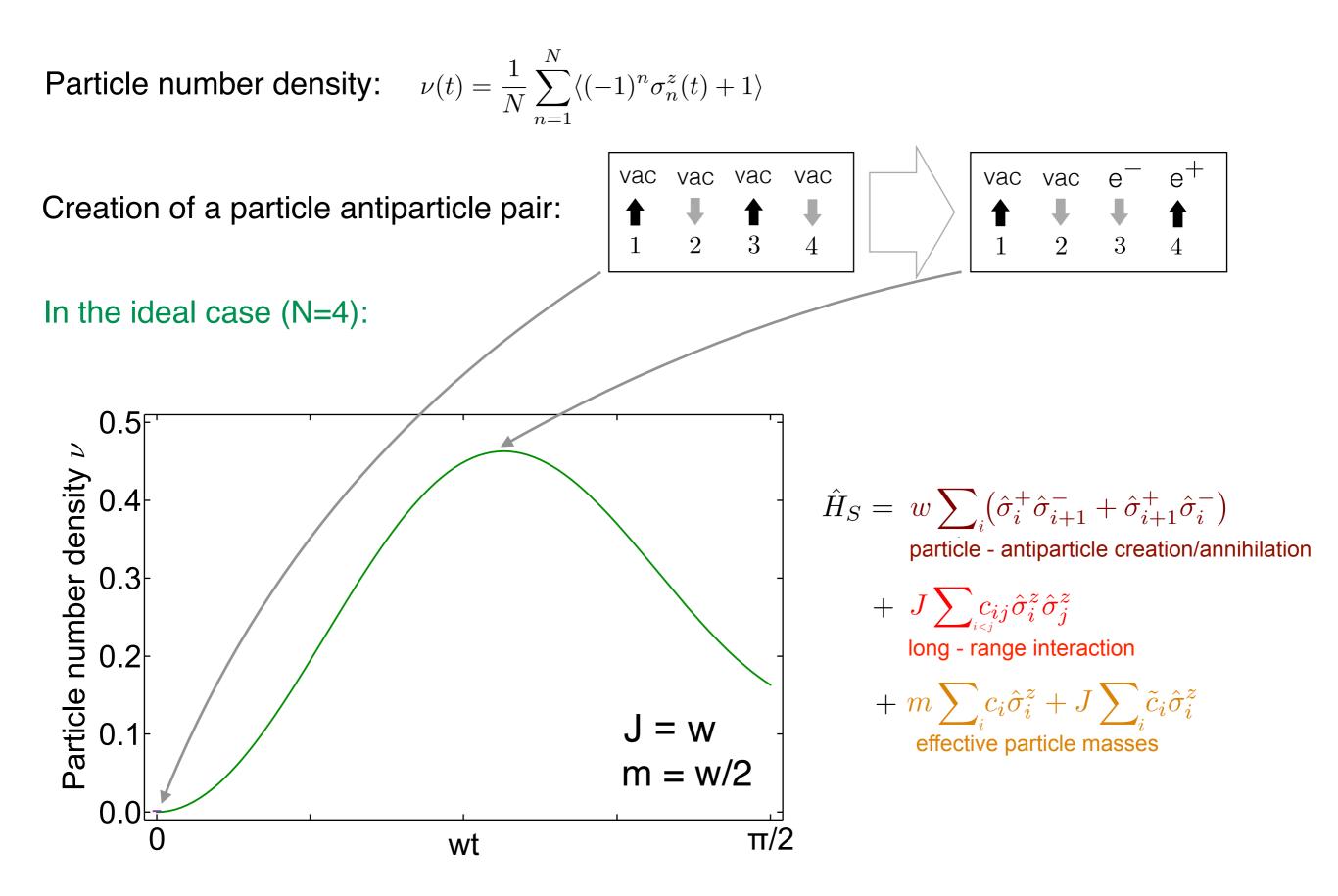
Particle number density:

$$\nu(t) = \frac{1}{N} \sum_{n=1}^{N} \langle (-1)^n \sigma_n^z(t) + 1 \rangle$$

Creation of a particle antiparticle pair:



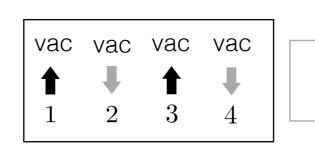


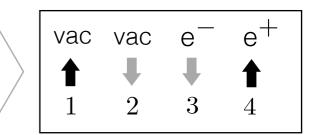


Particle number density:

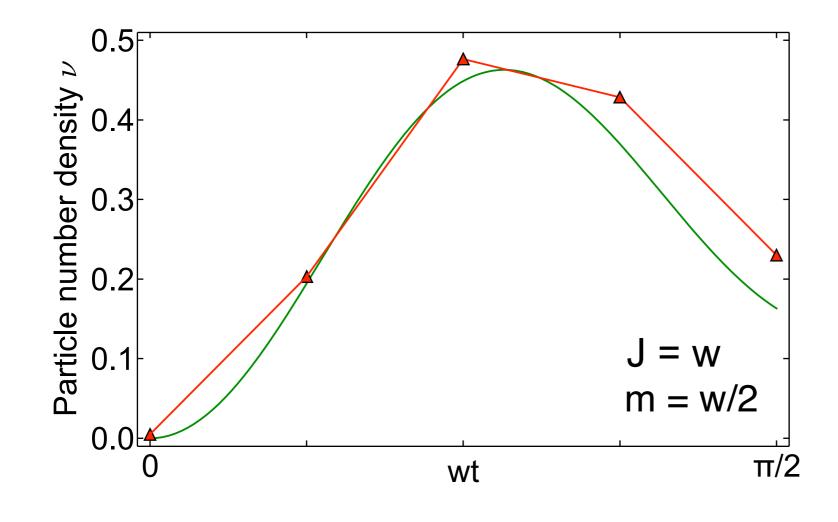
$$\nu(t) = \frac{1}{N} \sum_{n=1}^{N} \langle (-1)^n \sigma_n^z(t) + 1 \rangle$$

Creation of a particle antiparticle pair:





Including discretisation errors (N=4):



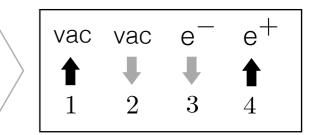
Particle number density:

$$\nu(t) = \frac{1}{N} \sum_{n=1}^{N} \langle (-1)^n \sigma_n^z(t) + 1 \rangle$$

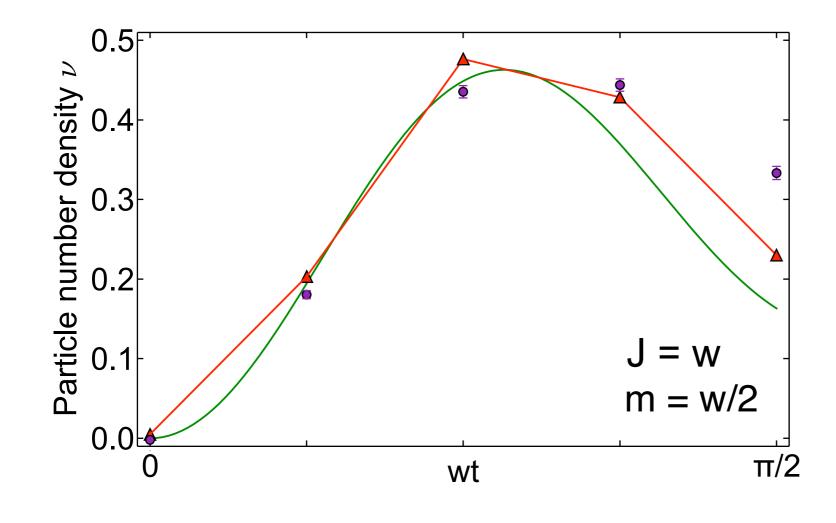
Creation of a particle antiparticle pair:

vac vac vac vac
$$\uparrow$$

 1 2 3 4



Experimental data (after postselection):

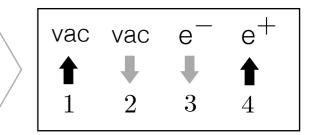


Particle number density:

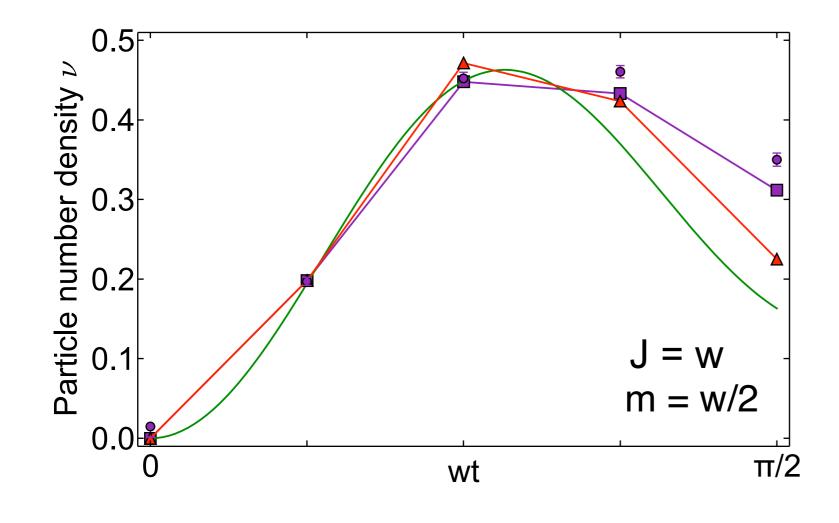
$$\nu(t) = \frac{1}{N} \sum_{n=1}^{N} \langle (-1)^n \sigma_n^z(t) + 1 \rangle$$

Creation of a particle antiparticle pair:

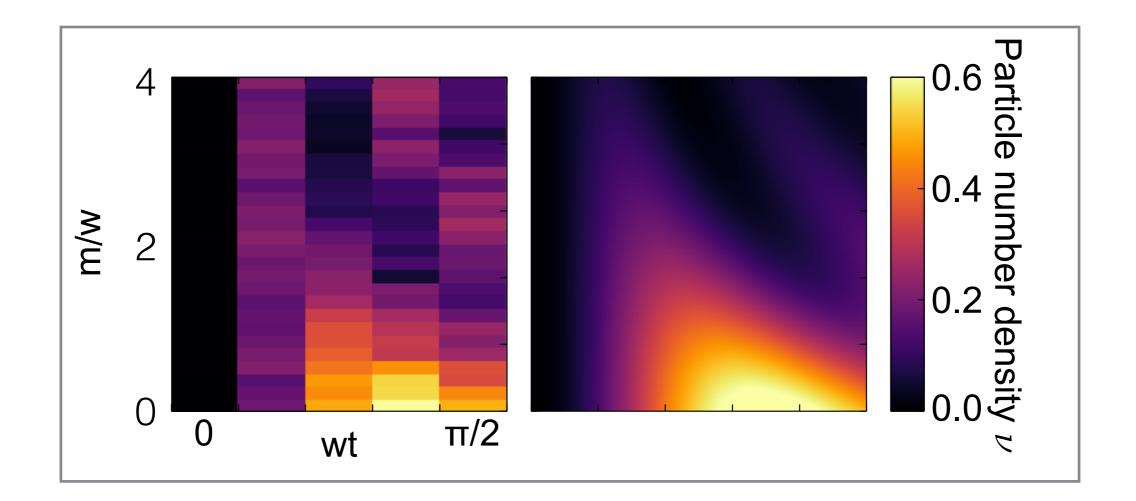
vac vac vac vac
$$\uparrow$$
 \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow 1 2 3 4



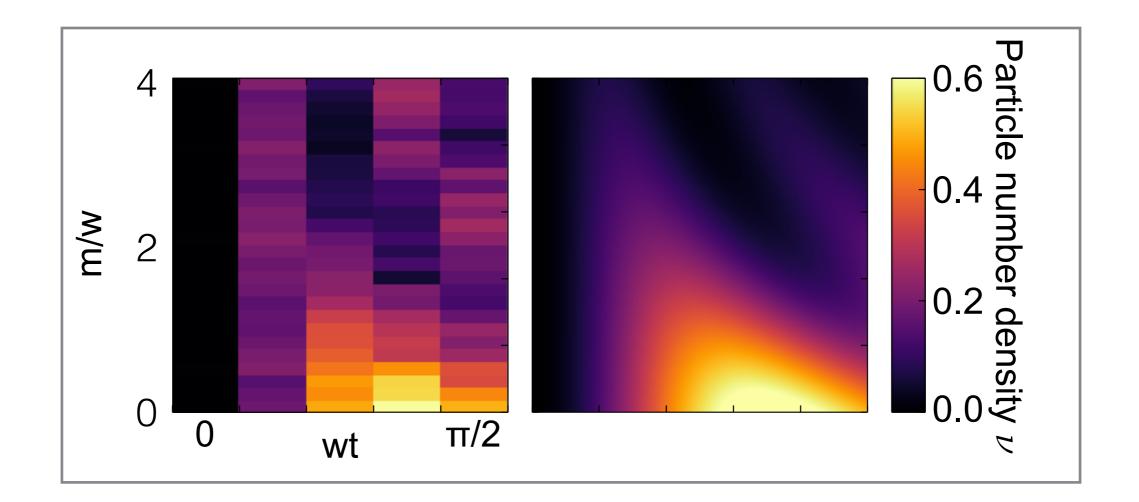
Simple error model (uncorrelated dephasing):



Time evolution for different values of the particle mass m

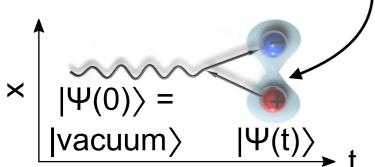


Time evolution for different values of the particle mass m

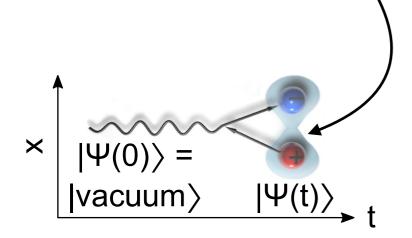


→ also: measurement of the vacuum persistence amplitude $|\langle vacuum | \Psi(t) \rangle|^2$ see Nature 534, 516 (2016).

Entanglement in the Schwinger mechanism

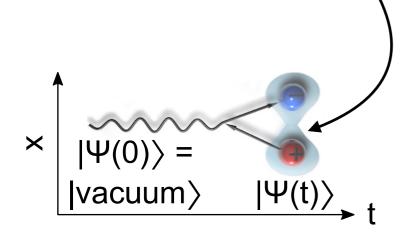


Entanglement in the Schwinger mechanism



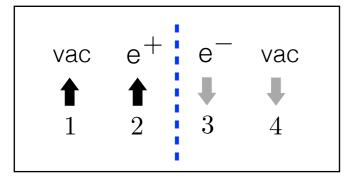
State tomography: access to the full density matrix

Entanglement in the Schwinger mechanism



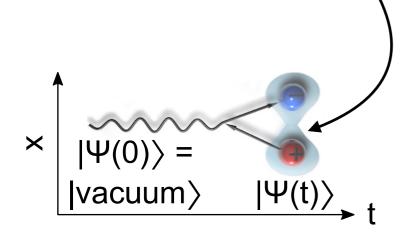
State tomography: access to the full density matrix

 E_n : logarithmic negativity evaluated with respect to this bipartition:



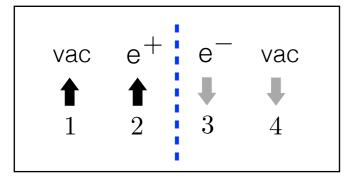
Entanglement between the two halves of the system.

Entanglement in the Schwinger mechanism



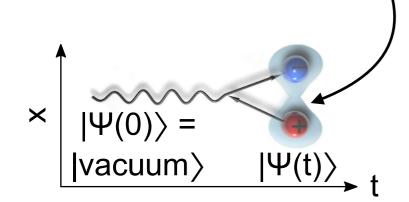
State tomography: access to the full density matrix

 E_n : logarithmic negativity evaluated with respect to this bipartition:



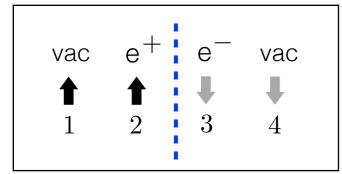
Entanglement between the two halves of the system.

Entanglement in the Schwinger mechanism

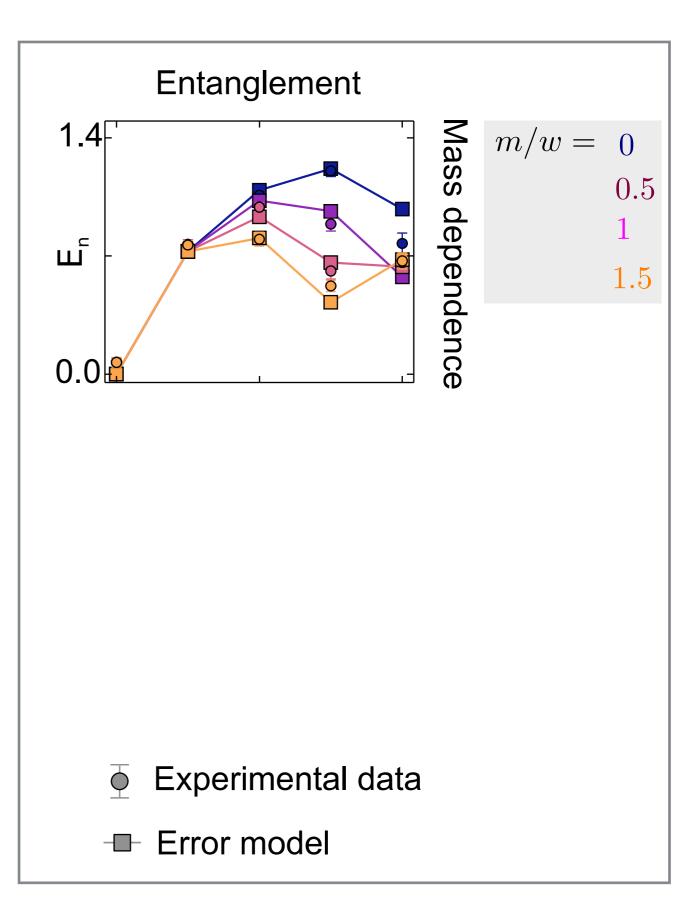


State tomography: access to the full density matrix

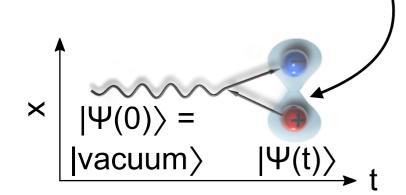
 E_n : logarithmic negativity evaluated with respect to this bipartition:



Entanglement between the two halves of the system.

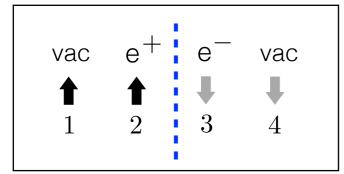


Entanglement in the Schwinger mechanism

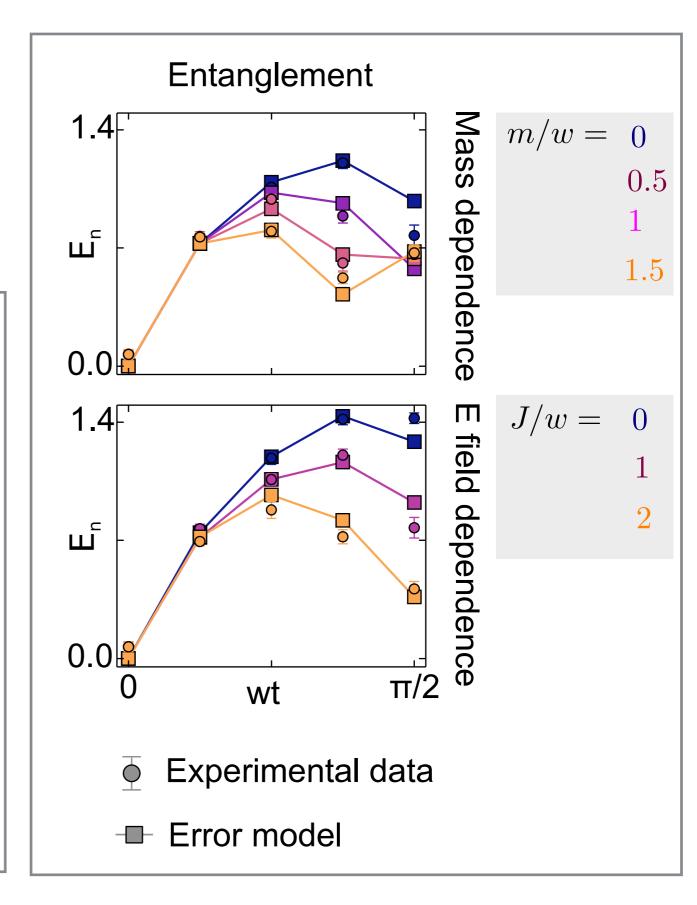


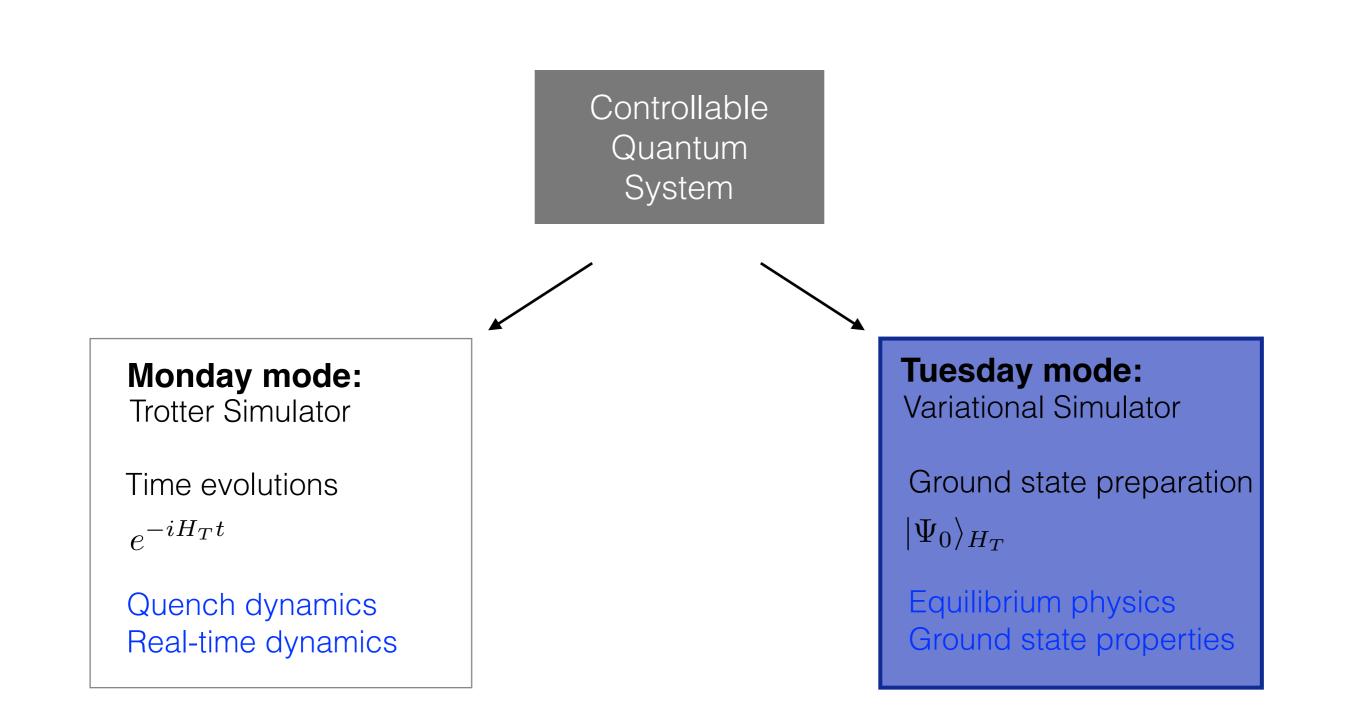
State tomography: access to the full density matrix

 E_n : logarithmic negativity evaluated with respect to this bipartition:

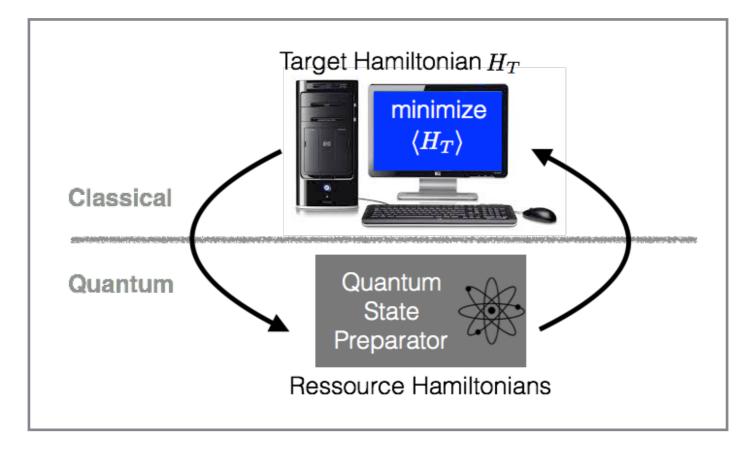


Entanglement between the two halves of the system.





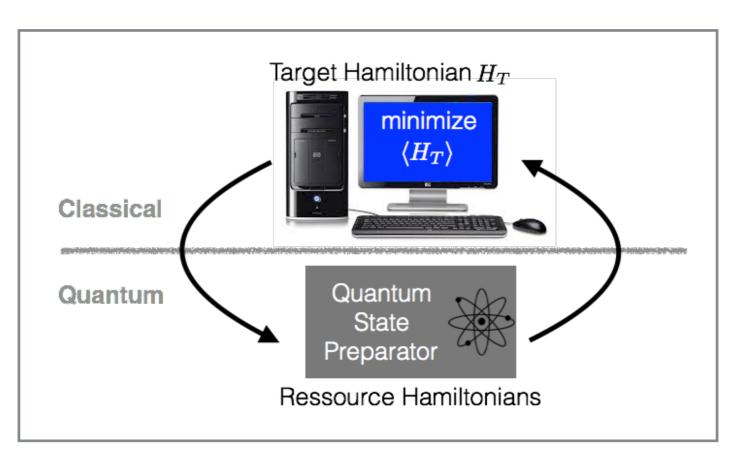
in preparation



Inspiration: E. Farhi, J. Goldstone, S. Gutmann, H. Neven; MIT-CTP/4893 (2017)

in preparation

P. Zoller



• Target Hamiltonian: H_T (contains e.g. 3-body terms or long-range interactions)

Target Hamiltonian: H_T (contains e.g. 3-body terms or long-range interactions)

Experimentally available resource Hamiltonians: $\{\ldots, H_{res}^{(j)}, H_{res}^{(j+1)}, \ldots\}$

Target Hamiltonian: H_T (contains e.g. 3-body terms or long-range interactions)

Experimentally available resource Hamiltonians: $\{\ldots, H_{res}^{(j)}, H_{res}^{(j+1)}, \ldots\}$

• Target Hamiltonian: H_T (contains e.g. 3-body terms or long-range interactions)

Experimentally available resource Hamiltonians: $\{\ldots, H_{res}^{(j)}, H_{res}^{(j+1)}, \ldots\}$

Create variational state: $|\psi(\Theta)\rangle = \cdots e^{i\Theta_j H_{res}^{(j)}} e^{i\Theta_{j+1}H_{res}^{(j+1)}} \cdots |\psi_{init}\rangle$

Can be highly entangled, yet parametrised with few parameters

Target Hamiltonian: H_T (contains e.g. 3-body terms or long-range interactions)

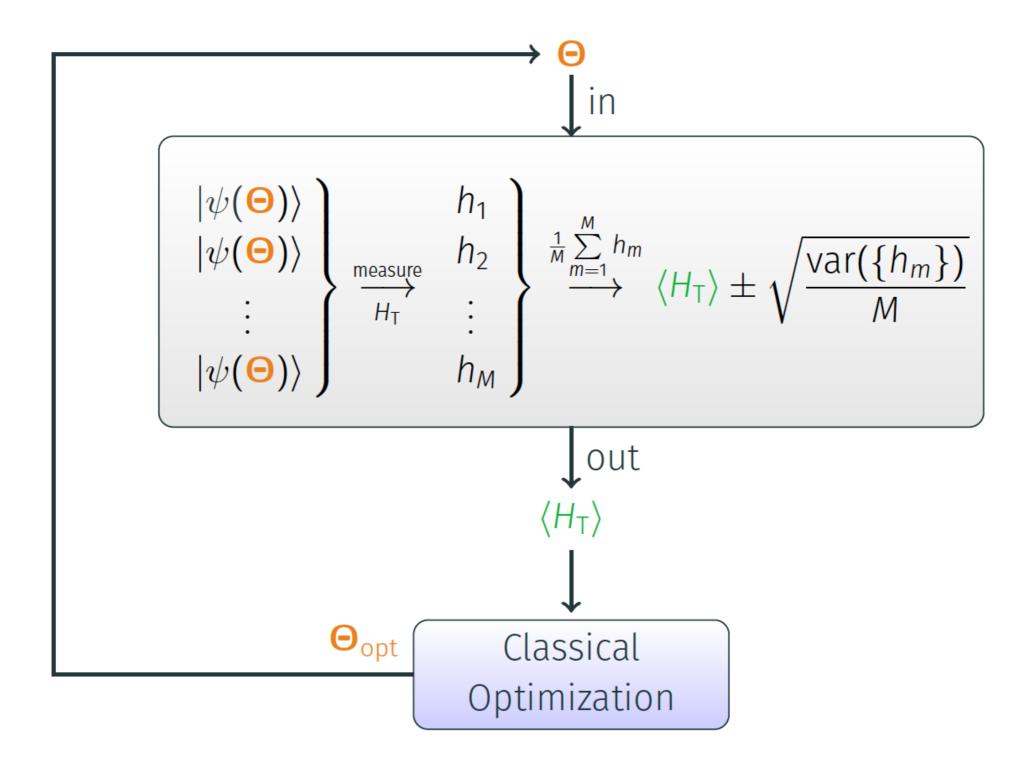
• Experimentally available resource Hamiltonians: $\{\ldots, H_{res}^{(j)}, H_{res}^{(j+1)}, \ldots\}$

• Create variational state:
$$|\psi(\Theta)\rangle = \cdots e^{i\Theta_j H_{res}^{(j)}} e^{i\Theta_{j+1}H_{res}^{(j+1)}} \cdots |\psi_{init}\rangle$$

The parameters Θ are varied such that $|\Psi(\Theta)\rangle$ becomes the ground state of a target Hamiltonian H_T :

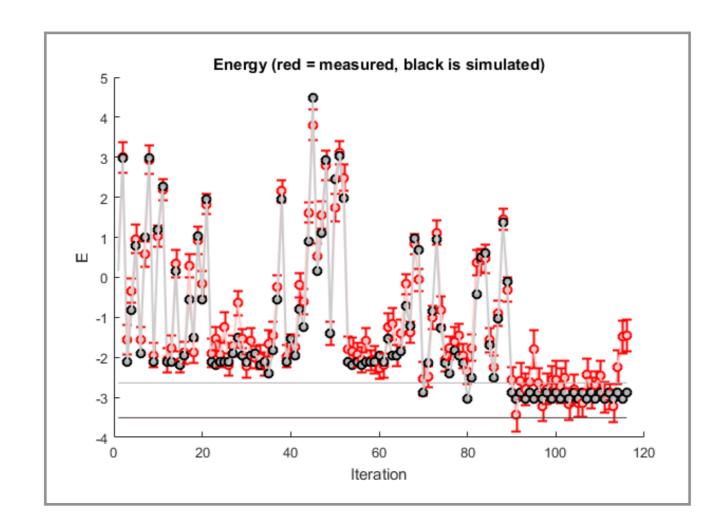
$$\min_{\boldsymbol{\Theta}} \frac{\langle \psi(\boldsymbol{\Theta}) | H_{\mathrm{T}} | \psi(\boldsymbol{\Theta}) \rangle}{\langle \psi(\boldsymbol{\Theta}) | \psi(\boldsymbol{\Theta}) \rangle}$$

Can be highly entangled, yet parametrised with few parameters

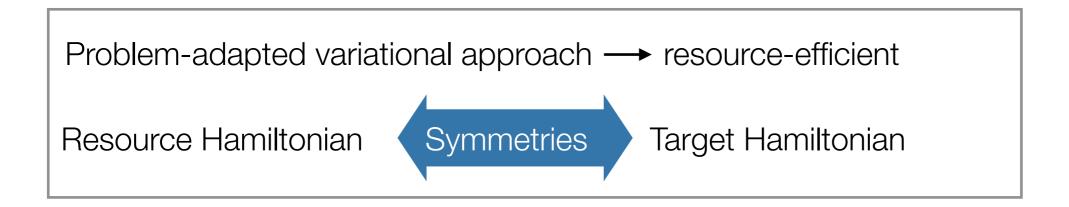


Variational Quantum Simulation with trapped ions in preparation

8 qubits \rightarrow 12 qubits



Variational Quantum Simulation with trapped ions



C. Kokail, R.van Bijnen, P. Silvi, P. Zoller, P. Jurcevic, E. Martinez, P. Monz, P. Schindler, R. Blatt

Related demonstrations

Rigetti, IBM: Deuteron \longrightarrow 2,3 qubit variational simulation IBM: Schwinger Model \longrightarrow 2,3 qubits variational simulation, not scalable

Ongoing: Chris Wilson (Waterloo) ---- 1D-QED with superconducting circuits

Ongoing: Markus Oberthaler (Heidelberg) ----- 1D-QED with cold atoms

Ongoing: Chris Monroe $(JQI) \rightarrow$ Deuteron with trapped ions

Remotely related: Experimental quantum simulation of fermion-antifermion scattering via boson exchange in a trapped ion Nature Commun. **9**, 195 (2018).

QTFLAG

Quantum Technologies For LAttice Gauge theories

In the past decades, quantum technologies have been fast developing from proof-of-principle experiments to ready-to-the-market solutions; with applications in many different fields ranging from quantum sensing, metrology, and communication to quantum simulations. Recently, the study of gauge theories has been recognized as an unexpected field of application of quantum technologies.

\$-

CONSORTIUM

- Coordinator: Simone Montangero (Saarland University, DE)
- ✤ Ignacio Cirac (Max-Planck-Institut für Quantenoptik, DE)
- Christine Muschik (Innsbruck University, AT)
- Frank Verstraete (Ghent University, BE)
- Leonardo Fallani (Consiglio Nazionale delle Ricerche Istituto Nazionale di Ottica, IT)
- ✤ Jakub Zakrzewski (Jagiellonian University, PL)

Next challenges:

- Realisation of 2D models
 - Simulate increasingly complex dynamics
 - Realisation of non-Abelian theories

PPERINSTITUTERINSTITUTE

Thank you very much for your attention!

Local (gauge) symmetries

Local symmetry generators: $\{G_n\}$ The Hamiltonian is invariant under gauge transformations of the form: $H' = (\prod_n e^{i\alpha_n G_n}) H (\prod_n e^{-i\alpha_n G_n}) [H, G_n] = 0$ For 1D QED: $G_n = L_n - L_{n-1} - \Phi^{\dagger}\Phi - \frac{1}{2}[1 - (-1)^n]$ The Hamiltonian does not mix eigenstates of G_n with different eigenvalues λ_n .

In the following, we restrict ourselves to the zero-charge subsector: $\lambda_{G_n} = 0, \forall n$ (# of particles = # of antiparticles).

 $G_n |\Psi_{\text{physical}}\rangle = 0 \quad \forall n$

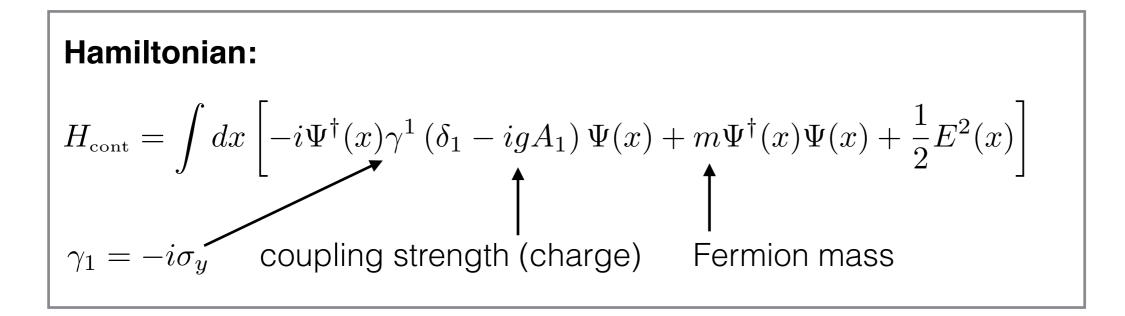
QED in (1+1) dimensions

Electromagnetic fields:

Vector potential: $A_0(x), A_1(x)$ Electric field: $E(x) = \partial_0 A_1(x)$ $[E(x), A_1(x')] = -i\delta(x - x')$

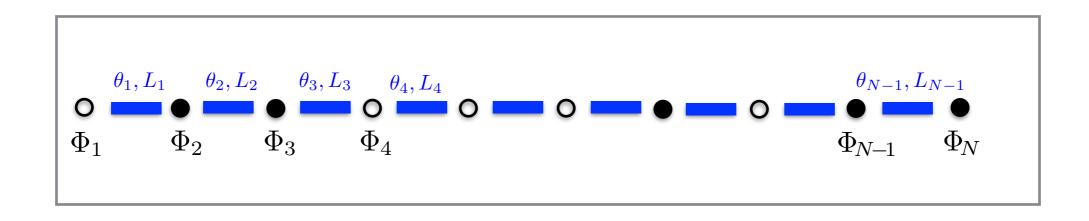
Matter fields:

$$\Psi(x) = \left(\begin{array}{c} \Psi_1(x) \\ \Psi_2(x) \end{array}\right)$$



The lattice Schwinger Model

The lattice Schwinger Model

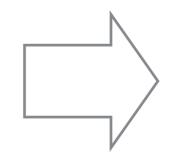


Continuum

Vector potential $A_1(x)$ Electric field E(x) $[E(x), A_1(x')] = -i\delta(x - x')$

Dirac spinor

$$\Psi(x) = \left(\begin{array}{c} \Psi_1(x) \\ \Psi_2(x) \end{array}\right)$$



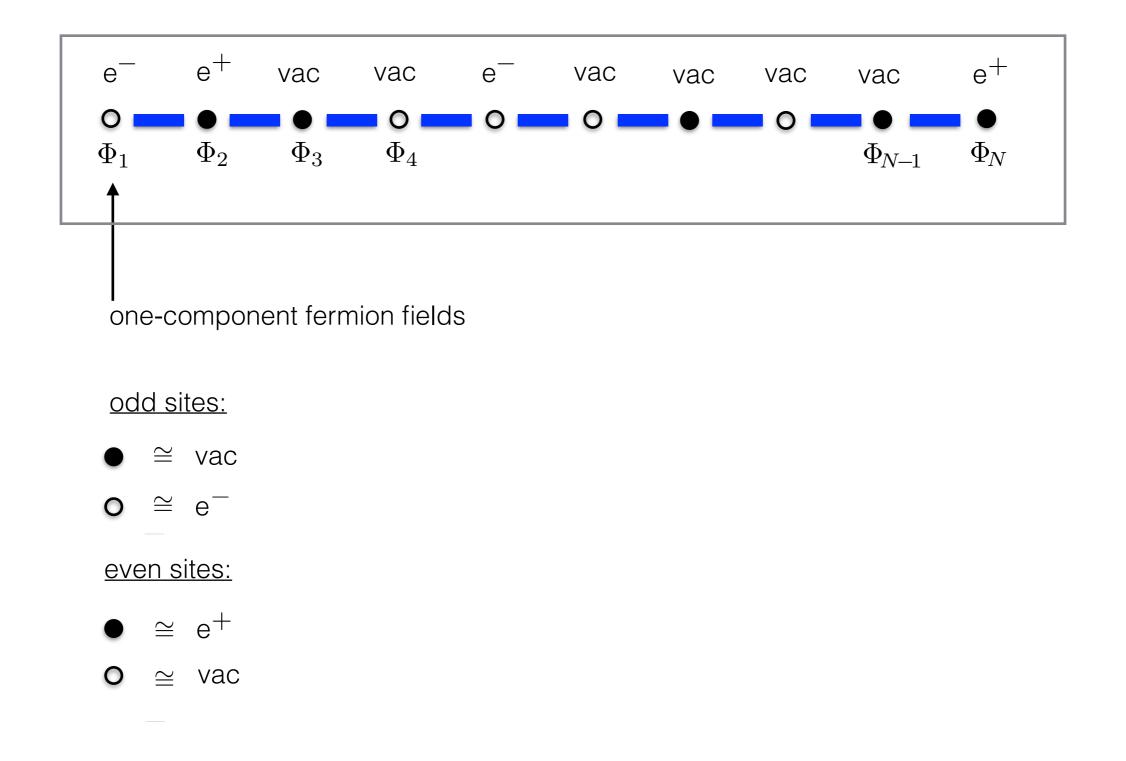
Lattice

$$\theta_n = agA_1(x_n)$$
$$L_n = \frac{1}{g}E(x_n)$$
$$[\theta_n, L_m] = i\delta_{n,m}$$

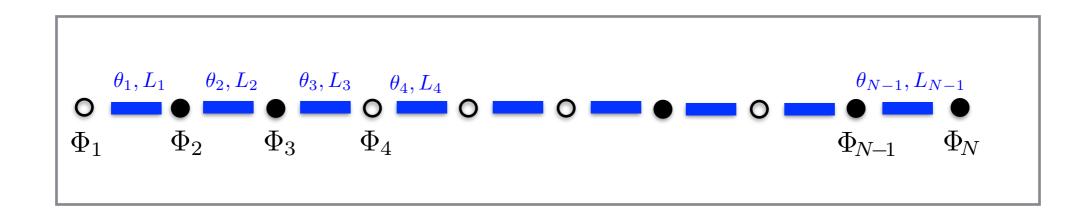
odd lattice sites: $\Phi_n = \sqrt{a}\Psi_1(x_n)$

even lattice sites: $\Phi_n = \sqrt{a} \Psi_2(x_n)$

Wilson's staggered Fermions



The lattice Schwinger Model



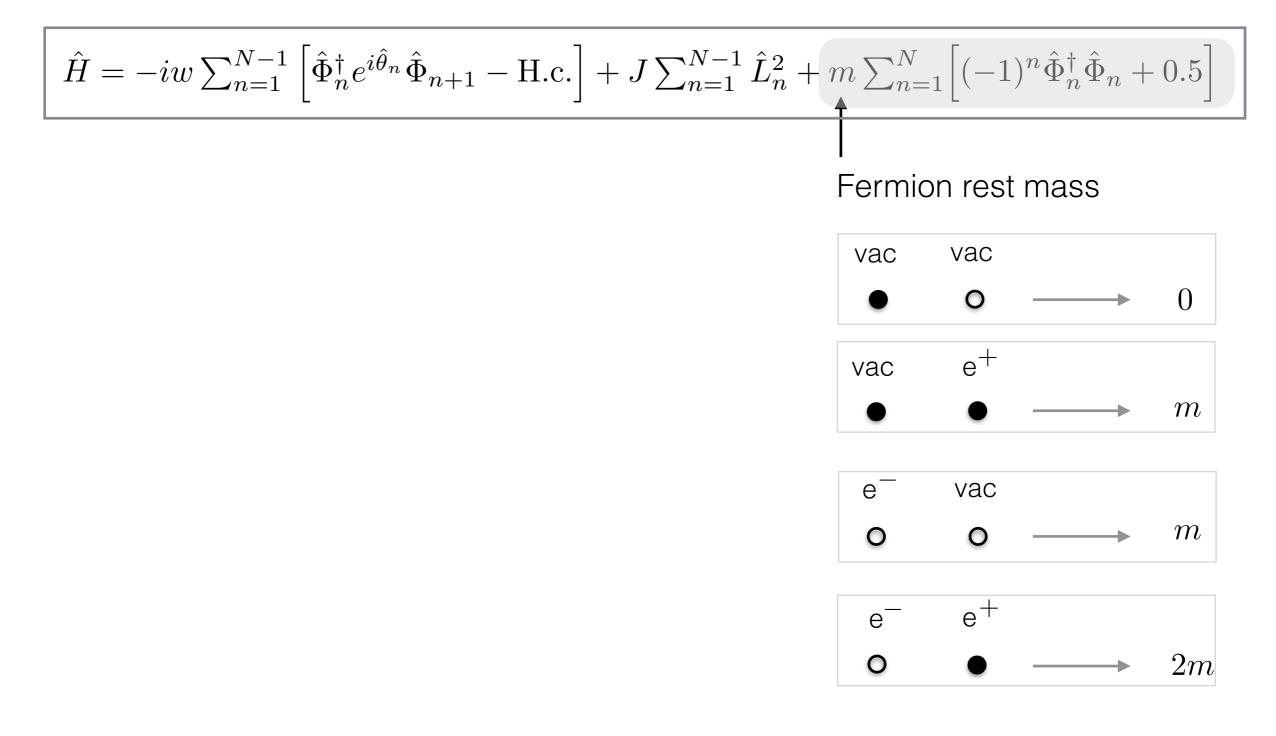
Continuum

$$H_{\text{cont}} = \int dx \left[-i\Psi^{\dagger}(x)\gamma^{1} \left(\delta_{1} - igA_{1}\right)\Psi(x) + m\Psi^{\dagger}(x)\Psi(x) + \frac{1}{2}E^{2}(x) \right]$$

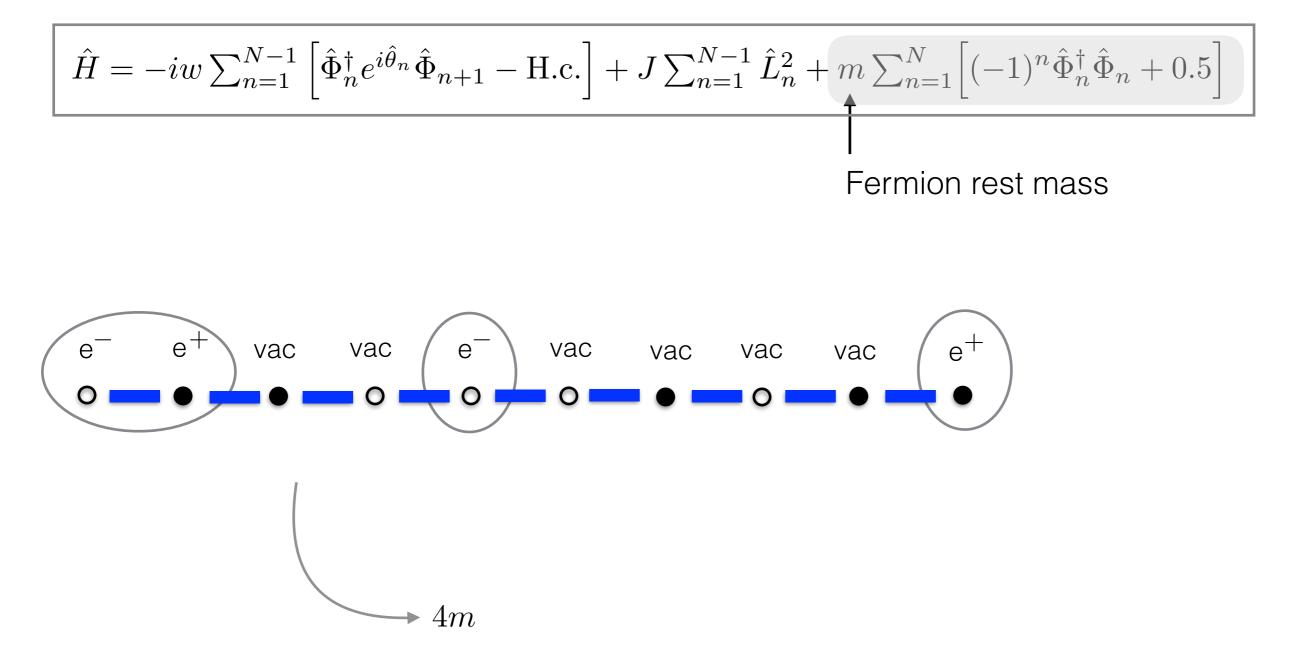
Lattice

$$H_{\text{lat}} = -iw \sum_{n=1}^{N-1} \left[\Phi_n^{\dagger} e^{i\theta_n} \Phi_{n+1} - H.C. \right] + m \sum_{n=1}^{N} (-1)^n \Phi_n^{\dagger} \Phi_n + J \sum_{n=1}^{N-1} L_n^2$$
$$\oint_{w=\frac{1}{2a}} u = \frac{1}{2a}$$
$$J = \frac{g^2 a}{2}$$

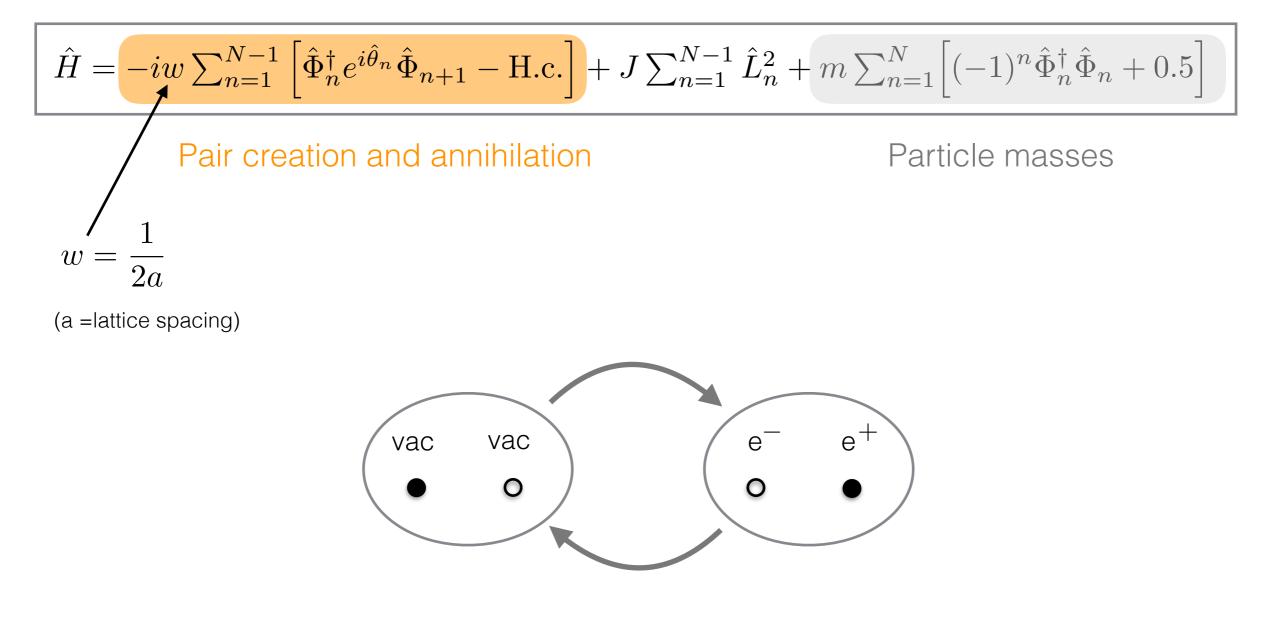
Hamiltonian formulation of the Schwinger model:



Hamiltonian formulation of the Schwinger model:



Hamiltonian formulation of the Schwinger model:

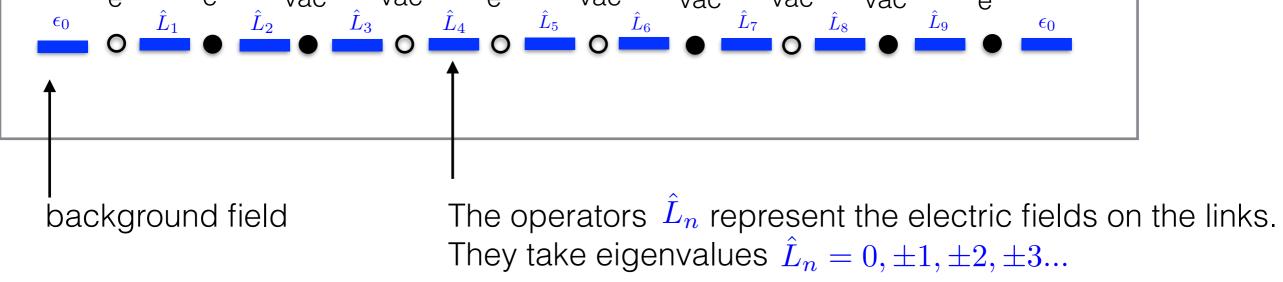


Hamiltonian formulation of the Schwinger model:

$$\hat{H} = -iw \sum_{n=1}^{N-1} \left[\hat{\Phi}_n^{\dagger} e^{i\hat{\theta}_n} \hat{\Phi}_{n+1} - \text{H.c.} \right] + J \sum_{n=1}^{N-1} \hat{L}_n^2 + m \sum_{n=1}^{N} \left[(-1)^n \hat{\Phi}_n^{\dagger} \hat{\Phi}_n + 0.5 \right]$$
Pair creation and annihilation
$$\int \text{E-field energy} \quad \text{Particle masses}$$

$$J = \frac{g^2 a}{2} \quad \text{a =lattice spacing} \quad \text{g = light-matter coupling}$$

$$\hat{U} = \frac{g^2 a}{2} \quad \hat{U} = \frac{g^2 a}{2}$$

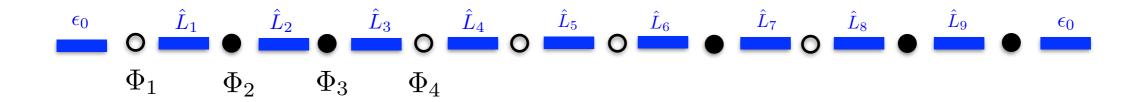


Hamiltonian formulation of the Schwinger model:

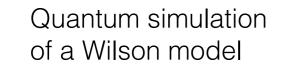
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).

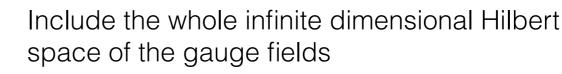
$$\hat{H} = -iw\sum_{n=1}^{N-1} \left[\hat{\Phi}_n^{\dagger} e^{i\hat{\theta}_n} \hat{\Phi}_{n+1} - \text{H.c.} \right] + J\sum_{n=1}^{N-1} \hat{L}_n^2 + m\sum_{n=1}^{N} (-1)^n \hat{\Phi}_n^{\dagger} \hat{\Phi}_n$$

The dynamics is constraint by the Gauss law: In the continuum in 3D: $\nabla E = \rho$ Here: $\hat{L}_n - \hat{L}_{n-1} = \hat{\Phi}_n^{\dagger} \hat{\Phi} - \frac{1}{2} [1 - (-1)^n]$



Our approach





Our scheme:

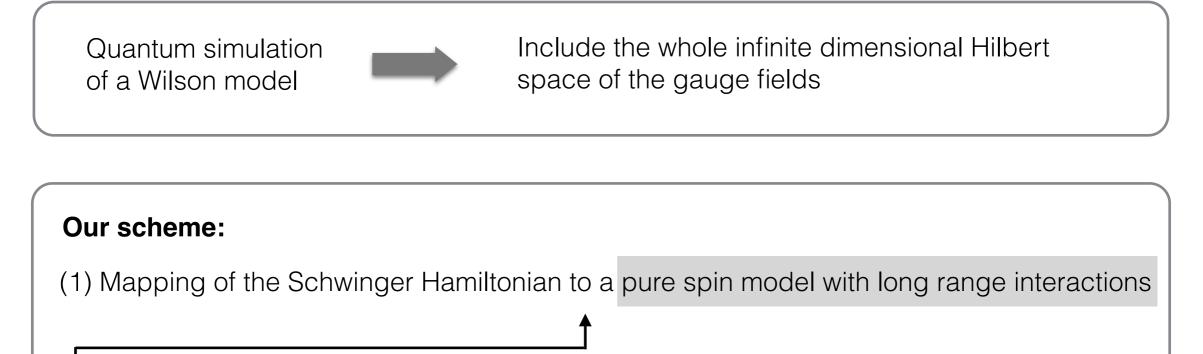
(1) Mapping of the Schwinger Hamiltonian to a pure spin model with long range interactions

(2) Realization of the required interactions with an efficient digital simulation scheme using "shaking methods".

Important features of the scheme

- Exact gauge invariance at all energy scales (by construction)
- Very efficient use of resources

Our approach

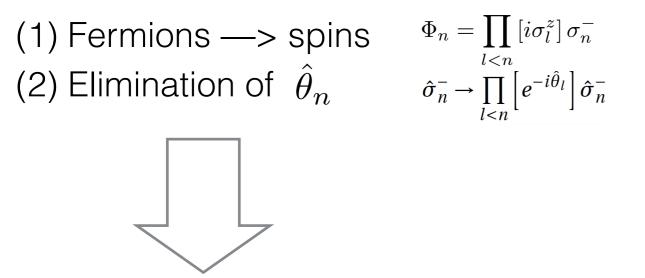


(2) Realization of the required interactions with an efficient digital simulation scheme using "shaking methods".

Important features of the scheme

- Exact gauge invariance at all energy scales (by construction)
- Very efficient use of resources

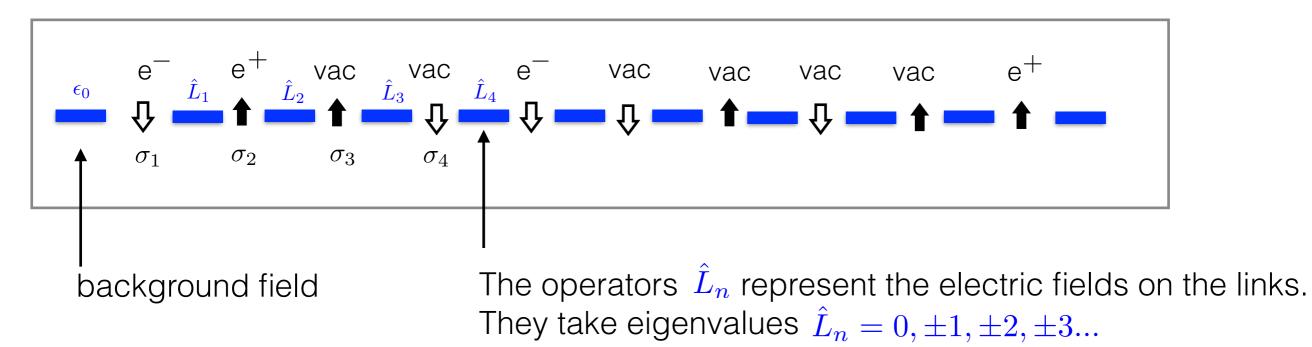
Two simple transformations:



Hamiltonian in terms of spins and electric fields

Transformed Hamiltonian:

$$\hat{H} = w \sum_{n=1}^{N-1} \left[\hat{\sigma}_n^+ \hat{\sigma}_{n+1}^- + \text{H.c.} \right] + J \sum_{n=1}^{N-1} \hat{L}_n^2 + m \sum_{n=1}^{N} (-1)^n \hat{\sigma}_n^z$$



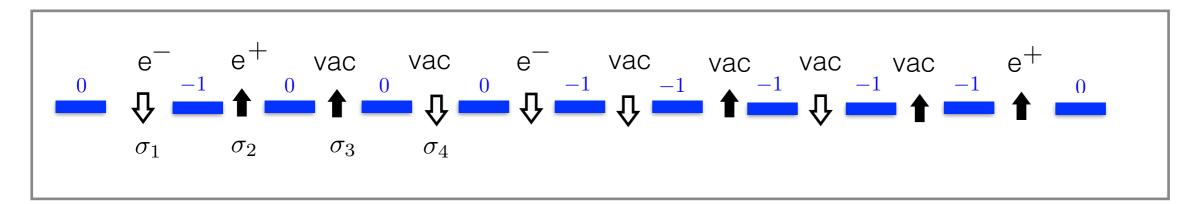
Odd lattice sites:

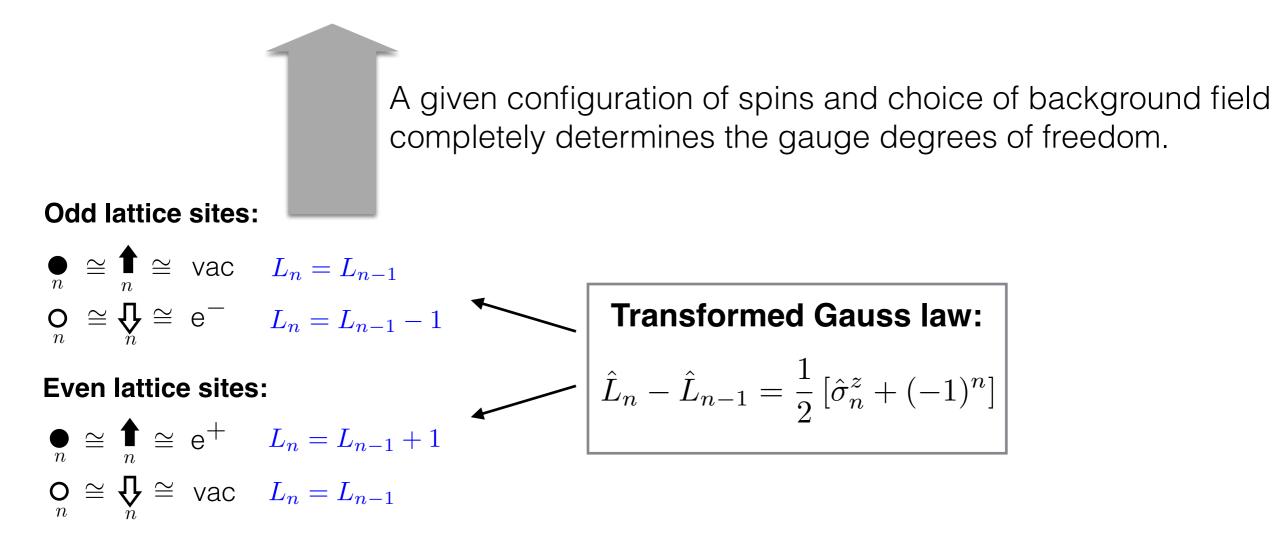
Even lattice sites:

$$\bullet_n \cong \bigcap_n \cong e^+ \quad L_n = L_{n-1} + 1$$
$$\bullet_n \cong \bigcap_n \cong \bigvee_n \cong \text{vac} \quad L_n = L_{n-1}$$

Transformed Hamiltonian:

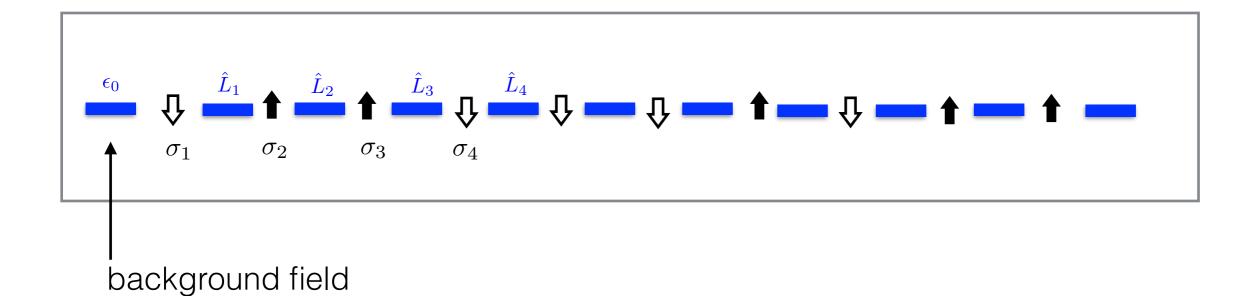
$$\hat{H} = w \sum_{n=1}^{N-1} \left[\hat{\sigma}_n^+ \hat{\sigma}_{n+1}^- + \text{H.c.} \right] + J \sum_{n=1}^{N-1} \hat{L}_n^2 + m \sum_{n=1}^N (-1)^n \hat{\sigma}_n^z$$





Transformed Hamiltonian:

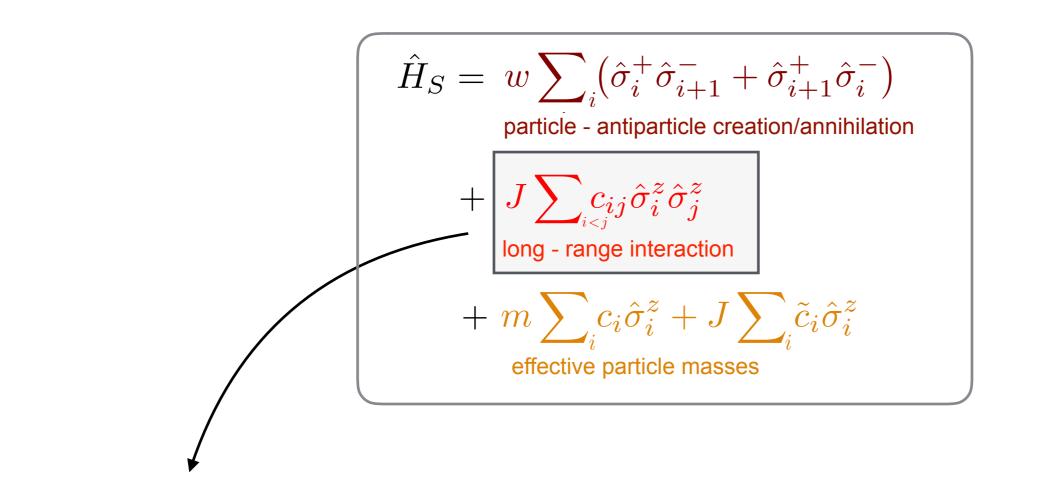
$$\hat{H} = w \sum_{n=1}^{N-1} \left[\hat{\sigma}_n^+ \hat{\sigma}_{n+1}^- + \text{H.c.} \right] + J \sum_{n=1}^{N-1} \hat{L}_n^2 + m \sum_{n=1}^{N} (-1)^n \hat{\sigma}_n^z$$
$$+ J \sum_{n=1}^{N-1} \left[\epsilon_0 + \frac{1}{2} \sum_{m=1}^{n} \left[\hat{\sigma}_m^z + (-1)^m \right] \right]^2$$
$$\hat{\epsilon}_0 = 0 \qquad \hat{L}_n - \hat{L}_{n-1} = \frac{1}{2} \left[\hat{\sigma}_n^z + (-1)^n \right]$$

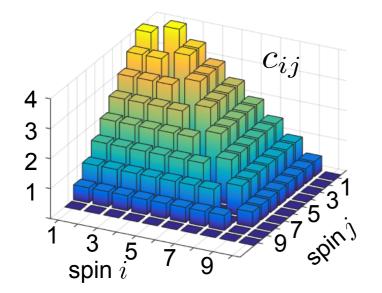


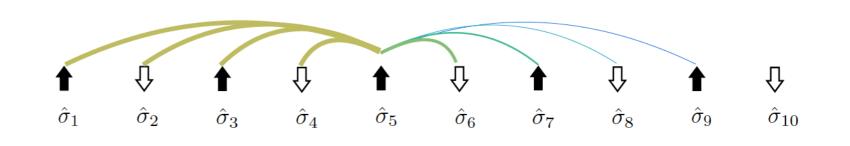
Elimination of the gauge fields **Pure** spin model with long-range interactions

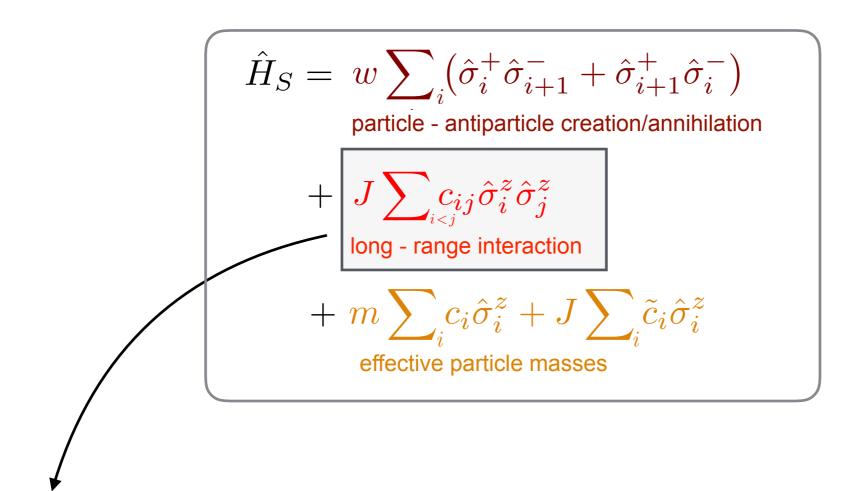
The gauge fields don't appear explicitly in the encoded description. Instead, they act in the form of a non-local interaction that corresponds to the Coulomb-interaction between the simulated charged particles.

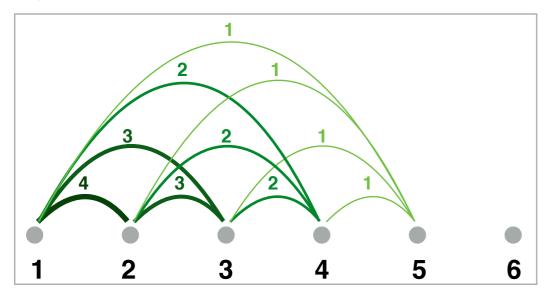
$$\begin{split} \hat{H}_{S} &= w \sum_{i} \left(\hat{\sigma}_{i}^{+} \hat{\sigma}_{i+1}^{-} + \hat{\sigma}_{i+1}^{+} \hat{\sigma}_{i}^{-} \right) \\ \text{particle - antiparticle creation/annihilation} \\ &+ J \sum_{i < j} c_{ij} \hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{z} \\ \text{long - range interaction} \\ &+ m \sum_{i} c_{i} \hat{\sigma}_{i}^{z} + J \sum_{i} \tilde{c}_{i} \hat{\sigma}_{i}^{z} \\ &\text{effective particle masses} \end{split}$$

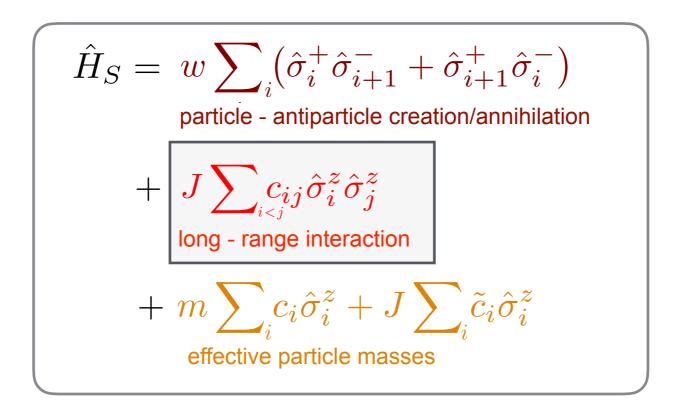












- N spins simulate N matter fields and N-1 gauge fields
- Exotic spin interactions can be simulated efficiently: Digital scheme

Digital quantum simulation

Approximate time evolution by a stroboscopic sequence of gates

The evolution under a desired Hamiltonian is realised on a coarse-grained time scale

- 1

 $H = H_1 + H_2$

$$U(t) \equiv e^{-iHt/\hbar} = e^{-iH\Delta t_n/\hbar} \dots^{-iH\Delta t_1/\hbar}$$

Trotter expansion:
$$e^{-iH\Delta t/\hbar} \simeq \underbrace{e^{-iH_1\Delta t/\hbar}}_{\text{first term}} \underbrace{e^{-iH_2\Delta t/\hbar}}_{\text{second term}} \underbrace{e^{\frac{1}{2}\frac{(\Delta t)^2}{\hbar^2}[H_1, H_2]}}_{\text{Trotter errors for non-commuting terms}}$$

S. Lloyd, Science 273, 1073 (1996).

Digital quantum simulation

Approximate time evolution by a stroboscopic sequence of gates

The evolution under a desired Hamiltonian is realised on a coarse-grained time scale

$$U_{\rm S} = e^{-i\hat{H}_{\rm S}t}$$

$$U_{\rm sim} = \left(e^{-iH_1t/n} \dots e^{-iH_nt/n}\right)^n$$

Operations that can be performed straightforwardly

Trotter error:
$$U_{\rm S} - U_{\rm sim} = \frac{t^2}{2n} \sum_{i,j} [H_i, H_j] + \epsilon_i$$

This scheme: Trotter errors do not violate gauge invariance

Our toolbox

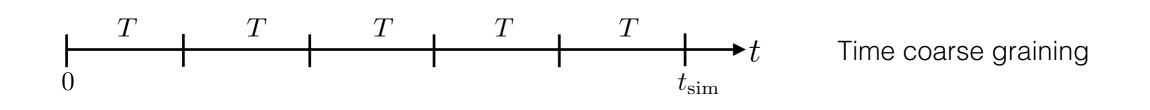
Ion trap quantum computers:

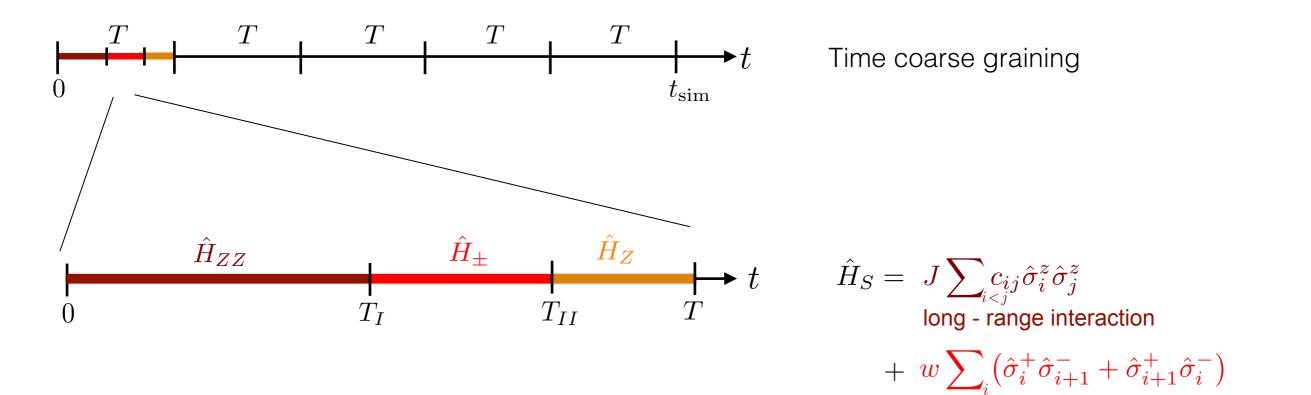
- Fast and accurate single qubit operations
 - Entangling gates: Mølmer-Sørensen interaction

All-to-all 2-body interaction: $H_0 = J_0 \sum_{i,j} \sigma^x_i \sigma^x_j$

Our toolbox

Ion trap quantum computers: Fast and accurate single qubit operations Entangling gates: Mølmer-Sørensen interaction All-to-all 2-body interaction: $H_0 = J_0 \sum \sigma_i^x \sigma_j^x$ З $\sigma_1^x \sigma_2^x + \sigma_2^x \sigma_3^x + \sigma_1^x \sigma_3^x \qquad \qquad \sigma_1^x \sigma_2^x + \sigma_1^x \sigma_3^x + \sigma_1^x \sigma_4^x + \sigma_2^x \sigma_3^x + \sigma_2^x \sigma_4^x + \sigma_3^x \sigma_4^x$ $\sigma_1^x \sigma_2^x$

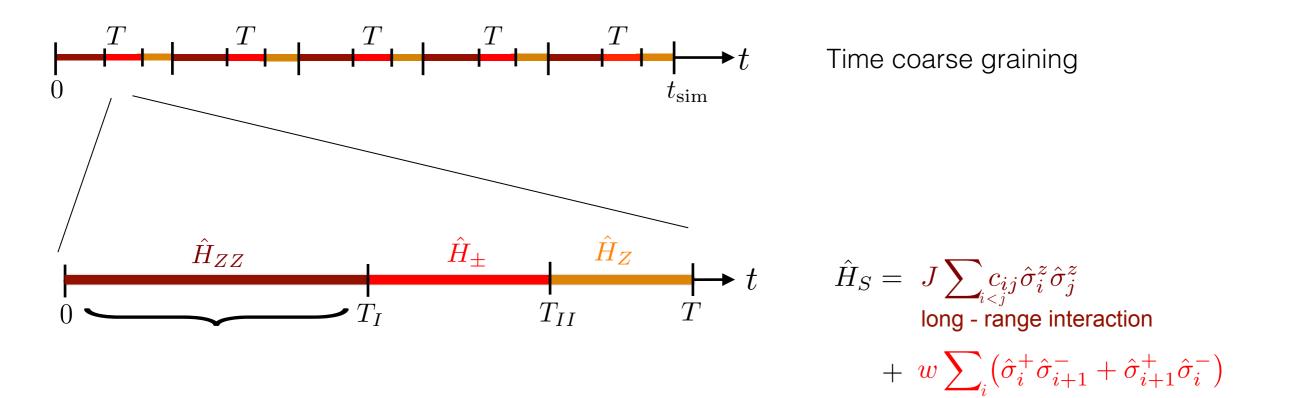




particle - antiparticle creation/annihilation

$$+ m \sum_{i} c_i \hat{\sigma}_i^z + J \sum_{i} \tilde{c}_i \hat{\sigma}_i^z$$

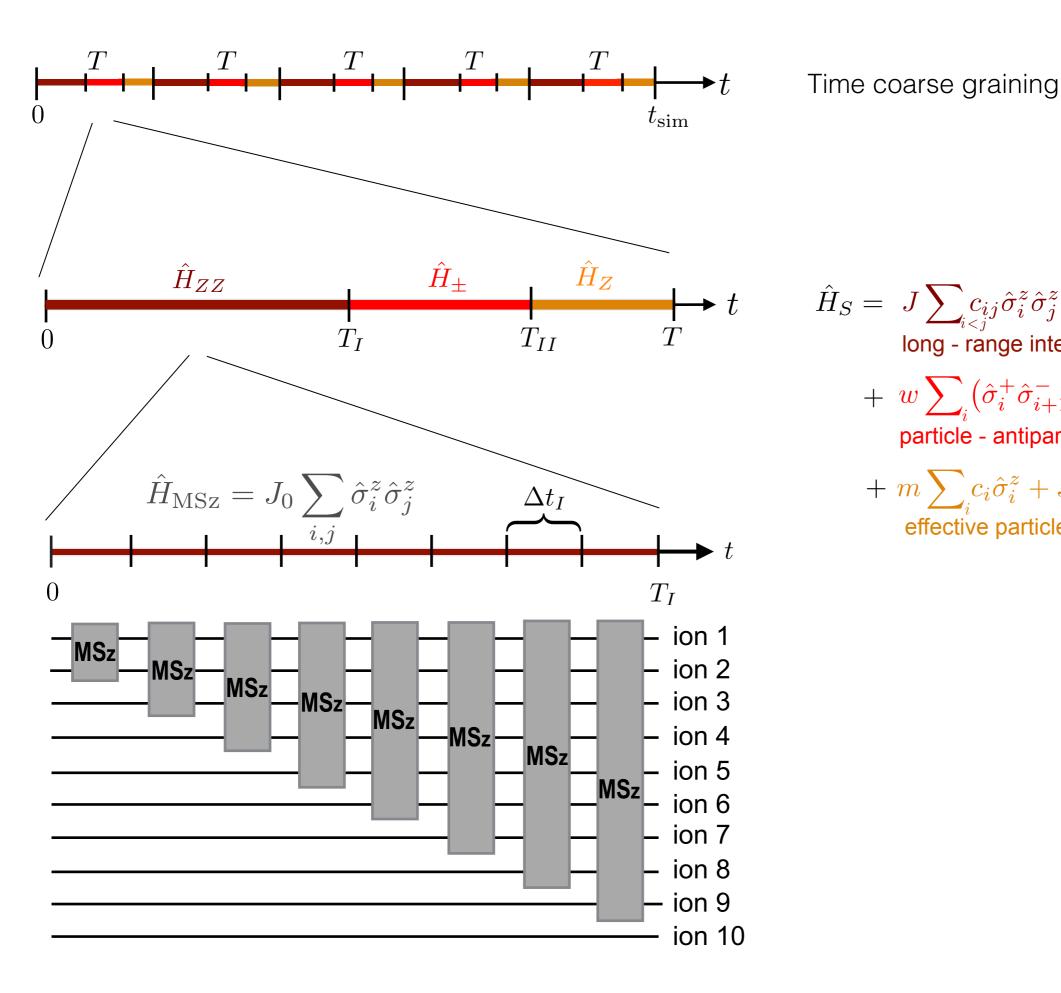
effective particle masses



particle - antiparticle creation/annihilation

$$+ m \sum_{i} c_i \hat{\sigma}_i^z + J \sum_{i} \tilde{c}_i \hat{\sigma}_i^z$$

effective particle masses



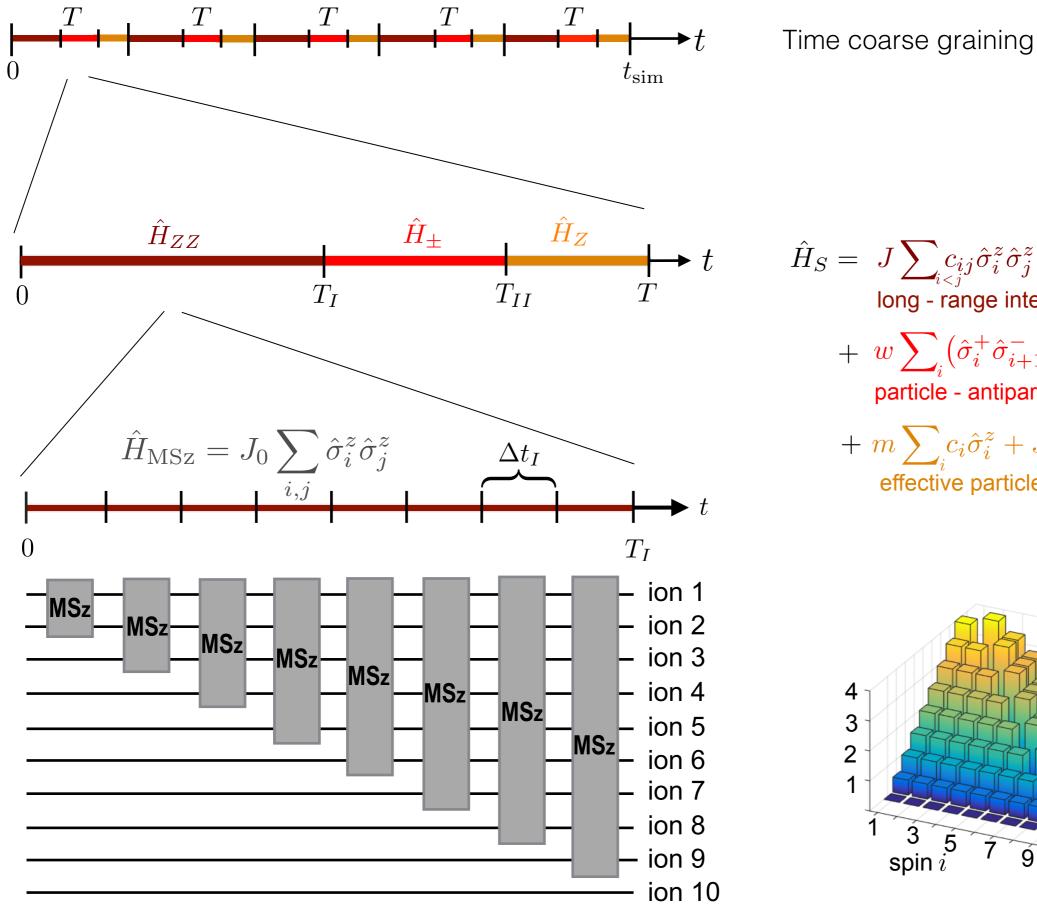
 $\hat{H}_S = J \sum_{\substack{i < j}} \hat{\sigma}_i^z \hat{\sigma}_j^z$ long - range interaction

+
$$w \sum_{i} (\hat{\sigma}_{i}^{+} \hat{\sigma}_{i+1}^{-} + \hat{\sigma}_{i+1}^{+} \hat{\sigma}_{i}^{-})$$

particle - antiparticle creation/annihilation

$$+ m \sum_{i} c_i \hat{\sigma}_i^z + J \sum_{i} \tilde{c}_i \hat{\sigma}_i^z$$

effective particle masses



$$= J \sum_{\substack{i < j \\ i < j}} \hat{\sigma}_i^z \hat{\sigma}_j^z$$

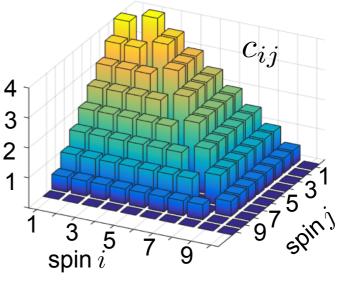
long - range interaction

+
$$w \sum_{i} (\hat{\sigma}_{i}^{+} \hat{\sigma}_{i+1}^{-} + \hat{\sigma}_{i+1}^{+} \hat{\sigma}_{i}^{-})$$

particle - antiparticle creation/annihilation

$$+ m \sum_{i} c_i \hat{\sigma}_i^z + J \sum_{i} \tilde{c}_i \hat{\sigma}_i^z$$

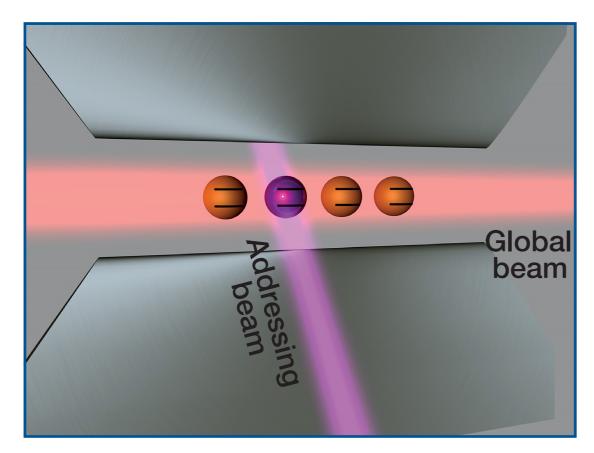
effective particle masses

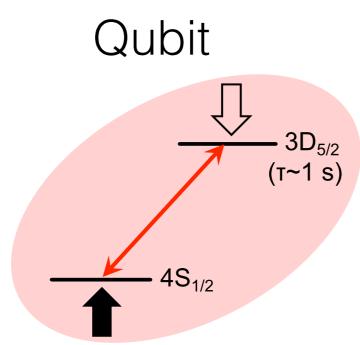


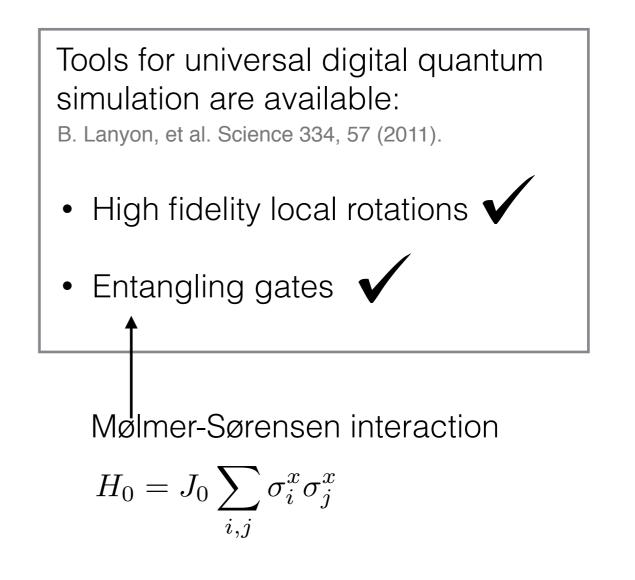
R. Blatt, & C. Roos, Nat. Phys. 8, 277 (2012).

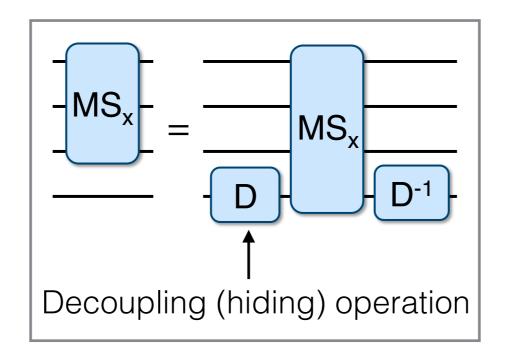
Experiment

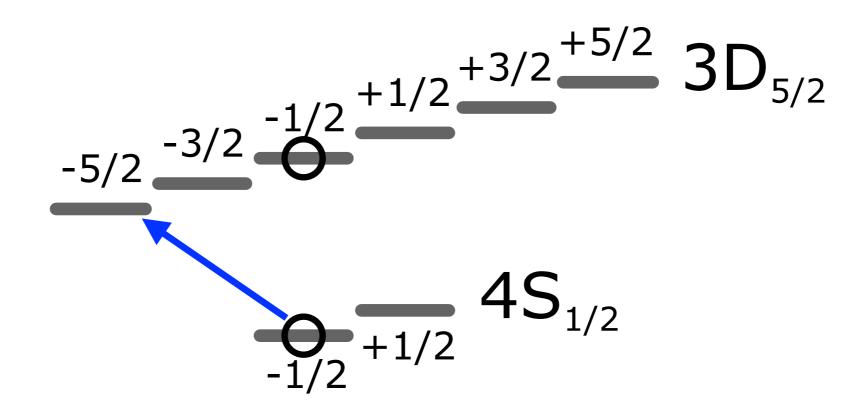
E. Martinez, P. Schindler, D. Nigg, A. Erhard, T. Monz, and R. Blatt

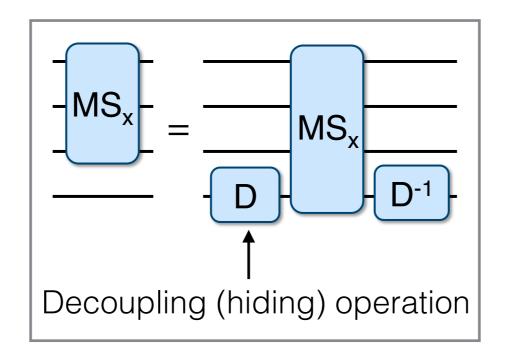


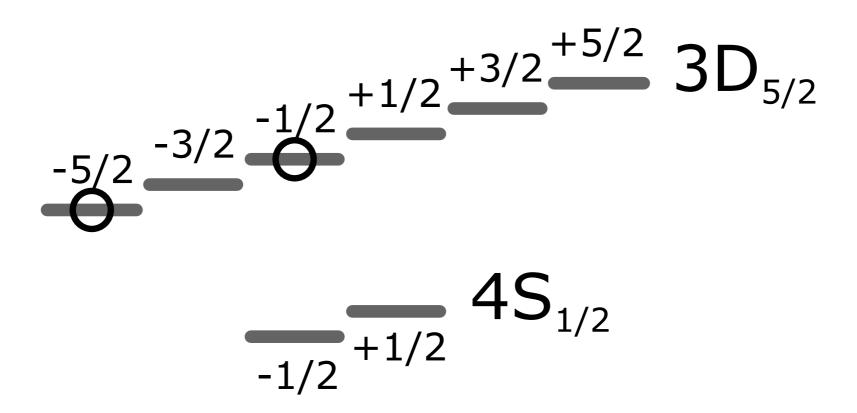


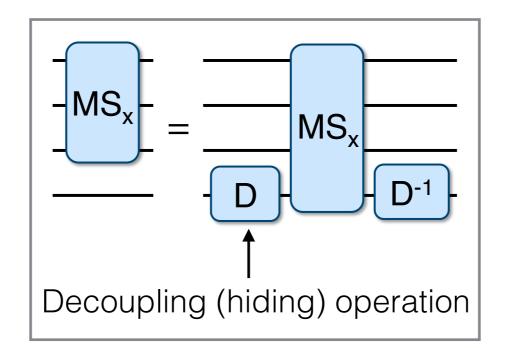


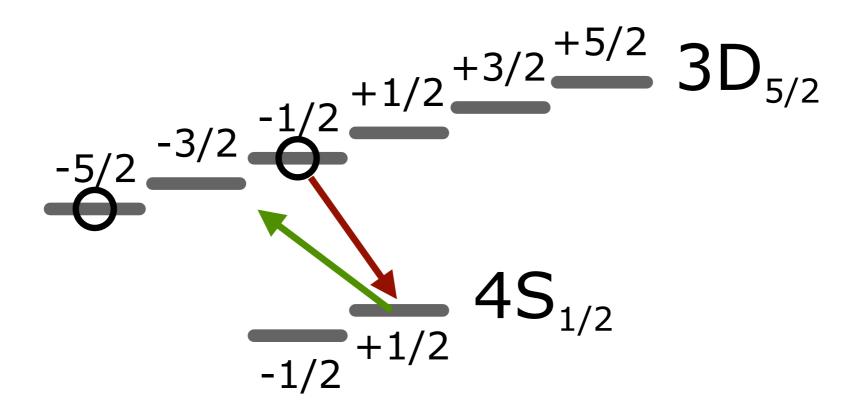


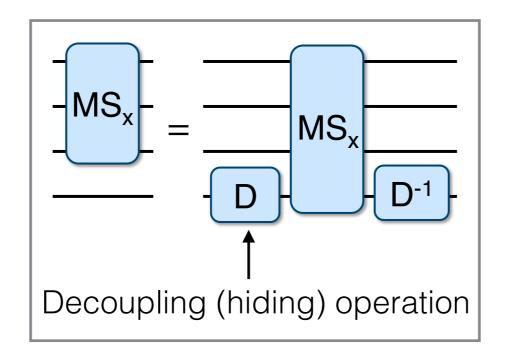


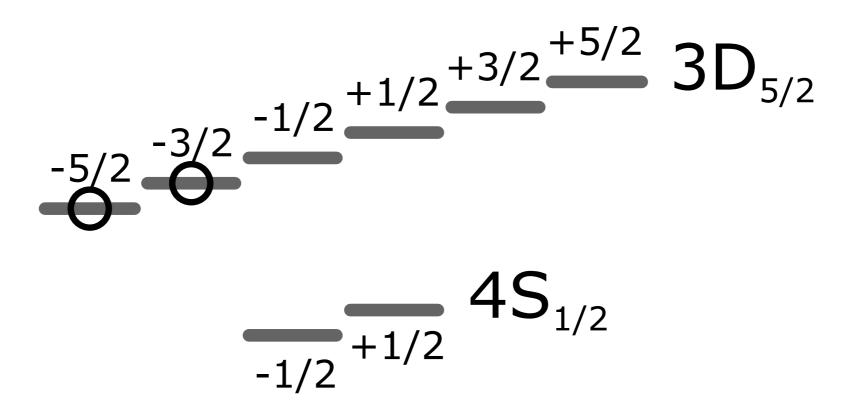


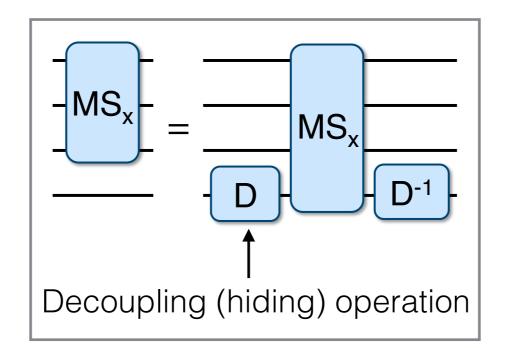


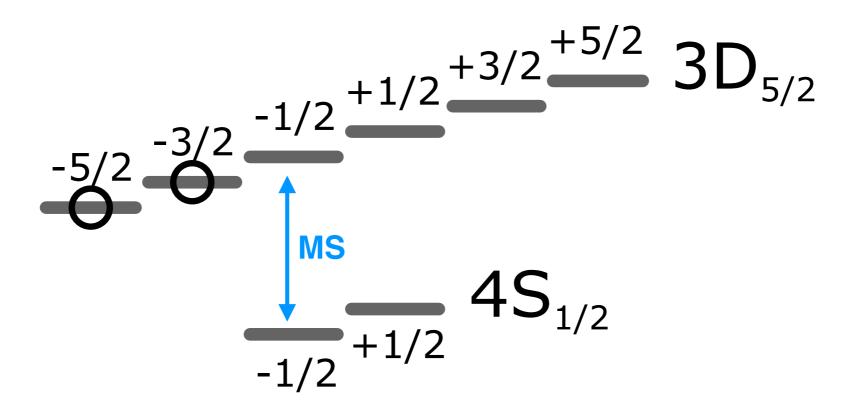










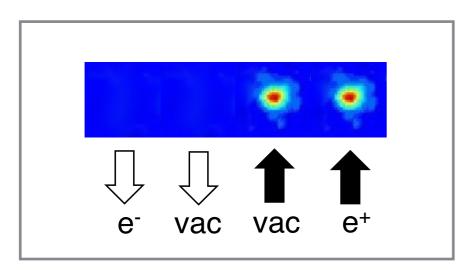


Measurements

Electron shelving technique (projective measurement in the z-basis)



Imaging of the whole ion chain on a CCD camera



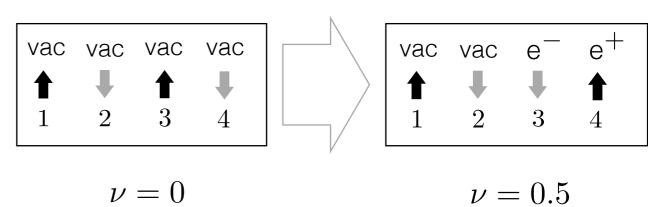
Change of the measurement basis: full state tomography

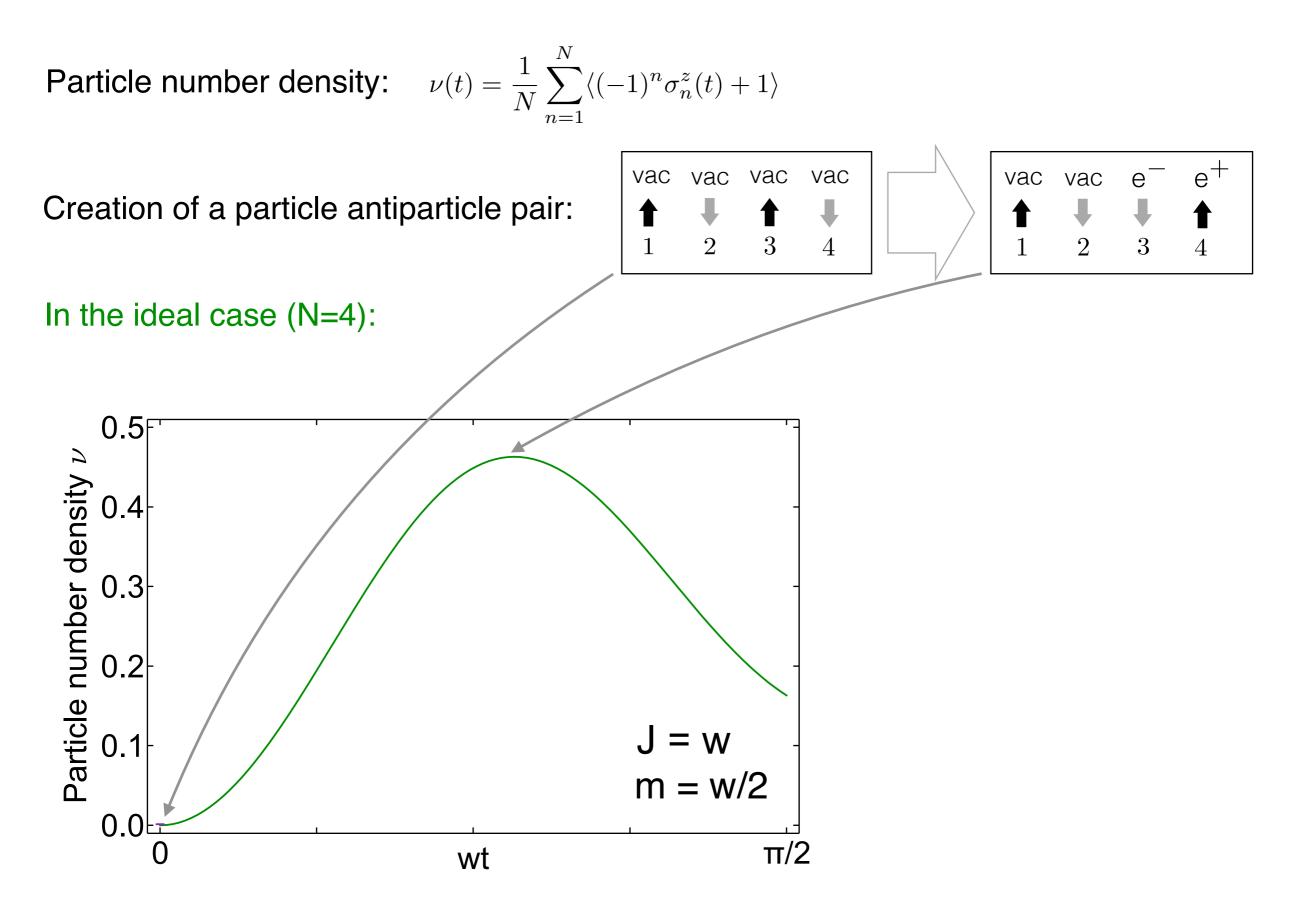
Quantum Simulation of pair creation

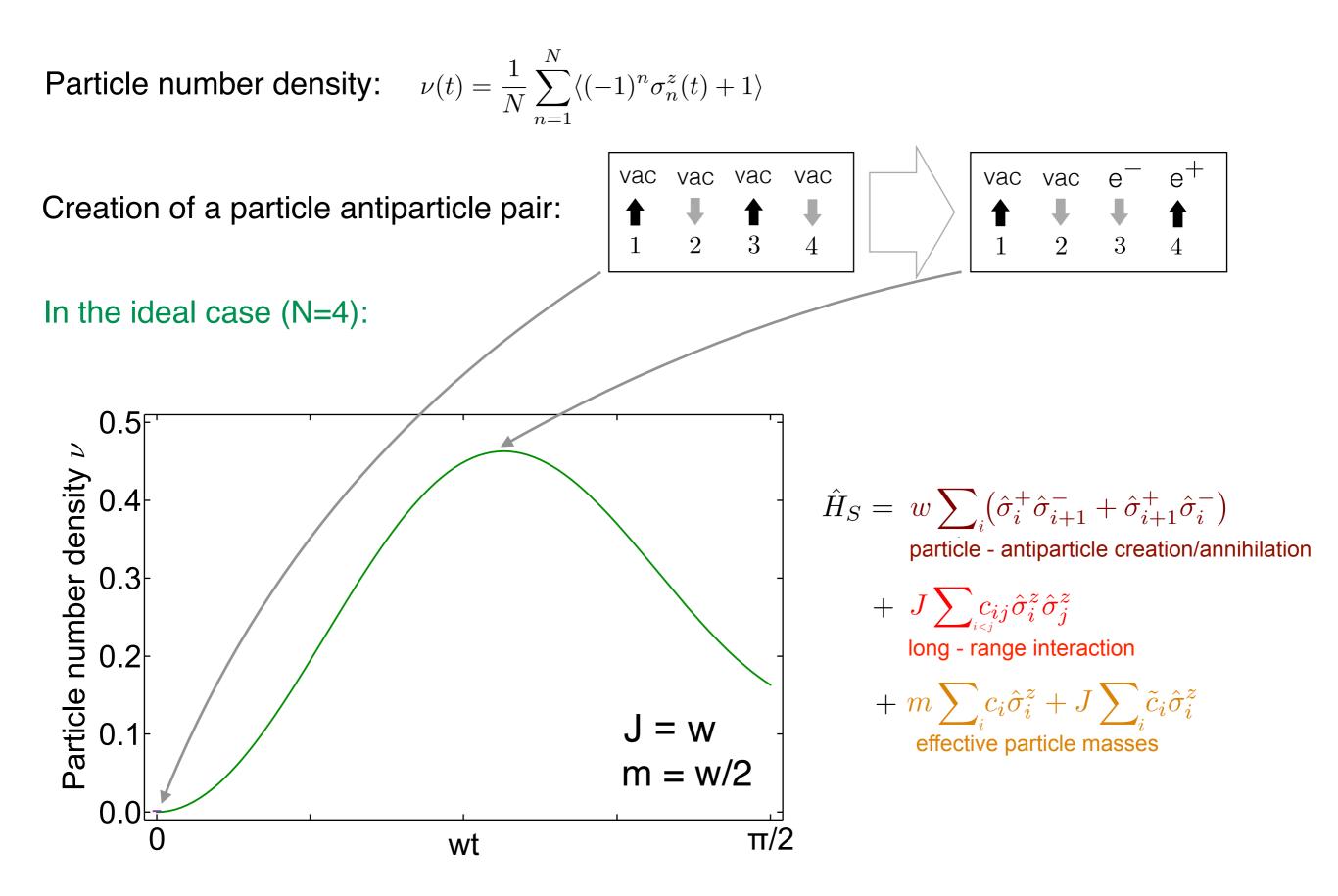
Particle number density:

$$\nu(t) = \frac{1}{N} \sum_{n=1}^{N} \langle (-1)^n \sigma_n^z(t) + 1 \rangle$$

Creation of a particle antiparticle pair:



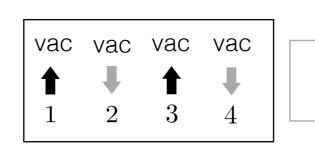


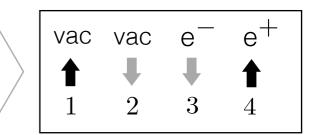


Particle number density:

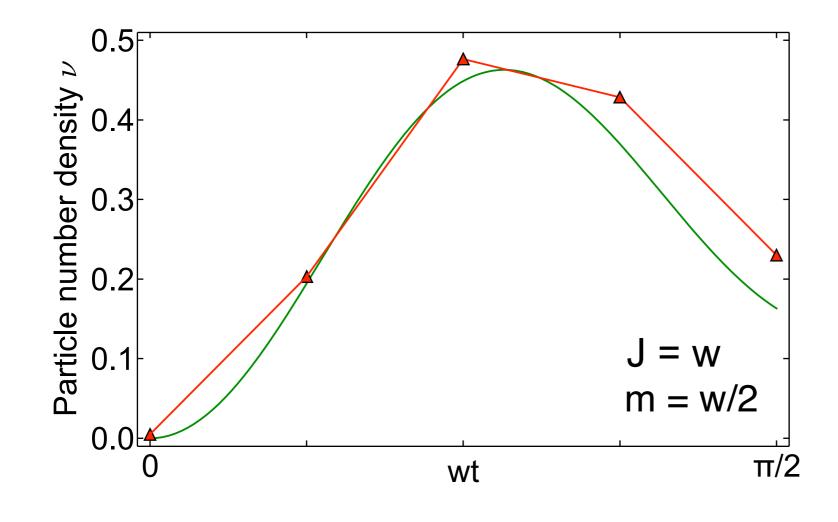
$$\nu(t) = \frac{1}{N} \sum_{n=1}^{N} \langle (-1)^n \sigma_n^z(t) + 1 \rangle$$

Creation of a particle antiparticle pair:





Including discretisation errors (N=4):



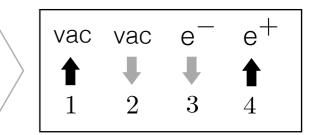
Particle number density:

$$\nu(t) = \frac{1}{N} \sum_{n=1}^{N} \langle (-1)^n \sigma_n^z(t) + 1 \rangle$$

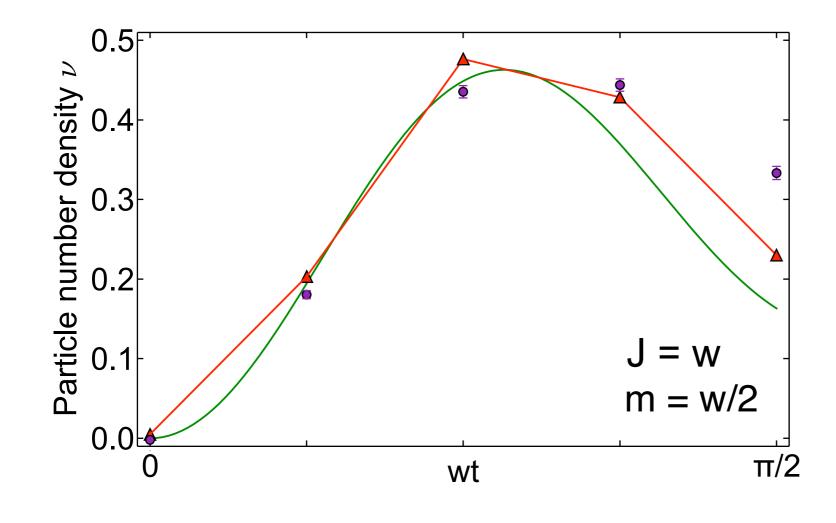
Creation of a particle antiparticle pair:

vac vac vac vac
$$\uparrow$$

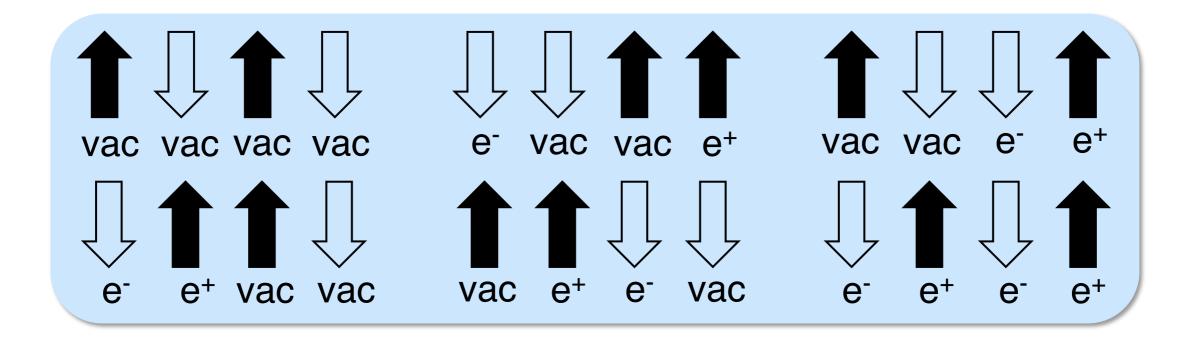
 1 2 3 4



Experimental data (after postselection):



Postselection



Schwinger Model: zero charge subspace Spin model: zero magnetization subspace

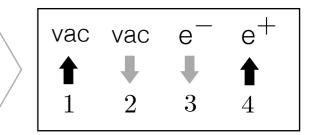
The desired dynamics preserve gauge invariance Only implementation errors lead to states outside of this subspace

Particle number density:

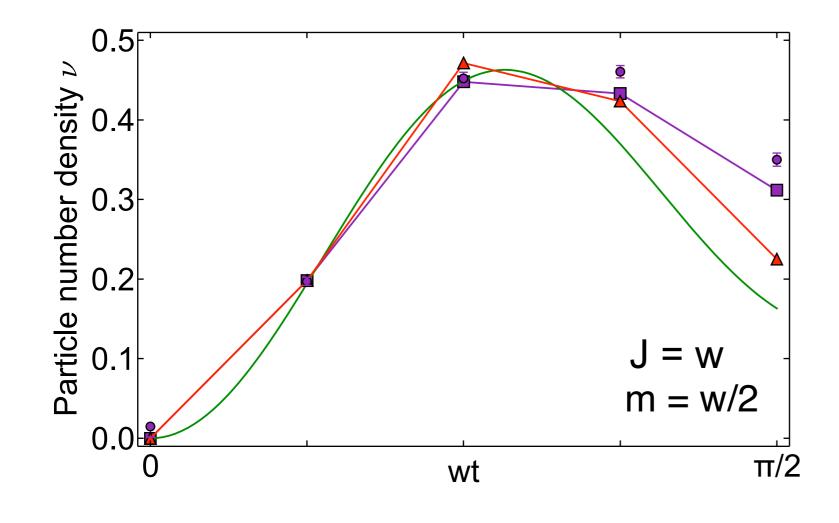
$$\nu(t) = \frac{1}{N} \sum_{n=1}^{N} \langle (-1)^n \sigma_n^z(t) + 1 \rangle$$

Creation of a particle antiparticle pair:

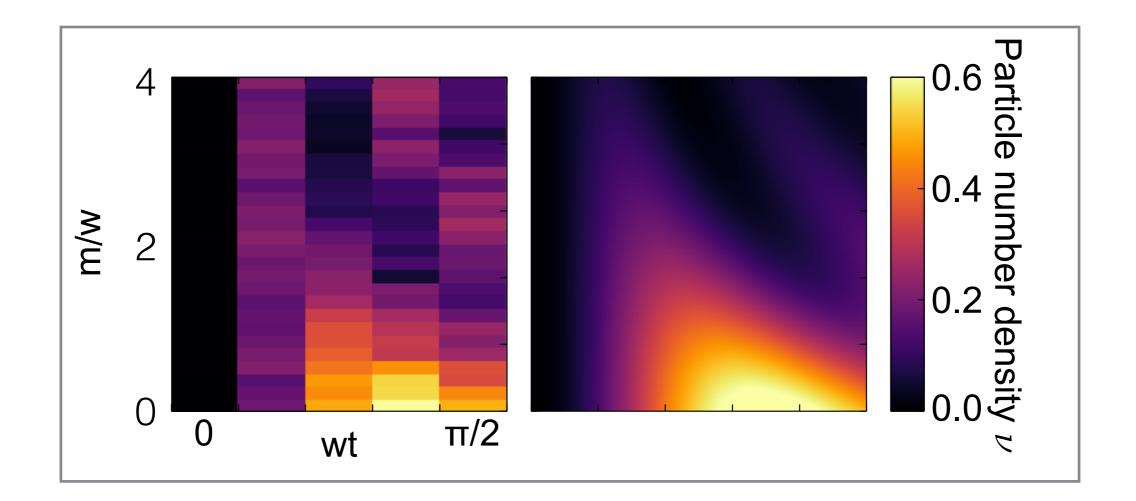
vac vac vac vac
$$\uparrow$$
 \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow 1 2 3 4



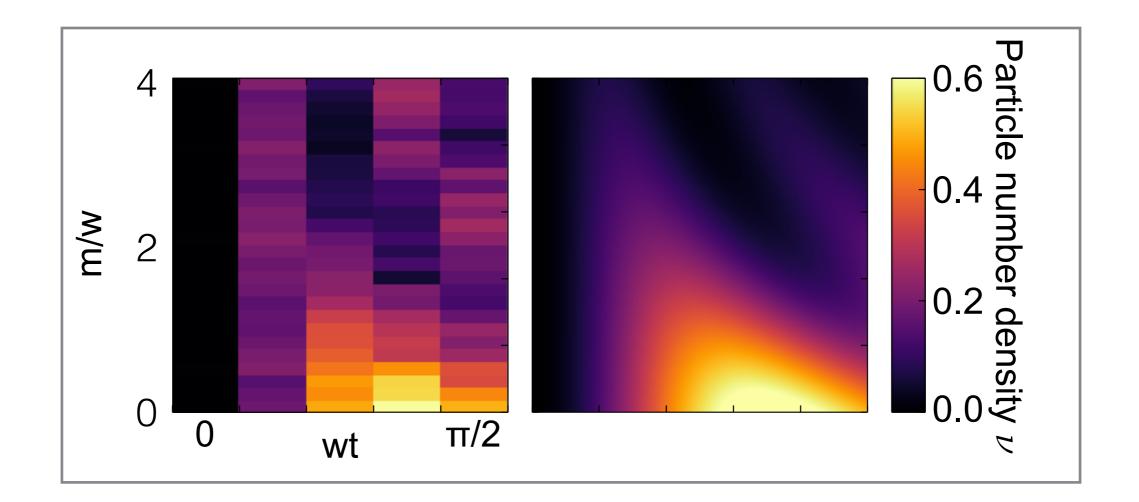
Simple error model (uncorrelated dephasing):



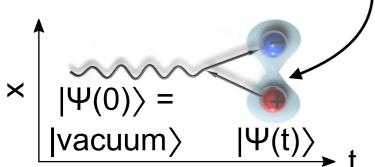
Time evolution for different values of the particle mass m

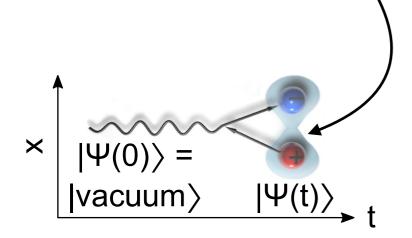


Time evolution for different values of the particle mass m

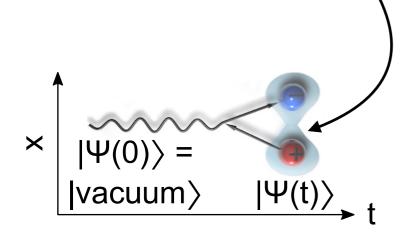


→ also: measurement of the vacuum persistence amplitude $|\langle vacuum | \Psi(t) \rangle|^2$ see Nature 534, 516 (2016).



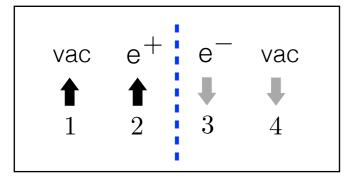


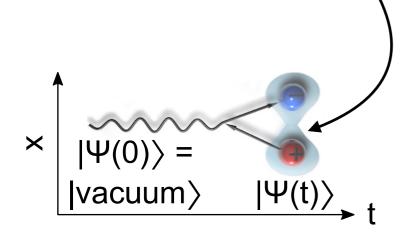
State tomography: access to the full density matrix



State tomography: access to the full density matrix

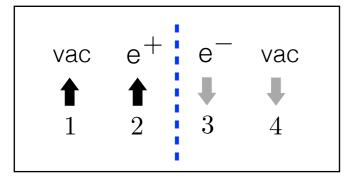
 E_n : logarithmic negativity evaluated with respect to this bipartition:

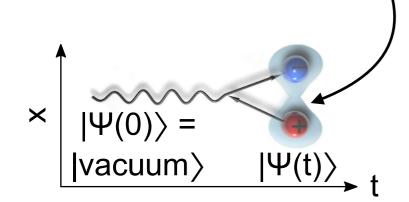




State tomography: access to the full density matrix

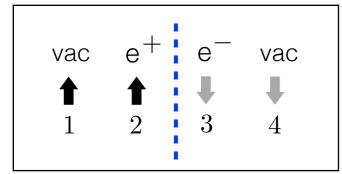
 E_n : logarithmic negativity evaluated with respect to this bipartition:

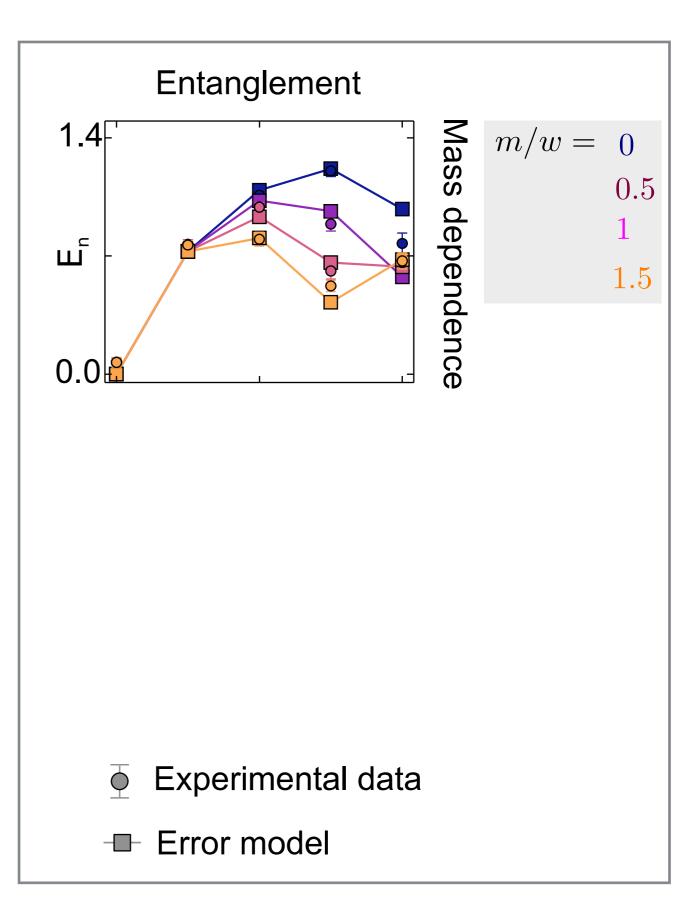


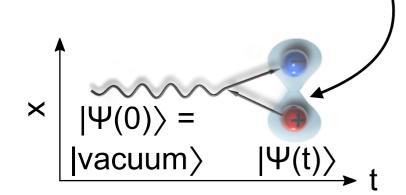


State tomography: access to the full density matrix

 E_n : logarithmic negativity evaluated with respect to this bipartition:

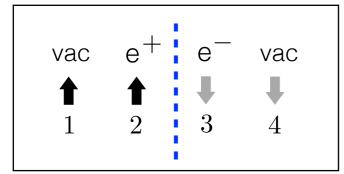


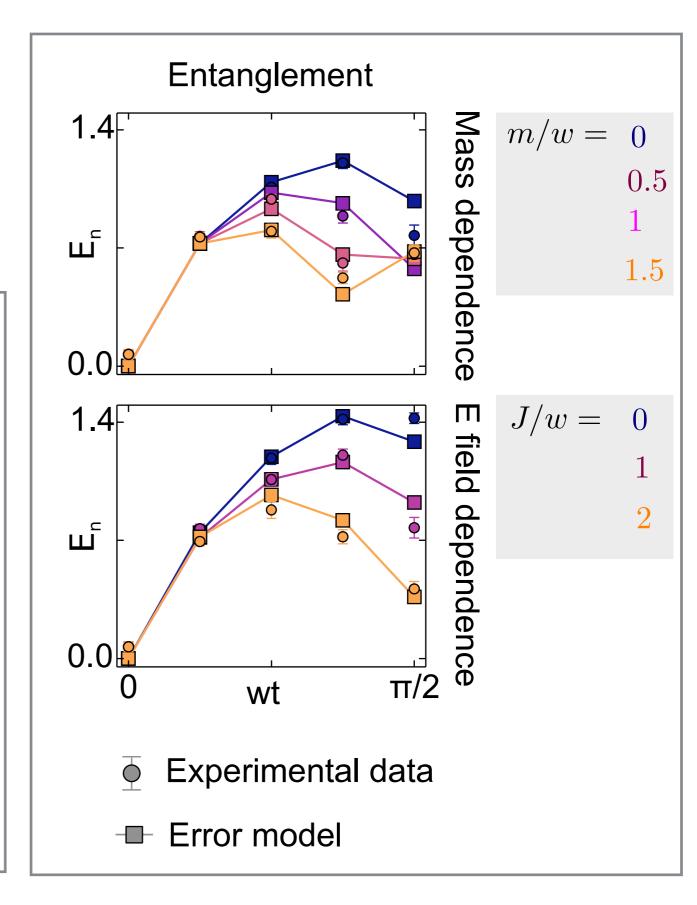




State tomography: access to the full density matrix

 E_n : logarithmic negativity evaluated with respect to this bipartition:

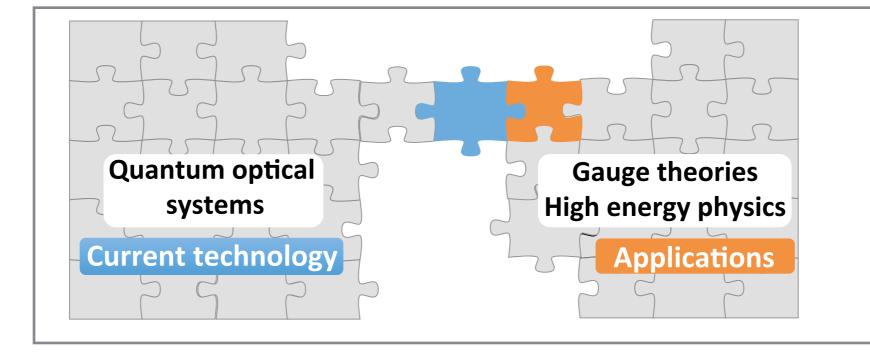




Conclusions

1.) Digital quantum simulation of a the Schwinger model
 → real-time dynamics

2.)



3.)

Our approach:

- Very efficient use of resources.
- Gauge invariance by construction.

Explore new features like entanglement.

Quantum simulation of lattice gauge theories simulate increasingly complex dynamics

27

Quantum simulation of lattice gauge theories simulate increasingly complex dynamics

27

solve problems that cannot be solved classically |

Quantum simulation of lattice gauge theories solve problems that cannot be solved classically

simulate increasingly complex dynamics Next challenges: non-abelian theories theories beyond 1D