

Power-law Viscoelastic Rheology Controls the Occurrence of Aftershocks

Robert Shcherbakov and Xiaoming Zhang

Department of Earth Sciences Western University, London, ON, Canada

Aftershocks

- Aftershocks are ubiquitous in nature:
- They occur in various physical systems:
 - after large earthquakes;
 - in solar flares;
 - in fracture experiments on porous materials;
 - in acoustic emissions;
 - after stock market crashes;
 - in the volatility of stock prices returns;
 - etc.

2010 Darfield Earthquake, NZ

• Mw 7.1 mainshock and its aftershocks (Shcherbakov et al., 2012):

2010 Darfield Earthquake, NZ

- The decay rate (Shcherbakov et al., 2012):
- The Omori-Utsu law (Omori, 1894; Utsu, 1961, Utsu et al, 1995):

$$r(t) = \frac{K}{(t+c)^p} = \frac{1}{\tau (1+t/c)^p}$$

2010 Darfield Earthquake, NZ

- The decay rate (Shcherbakov et al., 2012):
- It was modelled using a compound rate:

$$t_2 = 171.3$$
, $t_3 = 282.4 \,\mathrm{days}$

$$r(\geq m_c, t) = \frac{1}{\tau_1 (1 + t/c_1)^{p_1}} + \frac{H(t - t_2)}{\tau_2 \left[1 + (t - t_2)/c_2\right]^{p_2}} + \frac{H(t - t_3)}{\tau_3 \left[1 + (t - t_3)/c_3\right]^{p_3}}$$

Solar Flares

- The decay of after events after large solar flare events (de Arcangelis et al., PRL, 2006):
- The decay rate can be approximated as

$$n_A(t) \sim \frac{1}{t}$$

Spring-Block Model

• 2D model of slider-blocks (Buridge and Knopoff, 1967):

Nonlinear Viscoelastic Approach

- The slider-blocks are interconnected by nonlinear Kelvin-Voigt viscoelastic elements.
- The blocks are also connected to the top plate, which is driven at a constant velocity V_p :

Nonlinear Viscoelastic Slider-Blocks

• Equations of motion for the 2D system of slider-blocks:

$$\begin{split} m\ddot{x}_{i,j} &= -K \sum_{\langle i',j' \rangle} (x_{i,j} - x_{i',j'}) - K_L(x_{i,j} - V_p t) \\ &- \eta \sum_{\langle i',j' \rangle} |\dot{x}_{i,j} - \dot{x}_{i',j'}|^{1/n} - \eta_L |\dot{x}_{i,j} - V_p|^{1/n} - F_{\rm f} {\rm sign}(\dot{x}_{i,j}) \end{split}$$

- where K and K_L are elastic constants;
- η and η_L are viscous parameters;
- n is a power-law exponent;
- $F_{\rm f}$ frictional force.

$$\dot{\varepsilon} = A\sigma^n \exp\left[-\frac{Q}{RT}\right]$$

Nonlinear Viscoelastic Slider-Blocks

• Model earthquakes:

- Mapping into a cellular automaton (Zhang and Shcherbakov, 2016):
 - Consider the model on a 2D square lattice of size $N \times N$;
 - Each site is assigned a continuous stress variable F_{ii} ;
 - Model is driven uniformly with slow loading;
 - When the stress on a site reaches a critical value $F_{ij} \ge 1$, the site becomes unstable and begins transferring stress to neighbours:

$$F_{i,j}(0) = 0,$$

$$\Delta F_{i\pm 1, j\pm 1}(t) = \alpha F_{i,j}^{(b)} + \frac{\beta - \alpha}{\left[\frac{t}{q_0} + \left(F_{i,j}^{(b)}\right)^{1-n}\right]^{\frac{1}{n-1}}}$$

$$\alpha = \frac{K}{K_{L} + 4K}$$

$$\beta = \frac{\eta}{\eta_{L} + 4\eta}$$

$$q_{0} = \frac{1}{n-1} \frac{(\eta_{L} + 4\eta)^{n}}{K_{I} + 4K}$$

• Snapshot of the model state realized and as a cellular automaton (Zhang and Shcherbakov, 2016):

• Frequency size statistics for the cellular automaton on a 256×256 lattice with $\alpha=0.24$, $\beta=0.23$, $q_0=10.0$, and 1/n=0.1 parameters (Zhang and Shcherbakov, 2016):

- A large avalanche and its aftershocks.
- The model on a 256×256 lattice with $\alpha = 0.24$, $\beta = 0.23$, $q_0 = 10.0$, and 1/n = 0.1.

• Aftershock decay rates for the model on a 256×256 lattice with $\alpha = 0.24$, $\beta = 0.23$, $q_0 = 10.0$, and varying 1/n parameters (Zhang and Shcherbakov, 2016):

Nonlinear Viscoelastic Approach

Relation between the power-law exponent n and the p parameter of the modified Omori law (Zhang and Shcherbakov, 2016):

 $p = 1 + \frac{1}{n-1}$

- Application to the 1992 Landers (California), 1999 Hector Mine (California), 2002 Denali (Alaska) earthquakes.
- The power-law exponent n = 3.5 was estimated from the postseismic surface relaxation (Freed, Burgmann, 2004).

$$\dot{\varepsilon} = A\sigma^n \exp\left[-\frac{Q}{RT}\right]$$

Nonlinear Viscoelastic Approach

• Cumulative number of aftershocks after several prominent main shocks (Zhang and Shcherbakov, 2016):

Conclusions

- We have proposed a mechanical model incorporating power-law rheology to understand the mechanisms of triggering and time delay in the occurrence of aftershocks.
- The derived mechanism of stress relaxation reproduces the rate of aftershocks described by the Omori-Utsu law.
- We have showed that the parameter *p* of the Omori-Utsu law is related to the power-law exponent *n*:

$$p = 1 + \frac{1}{n-1}$$