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• Why is there more matter than antimatter in the universe?

We want to understand:

• What happens inside neutron stars?

• What happened in the early universe?

• What happens in heavy ion collisions in particle accelerators?



• Why is there more matter than antimatter in the universe?

We want to understand:

• What happens inside neutron stars?

• What happened in the early universe?

To find answers to these question we need:

New methods for gauge theories

• What happens in heavy ion collisions in particle accelerators?



underlie our understanding how fundamental particles interact
(for example: Quantum Electrodynamics, Quantum Chromodynamics) 

are the backbone of the standard model 

play an important role in many areas of physics, including the 
description of condensed matter systems displaying frustration or 
topological order

Gauge Theories:



Hard questions in gauge theories
(plagued the sign-problem)

?

Dynamical problems:
What happens in heavy ion collisions

High baryon density:
What happens inside neutron stars

? ?

Topological terms:
How can we understand the large 
degree of CP violation in nature?



Quest to find sign-problem free methods
• Quantum Simulations 
• Numerical methods based on tensor network states
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Quest to find sign-problem free methods
• Quantum Simulations 
• Numerical methods based on tensor network states

Gauge Theories:

Two routes towards the same goal. 
Both paths are actively explored.

This talk: Quantum simulations



Use quantum methods to  
develop new tools for basic science



Long-term vision:

Time

Short-term goal:

Answer questions that 
can not be tackled 
numerically

Simulate  
Quantum Chromo Dynamics

Develop a new type of 
Quantum Simulator

Perform proof-of-concept  
Experiments

Quantum 
chemistry

Quantum physics

Condensed 
matter physics

High energy  
physics

!



Review Articles:  Ann. Phys. 525, 777 (2013); Rep. Prog. Phys. 79, 014401 (2016); Contemporary Physics 57 388 (2016).
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Develop a new type of quantum simulator

Simulated states and dynamics must be gauge-invariant
Difficulty for realizing quantum simulations of lattice gauge theories:  
Implement a quantum many-body Hamiltonian  
and a large set of local constraints (‘Gauss law’, in the case of QED:                        )  rE(r) = ⇢(r)



Hilbert space

Review Articles:  Ann. Phys. 525, 777 (2013); Rep. Prog. Phys. 79, 014401 (2016); Contemporary Physics 57 388 (2016).

Gauge-invariant
subspace

Develop a new type of quantum simulator

Simulated states and dynamics must be gauge-invariant
Difficulty for realizing quantum simulations of lattice gauge theories:  
Implement a quantum many-body Hamiltonian  
and a large set of local constraints (‘Gauss law’, in the case of QED:                        )  rE(r) = ⇢(r)
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Quantum information science High energy physics

Review Articles:  Ann. Phys. 525, 777 (2013); Rep. Prog. Phys. 79, 014401 (2016); Contemporary Physics 57 388 (2016).
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Spin models  
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Problems from  
high energy physics

Low-dimensional toy models ‘Demonstrator’
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Controllable 
Quantum 
System

Mode B:
Variational Simulator

Ground state preparation
| 0iHT

Equilibrium physics 
Ground state properties

Mode A:
Trotter Simulator

Time evolutions
e�iHT t

Quench dynamics 
Real-time dynamics
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Electromagnetic fields: 
Vector potential: 
Electric field: 

A0(x), A1(x)

E(x) = @0A1(x)

[E(x), A1(x
0)] = �i�(x� x0)

QED in (1+1) dimensions

Matter fields: 
 (x) =
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Hamiltonian: 
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one-component fermion fields

odd sites:

even sites:
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Wilson’s staggered Fermions
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The Schwinger model

Fermion rest mass

vac vac
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Hamiltonian formulation of the Schwinger model:
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
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Hamiltonian formulation of the Schwinger model:
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
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Ĥ = �iw
PN�1

n=1

h
�̂

†
ne

i✓̂n�̂n+1 �H.c.

i
+ J

PN�1
n=1 L̂

2
n +m

PN
n=1(�1)

n
�̂

†
n�̂n

h
(�1)n�̂†

n�̂n + 0.5
i

e� e+ vac vac vace�vac e+vacvac

4m



The Schwinger model

Hamiltonian formulation of the Schwinger model:
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
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The Schwinger model

Hamiltonian formulation of the Schwinger model:
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
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background field The operators       represent the electric fields on the links. 
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Hamiltonian formulation of the Schwinger model:
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
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First experiment:

Physics world: one of the top ten Breakthroughs in physics 2016 

Real-time dynamics of lattice gauge theories on a few-qubit quantum computer 
E. Martinez*, C. Muschik* et al, Nature 534, 516 (2016).

U(1) Wilson lattice gauge theories in digital quantum simulators  
C. Muschik et al. New J. Phys. 19 103020 (2017).

One-dimensional QED
on a trapped ion quantum computer

We explore:
• Coherent real-time dynamics of particle-

antiparticle creation 
• Entanglement generation during pair creation



method

platform
Efficient implementation  



Our scheme:

(1) Mapping of the Schwinger Hamiltonian to a pure spin model with long range interactions

(2) Realization of the required interactions with an efficient digital simulation scheme  
     using “shaking methods”.

Important features of the scheme

Exact gauge invariance at all energy scales (by construction) 

Very efficient use of resources 

Our approach



✓̂n

Two simple transformations:
(1) Fermions —> spins  
(2) Elimination of 

Hamiltonian in terms of spins and electric fields
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Transformed Gauss law:
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A given configuration of spins and choice of background field 
completely determines the gauge degrees of freedom. 



Elimination of the gauge fields Pure spin model with long-range interactions

The gauge fields don't appear explicitly in the encoded description. Instead, they act in the 
form of a non-local interaction that corresponds to the Coulomb-interaction between the 
simulated charged particles.



The Schwinger model as exotic spin model
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The Schwinger model as exotic spin model

Efficient implementation on an ion-quantum computer

N spins simulate N matter fields and N-1 gauge fields

Exotic spin interactions can be simulated efficiently:  
Digital scheme



Digital quantum simulation

U(t) � e�iHt/� = e�iH�tn/� . . .�iH�t1/�

e�iH�t/� � e�iH1�t/� e�iH2�t/� e
1
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(�t)2

�2 [H1,H2]

first term second term
Trotter errors for 

non-commuting terms

Trotter expansion:

H = H1 +H2

S. Lloyd, Science 273, 1073 (1996).

Approximate time evolution by a stroboscopic sequence of gates

The evolution under a desired Hamiltonian is realised on a coarse-grained time scale



Digital quantum simulation

This scheme: Trotter errors do not violate gauge invariance

Operations that can be performed straightforwardly

Trotter error:

Approximate time evolution by a stroboscopic sequence of gates

The evolution under a desired Hamiltonian is realised on a coarse-grained time scale



Our toolbox

Ion trap quantum computers:
Fast and accurate single qubit operations
Entangling gates: Mølmer-Sørensen interaction

All-to-all 2-body interaction: H0 = J0
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R. Blatt, & C. Roos, Nat. Phys. 8, 277 (2012).



E. Martinez, P. Schindler, D. Nigg, A. Erhard, T. Monz, and R. Blatt
Experiment

• High fidelity local rotations 

• Entangling gates

Tools for universal digital quantum 
simulation are available:
B. Lanyon, et al. Science 334, 57 (2011).

Mølmer-Sørensen interaction

H0 = J0

X
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Real-time dynamics of lattice gauge theories with a 
few-qubit quantum computer
Esteban A. Martinez1*, Christine A. Muschik2,3*, Philipp Schindler1, Daniel Nigg1, Alexander Erhard1, Markus Heyl2,4, 
Philipp Hauke2,3, Marcello Dalmonte2,3, Thomas Monz1, Peter Zoller2,3 & Rainer Blatt1,2

Gauge theories are fundamental to our understanding of 
interactions between the elementary constituents of matter as 
mediated by gauge bosons1,2. However, computing the real-time 
dynamics in gauge theories is a notorious challenge for classical 
computational methods. This has recently stimulated theoretical 
effort, using Feynman’s idea of a quantum simulator3,4, to devise 
schemes for simulating such theories on engineered quantum-
mechanical devices, with the difficulty that gauge invariance and 
the associated local conservation laws (Gauss laws) need to be 
implemented5–7. Here we report the experimental demonstration 
of a digital quantum simulation of a lattice gauge theory, by 
realizing (1 + 1)-dimensional quantum electrodynamics (the 
Schwinger model8,9) on a few-qubit trapped-ion quantum computer. 
We are interested in the real-time evolution of the Schwinger 
mechanism10,11, describing the instability of the bare vacuum due 
to quantum fluctuations, which manifests itself in the spontaneous 
creation of electron–positron pairs. To make efficient use of our 
quantum resources, we map the original problem to a spin model 
by eliminating the gauge fields12 in favour of exotic long-range 
interactions, which can be directly and efficiently implemented on 
an ion trap architecture13. We explore the Schwinger mechanism of 
particle–antiparticle generation by monitoring the mass production 
and the vacuum persistence amplitude. Moreover, we track the real-
time evolution of entanglement in the system, which illustrates how 
particle creation and entanglement generation are directly related. 
Our work represents a first step towards quantum simulation of 
high-energy theories using atomic physics experiments—the long-
term intention is to extend this approach to real-time quantum 
simulations of non-Abelian lattice gauge theories.

Small-scale quantum computers exist today in the laboratory as 
programmable quantum devices14. In particular, trapped-ion quan-
tum computers13 provide a platform allowing a few hundred coherent 
quantum gates to act on a few qubits, with a clear roadmap towards 
scaling up these devices4,15. This provides the tools for universal digital 
quantum simulation16, where the time evolution of a quantum system 
is approximated as a stroboscopic sequence of quantum gates17. Here 
we show how this technology can be used to simulate the real-time 
dynamics of a minimal model of a lattice gauge theory, realizing the 
Schwinger model8,9 as a one-dimensional quantum field theory with a 
chain of trapped ions (Fig. 1).

Our few-qubit demonstration is a first step towards simulating 
real-time dynamics in gauge theories: such simulations are funda-
mental for the understanding of many physical phenomena, including 
thermalization after heavy-ion collisions and pair creation studied at 
high- intensity laser facilities6,18. Although existing classical numerical 
methods such as quantum Monte Carlo have been remarkably success-
ful for describing equilibrium phenomena, no systematic techniques 
exist to tackle the dynamical long-time behaviour of all but very small 

systems. In contrast, quantum simulations aim at the long-term goal 
of solving the specific yet fundamental class of problems that currently 
cannot be tackled by these classical techniques. The digital approach 
we employ here is based on the Hamiltonian formulation of gauge  
theories9, and enables direct access to the system wavefunction. As 
we show below, this allows us to investigate entanglement generation  
during particle–antiparticle production, emphasizing a novel perspec-
tive on the dynamics of the Schwinger mechanism2.

Digital quantum simulations described in the present work are con-
ceptually different from, and fundamentally more challenging than, 
previously reported condensed-matter-motivated simulations of spin 
and Hubbard-type models4,19,20. In gauge theories, local symmetries 
lead to the introduction of dynamical gauge fields obeying a Gauss law6. 
Formally, this crucial feature is described by local symmetry generators 
Ĝ{ }i  that commute with the Hamiltonian of the system ˆ ˆ =H G[ , ] 0i  and 

restrict the dynamics to a subspace of physical states | Ψphysical〉  which 
satisfy ˆ Ψ Ψ| 〉= | 〉G qi iphysical physical , where qi are background charges. We 
will be interested in the case qi =  0 for all i (see Methods). Realizing 
such a constrained dynamics on a quantum simulator is demanding 
and has been the focus of theoretical research6,7,11,21–24. Instead, to opti-
mally use the finite resources represented by a few qubits of existing 
quantum hardware, we encode the gauge degrees of freedom in a long-
range interaction between the fermions (electrons and positrons), 
which can be implemented efficiently on our experimental platform. 
This allows us to explore quantum simulation of coherent real-time 

1Institute for Experimental Physics, University of Innsbruck, 6020 Innsbruck, Austria. 2Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 
Innsbruck, Austria. 3Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria. 4Physics Department, Technische Universität München, 85747 Garching, Germany.
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Figure 1 | Quantum simulation of the Schwinger mechanism. a, The 
instability of the vacuum due to quantum fluctuations is one of the most 
fundamental effects in gauge theories. We simulate the coherent real-time 
dynamics of particle–antiparticle creation by realizing the Schwinger 
model (one-dimensional quantum electrodynamics) on a lattice, as 
described in the main text. b, The experimental setup for the simulation 
consists of a linear Paul trap, where a string of 40Ca+ ions is confined.  
The electronic states of each ion, depicted as horizontal lines, encode  
a spin | ↑ 〉  or | ↓ 〉 . These states can be manipulated using laser beams  
(see Methods for details).

© 2016 Macmillan Publishers Limited. All rights reserved
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Including discretisation errors (N=4):
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Experimental data (after postselection):



Schwinger Mechanism

Particle number density: ⌫(t) =
1
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h(�1)n�z
n(t) + 1i

Creation of a particle antiparticle pair:
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J = w

Simple error model (uncorrelated dephasing):

m = w/2
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Time evolution for different values of the particle mass m
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also: measurement of the vacuum persistence amplitude
see Nature 534, 516 (2016).

|hvacuum| (t)i|2
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Quantum 
System
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Ground state preparation
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Equilibrium physics 
Ground state properties

Monday mode:
Trotter Simulator

Time evolutions
e�iHT t

Quench dynamics 
Real-time dynamics
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Experimentally available resource Hamiltonians:

Create variational state:

The parameters    are varied such that             becomes the ground state  
of a target Hamiltonian      :

⇥ | (⇥)i
HT

Target Hamiltonian: HT (contains e.g. 3-body terms or long-range interactions)

Can be highly entangled,  
yet parametrised with few parameters

Variational Quantum Simulation
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Variational Quantum Simulation with trapped ions
in preparation

8 qubits —> 12 qubits



C. Kokail, R.van Bijnen, P. Silvi, P. Zoller, P. Jurcevic, E. Martinez, P. Monz, P. Schindler, R. Blatt

Variational Quantum Simulation with trapped ions

New features: access excited states and entanglement

Resource Hamiltonian       Symmetries       Target Hamiltonian

Problem-adapted variational approach        resource-efficient



Rigetti, IBM: Deuteron —>  2,3 qubit variational simulation 

IBM: Schwinger Model —>  2,3 qubits variational simulation, not scalable


Ongoing: Chris Wilson (Waterloo) —> 1D-QED with superconducting circuits 


Ongoing: Markus Oberthaler (Heidelberg)  —> 1D-QED with cold atoms


Ongoing: Chris Monroe (JQI) —> Deuteron with trapped ions


Planned: Misha Lukin (Harvard) —> Rydberg atoms


Remotely related: 

Experimental quantum simulation of fermion-antifermion scattering via boson exchange in a trapped ion

Nature Commun.  9, 195 (2018).

Related demonstrations





Next challenges:

…

Realisation of  2D models

Simulate increasingly complex dynamics 

Realisation of  non-Abelian theories

…





Thank you very much  
for your attention!









Local (gauge) symmetries

Local symmetry generators: {Gn}

The Hamiltonian is invariant under gauge transformations of the form:

H
0 =

�
⇧ne

i↵nGn
�
H

�
⇧ne

�i↵nGn
�

For 1D QED: Gn = Ln � Ln�1 � �†�� 1

2
[1� (�1)n]

[H,Gn] = 0

The Hamiltonian does not mix eigenstates of Gn with different eigenvalues Ln. Gn �n

In the following, we restrict ourselves to the zero-charge subsector:  
(# of particles = # of antiparticles).

�Gn = 0, 8n

Gn| physicali = 0 8n



Electromagnetic fields: 
Vector potential: 
Electric field: 

A0(x), A1(x)

E(x) = @0A1(x)

[E(x), A1(x
0)] = �i�(x� x0)

QED in (1+1) dimensions

Matter fields: 
 (x) =

✓
 1(x)
 2(x)

◆

Hamiltonian: 
Hcont =

Z
dx


�i †(x)�1 (�1 � igA1) (x) +m †(x) (x) +

1

2
E

2(x)

�

�1 = �i�y coupling strength (charge) Fermion mass



The lattice Schwinger Model



The lattice Schwinger Model

Lattice

�1 �2 �3 �N�1 �N�4

✓1, L1 ✓2, L2 ✓3, L3 ✓4, L4 ✓N�1, LN�1

✓n = agA1(xn)

Ln =
1

g
E(xn)Electric field

Vector potential

Continuum 

A1(x)

E(x)

[E(x), A1(x
0)] = �i�(x� x0)

Dirac spinor

 (x) =

✓
 1(x)
 2(x)

◆ �n =
p
a 1(xn)

odd lattice sites:

[✓n, Lm] = i�n,m

�n =
p
a 2(xn)

even lattice sites:



one-component fermion fields

odd sites:

even sites:

⇠=
⇠=

vac

e�

⇠=
⇠= vac

e+

�1 �2 �3 �N�1 �N�4

e� e+ vac vac vace�vac e+vacvac

Wilson’s staggered Fermions



The lattice Schwinger Model

�1 �2 �3 �N�1 �N�4

✓1, L1 ✓2, L2 ✓3, L3 ✓4, L4 ✓N�1, LN�1

Continuum 

Hcont =

Z
dx


�i †(x)�1 (�1 � igA1) (x) +m †(x) (x) +

1

2
E

2(x)

�

Lattice

w =
1

2a
J =

g2a

2

Hlat = �iw

N�1X

n=1

⇥
�†

ne
i✓n�n+1 �H.C.

⇤
+m

NX

n=1

(�1)n�†
n�n + J

N�1X

n=1

L
2
n

J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).



The Schwinger model

Fermion rest mass

Ĥ = �iw
PN�1

n=1

h
�̂

†
ne

i✓̂n�̂n+1 �H.c.

i
+ J

PN�1
n=1 L̂
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n +m

PN
n=1(�1)

n
�̂
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h
(�1)n�̂†

n�̂n + 0.5
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vac vac
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Hamiltonian formulation of the Schwinger model:
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
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The Schwinger model

Hamiltonian formulation of the Schwinger model:
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
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The Schwinger model

Hamiltonian formulation of the Schwinger model:
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).

Ĥ = �iw
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a =lattice spacing
g = light-matter coupling

background field The operators       represent the electric fields on the links. 
They take eigenvalues
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Hamiltonian formulation of the Schwinger model:
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).

Ĥ = �iw
PN�1

n=1

h
�̂

†
ne

i✓̂n�̂n+1 �H.c.

i
+ J

PN�1
n=1 L̂

2
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PN
n=1(�1)

n
�̂

†
n�̂n

The dynamics is constraint by the Gauss law:

In the continuum in 3D: 

Here: L̂n � L̂n�1 = �̂†
n�̂� 1

2
[1� (�1)n]

rE = ⇢

L̂1 L̂2 L̂3 L̂4✏0 ✏0L̂5 L̂6 L̂7 L̂8 L̂9

�2�1 �3 �4



Quantum simulation  
of a Wilson model

Include the whole infinite dimensional Hilbert 
space of the gauge fields 

Our scheme:

(1) Mapping of the Schwinger Hamiltonian to a pure spin model with long range interactions

(2) Realization of the required interactions with an efficient digital simulation scheme  
     using “shaking methods”.

Important features of the scheme

Exact gauge invariance at all energy scales (by construction) 

Very efficient use of resources 

Our approach
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✓̂n

Two simple transformations:
(1) Fermions —> spins  
(2) Elimination of 

Hamiltonian in terms of spins and electric fields



Transformed Hamiltonian:

Ĥ = w
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Transformed Gauss law:
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1

2
[�̂z

n + (�1)n]

Transformed Hamiltonian:

Ĥ = w

N�1X

n=1

⇥
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+
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0 �1 0 0 0 �1 �1 �1 �1 �1 0

A given configuration of spins and choice of background field 
completely determines the gauge degrees of freedom. 



Transformed Hamiltonian:
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Elimination of the gauge fields Pure spin model with long-range interactions

The gauge fields don't appear explicitly in the encoded description. Instead, they act in the 
form of a non-local interaction that corresponds to the Coulomb-interaction between the 
simulated charged particles.



The Schwinger model as exotic spin model
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The Schwinger model as exotic spin model
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The Schwinger model as exotic spin model

Efficient implementation on an ion-quantum computer

N spins simulate N matter fields and N-1 gauge fields

Exotic spin interactions can be simulated efficiently:  
Digital scheme



Digital quantum simulation

U(t) � e�iHt/� = e�iH�tn/� . . .�iH�t1/�

e�iH�t/� � e�iH1�t/� e�iH2�t/� e
1
2

(�t)2

�2 [H1,H2]

first term second term
Trotter errors for 

non-commuting terms

Trotter expansion:

H = H1 +H2

S. Lloyd, Science 273, 1073 (1996).

Approximate time evolution by a stroboscopic sequence of gates

The evolution under a desired Hamiltonian is realised on a coarse-grained time scale



Digital quantum simulation

This scheme: Trotter errors do not violate gauge invariance

Operations that can be performed straightforwardly

Trotter error:

Approximate time evolution by a stroboscopic sequence of gates

The evolution under a desired Hamiltonian is realised on a coarse-grained time scale



Our toolbox

Ion trap quantum computers:
Fast and accurate single qubit operations
Entangling gates: Mølmer-Sørensen interaction

All-to-all 2-body interaction: H0 = J0
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ĤS =



0
}

t

�tI

ion 1
ion 2
ion 3
ion 4
ion 5
ion 6
ion 7
ion 8
ion 9
ion 10

MSz

TI

MSz MSz MSz MSz MSz MSz
MSz
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Experiment

• High fidelity local rotations 

• Entangling gates

Tools for universal digital quantum 
simulation are available:
B. Lanyon, et al. Science 334, 57 (2011).
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Real-time dynamics of lattice gauge theories with a 
few-qubit quantum computer
Esteban A. Martinez1*, Christine A. Muschik2,3*, Philipp Schindler1, Daniel Nigg1, Alexander Erhard1, Markus Heyl2,4, 
Philipp Hauke2,3, Marcello Dalmonte2,3, Thomas Monz1, Peter Zoller2,3 & Rainer Blatt1,2

Gauge theories are fundamental to our understanding of 
interactions between the elementary constituents of matter as 
mediated by gauge bosons1,2. However, computing the real-time 
dynamics in gauge theories is a notorious challenge for classical 
computational methods. This has recently stimulated theoretical 
effort, using Feynman’s idea of a quantum simulator3,4, to devise 
schemes for simulating such theories on engineered quantum-
mechanical devices, with the difficulty that gauge invariance and 
the associated local conservation laws (Gauss laws) need to be 
implemented5–7. Here we report the experimental demonstration 
of a digital quantum simulation of a lattice gauge theory, by 
realizing (1 + 1)-dimensional quantum electrodynamics (the 
Schwinger model8,9) on a few-qubit trapped-ion quantum computer. 
We are interested in the real-time evolution of the Schwinger 
mechanism10,11, describing the instability of the bare vacuum due 
to quantum fluctuations, which manifests itself in the spontaneous 
creation of electron–positron pairs. To make efficient use of our 
quantum resources, we map the original problem to a spin model 
by eliminating the gauge fields12 in favour of exotic long-range 
interactions, which can be directly and efficiently implemented on 
an ion trap architecture13. We explore the Schwinger mechanism of 
particle–antiparticle generation by monitoring the mass production 
and the vacuum persistence amplitude. Moreover, we track the real-
time evolution of entanglement in the system, which illustrates how 
particle creation and entanglement generation are directly related. 
Our work represents a first step towards quantum simulation of 
high-energy theories using atomic physics experiments—the long-
term intention is to extend this approach to real-time quantum 
simulations of non-Abelian lattice gauge theories.

Small-scale quantum computers exist today in the laboratory as 
programmable quantum devices14. In particular, trapped-ion quan-
tum computers13 provide a platform allowing a few hundred coherent 
quantum gates to act on a few qubits, with a clear roadmap towards 
scaling up these devices4,15. This provides the tools for universal digital 
quantum simulation16, where the time evolution of a quantum system 
is approximated as a stroboscopic sequence of quantum gates17. Here 
we show how this technology can be used to simulate the real-time 
dynamics of a minimal model of a lattice gauge theory, realizing the 
Schwinger model8,9 as a one-dimensional quantum field theory with a 
chain of trapped ions (Fig. 1).

Our few-qubit demonstration is a first step towards simulating 
real-time dynamics in gauge theories: such simulations are funda-
mental for the understanding of many physical phenomena, including 
thermalization after heavy-ion collisions and pair creation studied at 
high- intensity laser facilities6,18. Although existing classical numerical 
methods such as quantum Monte Carlo have been remarkably success-
ful for describing equilibrium phenomena, no systematic techniques 
exist to tackle the dynamical long-time behaviour of all but very small 

systems. In contrast, quantum simulations aim at the long-term goal 
of solving the specific yet fundamental class of problems that currently 
cannot be tackled by these classical techniques. The digital approach 
we employ here is based on the Hamiltonian formulation of gauge  
theories9, and enables direct access to the system wavefunction. As 
we show below, this allows us to investigate entanglement generation  
during particle–antiparticle production, emphasizing a novel perspec-
tive on the dynamics of the Schwinger mechanism2.

Digital quantum simulations described in the present work are con-
ceptually different from, and fundamentally more challenging than, 
previously reported condensed-matter-motivated simulations of spin 
and Hubbard-type models4,19,20. In gauge theories, local symmetries 
lead to the introduction of dynamical gauge fields obeying a Gauss law6. 
Formally, this crucial feature is described by local symmetry generators 
Ĝ{ }i  that commute with the Hamiltonian of the system ˆ ˆ =H G[ , ] 0i  and 

restrict the dynamics to a subspace of physical states | Ψphysical〉  which 
satisfy ˆ Ψ Ψ| 〉= | 〉G qi iphysical physical , where qi are background charges. We 
will be interested in the case qi =  0 for all i (see Methods). Realizing 
such a constrained dynamics on a quantum simulator is demanding 
and has been the focus of theoretical research6,7,11,21–24. Instead, to opti-
mally use the finite resources represented by a few qubits of existing 
quantum hardware, we encode the gauge degrees of freedom in a long-
range interaction between the fermions (electrons and positrons), 
which can be implemented efficiently on our experimental platform. 
This allows us to explore quantum simulation of coherent real-time 

1Institute for Experimental Physics, University of Innsbruck, 6020 Innsbruck, Austria. 2Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 
Innsbruck, Austria. 3Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria. 4Physics Department, Technische Universität München, 85747 Garching, Germany.
* These authors contributed equally to this work.
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Figure 1 | Quantum simulation of the Schwinger mechanism. a, The 
instability of the vacuum due to quantum fluctuations is one of the most 
fundamental effects in gauge theories. We simulate the coherent real-time 
dynamics of particle–antiparticle creation by realizing the Schwinger 
model (one-dimensional quantum electrodynamics) on a lattice, as 
described in the main text. b, The experimental setup for the simulation 
consists of a linear Paul trap, where a string of 40Ca+ ions is confined.  
The electronic states of each ion, depicted as horizontal lines, encode  
a spin | ↑ 〉  or | ↓ 〉 . These states can be manipulated using laser beams  
(see Methods for details).
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Decoupling of individual ions 

MSx = MSx
D D-1

Decoupling (hiding) operation

Ions are selectively decoupled from the MS interaction by transferring their population to 
off-resonant Zeeman levels:



MS

Decoupling of individual ions 

MSx = MSx
D D-1

Decoupling (hiding) operation

Ions are selectively decoupled from the MS interaction by transferring their population to 
off-resonant Zeeman levels:



Measurements 

Electron shelving technique (projective measurement in the z-basis)

Imaging of the whole ion chain on a CCD camera

Change of the measurement basis: full state tomography

e- e+vac vac
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Quantum Simulation of pair creation
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Schwinger Mechanism
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Including discretisation errors (N=4):



Schwinger Mechanism

Particle number density: ⌫(t) =
1

N

NX

n=1

h(�1)n�z
n(t) + 1i

Creation of a particle antiparticle pair:
1 2 3 4

vac vac vac vac e� e+

1 2 3 4

vac vac

m = w/2
J = w

Experimental data (after postselection):



Postselection

Schwinger Model: zero charge subspace 
Spin model: zero magnetization subspace

e- e+ vacvac e-e+vac vac e- e+

vac e- e+vac vac e- e+vacvacvacvacvac

e+ e-

The desired dynamics preserve gauge invariance 
Only implementation errors lead to states outside of this subspace 



Schwinger Mechanism

Particle number density: ⌫(t) =
1

N

NX

n=1

h(�1)n�z
n(t) + 1i

Creation of a particle antiparticle pair:
1 2 3 4

vac vac vac vac e� e+

1 2 3 4

vac vac

J = w

Simple error model (uncorrelated dephasing):

m = w/2
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Time evolution for different values of the particle mass m
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Time evolution for different values of the particle mass m

0!
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also: measurement of the vacuum persistence amplitude
see Nature 534, 516 (2016).

|hvacuum| (t)i|2
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Conclusions

Digital quantum simulation of a the Schwinger model
       real-time dynamics

Explore new features like entanglement.

Our approach: 
• Very efficient use of resources.
• Gauge invariance by construction.

1.) 

2.) 

3.) 
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simulate increasingly complex dynamics

solve problems that 
cannot be solved  
   classically

Quantum simulation 
of lattice gauge theories

Next challenges:
• non-abelian theories
• theories beyond 1D




