Critical failure can be tuned by material rheology:

A model ...

J. Baróa,b,c, J. Davidsena

... and a case study

... K.A. Dahmenb, G. Natafc,d, P. O. Castillo-Villac,e, E.H.K. Saljef, A. Planesc, E. Vivesc

a Complexity Science Group, Dept. of Physics and Astronomy, Univ. of Calgary.

b Department of Physics, University of Illinois at Urbana Champaign.

c Departament de la Matèria Condensada, Universitat de Barcelona.

d Department of Materials Science, University of Cambridge.

e CONACYT, Instituto Tecnológico de Oaxaca.

f Department of Earth Sciences, University of Cambridge.
Deformation as Avalanche Phenomena

- Non-linear Deformation \rightarrow Avalanche Dynamics:
 - Low Temperature
 - Quenched Disorder
 - Interactions

Crystalline nano-pillars

Tectonic Gouges

- [N. Friedman et al., PRL (2012)]
- [T. Hatano, C. Narteau, P. Schebalin, SREP (2015)]
Deformation as Avalanche Phenomena

- Non-linear Deformation → Avalanche Dynamics:

- Failure: Avalanche ≈ Phase Transition

\[\text{order} \quad \text{disorder} \]

\[\text{control} \quad \text{disorder} \]

- Low Temperature
- Quenched Disorder
- Interactions

Crystalline nano-pillars

Tectonic Gouges

- [N. Friedman et al., PRL (2012)]
- [T. Hatano, C. Narteau, P. Schebalin, SREP (2015)]
Deformation as Avalanche Phenomena

- Non-linear Deformation \rightarrow Avalanche Dynamics:
- Failure: Avalanche \approx Phase Transition
- Order \rightarrow Disorder
- Failure Prediction?
 - Properties / State: (tomography, seismography)
 - Statistics of Avalanches: Acoustic Emission

Low Temperature
Quenched Disorder
Interactions

Crystalline nano-pillars

J. Baro: jordi.barourbea@ucalgary.ca (UCalgary)

Critical Failure & Rheology

2018 CAP Congress June 13, 2018
Power Laws everywhere! (scale-invariance)

[A. De-Santis et al., BSSA (2011)] [S. Goodfellow & P. Young, GRL (2014)]

Acceleration of Activity / Energy Released

[D. Amitrano, JGR (2003)]
Power Laws everywhere! (scale-invariance)

- Day w.r.t. main shock (6 Apr. 2009)
 - $b = 0.89 \pm 0.03$

- Distribution of Sizes
 \[D(S; |t_c - t|)dS = S^{-\kappa}D_S(S|t_c - t|^{1/\sigma})dS \]
 (reproduced by most models) \[\text{[K. Dahmen, et al. (2011)\]} \]

Failure is a Critical Point (RG)

Distribution of Sizes

- Acceleration of Activity / Energy Released

- Failure is a Critical Point (RG)
Power Laws everywhere! (scale-invariance)

Day w.r.t. main shock (6 Apr. 2009)

\[b = 0.89 \pm 0.03 \]

\[D(S; |t_c - t|)dS = S^{-\kappa} D_S(S|t_c - t|^{1/\sigma})dS \]

(reproduced by most models) [K. Dahmen, et al. (2011)]

Failure is a Critical Point (RG)

Distribution of Sizes

\[\frac{dS}{dt} \propto \langle S \rangle \sim |t_c - t|^{\frac{\kappa - 2}{\sigma}} \]
An experimental case: Uniaxial compression of SiO$_2$ porous materials

- Porous SiO$_2$ ($\Phi \sim 10\% - 40\%$)
- Soft Uniaxial Compression
 - stress control (~ 1 kPa/s)
 - no lateral confinement
- Strain Monitoring ($\sim \mu m$)
- Acoustic Emission Recording ($\sim MHz$)
- Fractures & Crackling Noise (AE)
 (10k – 30k events)

$E \sim \int |\text{Signal}(t)|^2 dt$
Critical Failure?

Data Agree

- Ultimate brittle event (P^5_c)

Data Disagree

$E \sim \int |\text{Signal}(t)|^2 dt$
An experimental case: Uniaxial compression of SiO$_2$ porous materials

Critical Failure ?

Data Agree

- Ultimate brittle event (P_c^5)

Data Disagree

- Stationary energies:

 $P(E|t-t_f) dE \sim E^{-\epsilon} dE$.

$E \sim \int |\text{Signal}(t)|^2 dt$
An experimental case: Uniaxial compression of SiO$_2$ porous materials

$E \sim \int |\text{Signal}(t)|^2 dt$

Critical Failure ?

Data Agree
- Ultimate brittle event (P^5_c)

Data Disagree
- Stationary energies: $P(E|t - t_f)dE \sim E^{-\epsilon}dE$.
- Brittle precursors (not SOC).

$J. \text{ Baro}: \text{jordi.barourbea@ucalgary.ca}$

UCalgary

Critical Failure & Rheology

2018 CAP Congress June 13, 2018 4 / 8

An experimental case: Uniaxial compression of SiO$_2$ porous materials

Critical Failure?

Data Agree
- Ultimate brittle event (P_c^5) not random

Data Disagree
- Stationary energies: $P(E|t - t_f)dE \sim E^{-\epsilon}dE$.
- Brittle precursors (not SOC).

$E \sim \int |\text{Signal}(t)|^2 dt$
An experimental case: Uniaxial compression of SiO\textsubscript{2} porous materials

Critical Failure?

Data Agree

- Ultimate brittle event (P_c^5) not random
- Accelerated E release: $\frac{dE}{dt} \sim (t - t_f)^{-m}$

Data Disagree

- Stationary energies: $P(E|t - t_f)\,dE \sim E^{-\epsilon} \, dE$.
- Brittle precursors (not SOC).
- Variations in activity rate dn/dt.

$E \sim \int |\text{Signal}(t)|^2 \, dt$
An experimental case: Uniaxial compression of SiO$_2$ porous materials

Critical Failure?

Data Agree

- Ultimate brittle event (P_c^5) not random
- Accelerated E release: $dE/dt \sim (t - t_f)^{-m}$

Data Disagree

- Stationary energies: $P(E|t - t_f)dE \sim E^{-\epsilon}dE$.
- Brittle precursors (not SOC).
- Variations in activity rate dn/dt.
- Aftershock sequences.

$E \sim \int |\text{Signal}(t)|^2 dt$

J. Baró: jordi.barourbea@ucalgary.ca (UCalgary)

Critical Failure & Rheology

2018 CAP Congress June 13, 2018 4/8
Viscoelasticity in the Democratic (mean field) Fiber Bundle Model

Standard (Democratic Fiber Bundle) Model

- **Micromechanics:**
 \[\sigma_l = \begin{cases}
 E\varepsilon & (E\varepsilon < S_i) \\
 0 & (E\varepsilon \geq S_i)
 \end{cases} \]

- **Mean Field:**
 \[\sigma_l = \frac{\sigma}{N_{fibers}} \]
Viscoelasticity in the Democratic (mean field) Fiber Bundle Model

Standard (democratic fiber bundle) Model

- Micromechanics:
 \[\sigma_l = \begin{cases} E\varepsilon & (E\varepsilon < S_i) \\ 0 & (E\varepsilon \geq S_i) \end{cases} \]

- Mean Field:
 \[\sigma_l = \frac{\sigma}{N_{fibers}} \]

- Macroscopic constitutive equation:
 \[\sigma(E\varepsilon) = (1 - F(S = E\varepsilon))E\varepsilon \]
Viscoelasticity in the Democratic (mean field) Fiber Bundle Model

Standard (democratic fiber bundle) Model

- **Micromechanics:**
 \[\sigma_l = \begin{cases} E \varepsilon & (E \varepsilon < S_i) \\ 0 & (E \varepsilon \geq S_i) \end{cases} \]

- **Mean Field:**
 \[\sigma_l = \frac{\sigma}{N_{fibers}} \]

- **Macroscopic constitutive equation:**
 \[\sigma(E \varepsilon) = (1 - F(S = E \varepsilon)) E \varepsilon \]
Viscoelasticity in the Democratic (mean field) Fiber Bundle Model

(generalized) Viscoelastic (democratic fiber bundle) Model

- **Micromechanics:**
 \[E \Delta \varepsilon(t) = (1 - H_{\alpha}(t/\tau)) \Delta \sigma_l \]

Transient: \[\begin{align*}
 H_{\alpha}(0) & \rightarrow h \\
 H_{\alpha}(\infty) & \rightarrow 0
\end{align*} \]
Viscoelasticity in the Democratic (mean field) Fiber Bundle Model

(generalized) Viscoelastic (democratic fiber bundle) Model

- Micromechanics:
 \[E \Delta \varepsilon(t) = (1 - H_\alpha(t/\tau)) \Delta \sigma_1 \]
 Transient: \[
 \begin{align*}
 H_\alpha(0) & \rightarrow h \\
 H_\alpha(\infty) & \rightarrow 0
 \end{align*}
 \]

- Macroscopic constitutive equation:
 \[
 \sigma(E\varepsilon, t) = E\varepsilon(t) \left(\frac{1}{1 - F(E\varepsilon)} - \sum_{S_j < E\varepsilon} \phi_j(t - t_j)\right)^{-1}
 \]
Viscoelasticity in the Democratic (mean field) Fiber Bundle Model

(generalized) Viscoelastic (democratic fiber bundle) Model

- Micromechanics:
 \[E\Delta \varepsilon(t) = (1 - H_\alpha(t/\tau)) \Delta \sigma_l \]

- Transient:
 \[\begin{align*}
 H_\alpha(0) &\to h \\
 H_\alpha(\infty) &\to 0
 \end{align*} \]

- Macroscopic constitutive equation:
 \[\sigma(E\varepsilon, t) = E\varepsilon(t) \left(\frac{1}{(1 - F(E\varepsilon))} - \sum_{S_j < E\varepsilon} \phi_j(t - t_j) \right)^{-1} \]
Universal Avalanche Statistics for Fibrous Models

- Avalanche start at S_i, stops when: $\sigma(E\varepsilon) \geq \sigma(S_i)$

Universal Avalanche Condition:

$$\xi(\Delta_i) > B(S_i|h)\Delta_i$$

- $\xi(\Delta)$: Poisson counting process of Δ steps.
Avalanche start at S_i, stops when: \[\sigma(E\varepsilon) \geq \sigma(S_i) \]

Universal Avalanche Condition:
\[\xi(\Delta_i) > B(S_i|h)\Delta_i \]

- $\xi(\Delta)$: Poisson counting process of Δ steps.
 - $B > 1$: Prob. $\Delta \to \infty$.
 - $B < 1$: Size distribution: $D(\Delta; B)d\Delta = \Delta^{-3/2} D(\Delta|1-B)|d\Delta$.
 - $B = 1$: Critical.

[Baró & Davidsen, PRE (2018)]
Avalanche start at S_i, stops when:

$$\sigma(E\varepsilon) \geq \sigma(S_i)$$

Universal Avalanche Condition:

$$\xi(\Delta_i) > B(S_i|h)\Delta_i$$

- Slope B is function of state:

$$B(S_i|h) = \frac{S_i \text{pdf}(S_i)}{1 - F(S_i)}(1 - h)$$

- $\xi(\Delta)$: Poisson counting process of Δ steps.
 - $B > 1$: Prob. $\Delta \to \infty$.
 - $B < 1$: Size distribution:
 $$D(\Delta; B)d\Delta = \Delta^{-3/2}D(\Delta|1 - B))d\Delta.$$
 - $B = 1$: Critical.
Avalanche start at \(S_i \), stops when:

\[
\sigma(E\varepsilon) \geq \sigma(S_i)
\]

Universal Avalanche Condition:

\[
\xi(\Delta_i) > B(S_i|h)\Delta_i
\]

- Slope \(B \) is function of state:

\[
B(S_i|h) = \frac{S_i \, pdf(S_i)}{1 - F(S_i)} (1 - h)
\]

- At failure: \(d\sigma/d\varepsilon|_{\sigma_f} = 0 \):

\[
B(E\varepsilon_f|h) = (1 - h)
\]

- \(\xi(\Delta) \): Poisson counting process of \(\Delta \) steps.
 - \(B > 1 \): Prob. \(\Delta \to \infty \).
 - \(B < 1 \): Size distribution: \(D(\Delta;B)d\Delta = \Delta^{-3/2} \, D(\Delta|1 - B|) \, d\Delta \).
 - \(B = 1 \): Critical.
Avalanche start at S_i, stops when:

$$\sigma(E\varepsilon) \geq \sigma(S_i)$$

Universal Avalanche Condition:

$$\xi(\Delta_i) > B(S_i|h)\Delta_i$$

- Slope B is function of state:
 $$B(S_i|h) = \frac{S_i}{1 - F(S_i)} \left(1 - h\right)$$

- At failure: $d\sigma/d\varepsilon|_{\sigma_f} = 0$:
 $$B(E\varepsilon_f|h) = (1 - h)$$

- **Critical failure for** $h = 0$.
- **Subcrit. failure for** $h > 0$.

$\xi(\Delta)$: Poisson counting process of Δ steps.
- **$B > 1$:** Prob. $\Delta \to \infty$.
- **$B < 1$:** Size distribution:
 $$D(\Delta; B)d\Delta = \Delta^{-3/2} D(\Delta|1 - B) d\Delta.$$
- **$B = 1$:** Critical.

[Baró & Davidsen, PRE (2018)]
Tuning Acceleration: Critical Failure or Foreshocks?

Standard Model ($h = 0$): **Critical Failure**

- Critical Failure: $\langle \Delta \rangle \sim f^\beta (\tau - 2)$

Viscoelastic Model ($0 < h < 1$): **Foreshocks**

- Sub-critical Failure: $\langle \Delta \rangle \sim cnt.$
Tuning Acceleration: Critical Failure or Foreshocks?

Standard Model ($h = 0$): Critical Failure

- Critical Failure: $\langle \Delta \rangle \sim f^\beta(\tau^{-2})$
- Stationary activity: $\frac{dn}{dt} \sim cnt.$

Viscoelastic Model ($0 < h < 1$): Foreshocks

- Sub-critical Failure: $\langle \Delta \rangle \sim cnt.$
- Precursory activity: $\frac{dn}{dt} \sim f^\beta(\tau^{-2})$
Standard Model ($h = 0$): Critical Failure

- Critical Failure: $\langle \Delta \rangle \sim f^{\beta(\tau - 2)}$
- Stationary activity: $\frac{dn}{dt} \sim \text{cnt.}$
- Acc. Energy: $\frac{d\Delta}{dt} \frac{dn}{dt} \sim f^{\beta(\tau - 2)}$

Viscoelastic Model ($0 < h < 1$): Foreshocks

- Sub-critical Failure: $\langle \Delta \rangle \sim \text{cnt.}$
- Precursory activity: $\frac{dn}{dt} \sim f^{\beta(\tau - 2)}$
- Acc. Energy: $\frac{d\Delta}{dt} \frac{dn}{dt} \sim f^{\beta(\tau - 2)}$

\[(\tau_{-2})^{\beta_\sigma} = -0.5 \]
Critical failure can be tuned by material rheology:

- Models of **critical failure** do not reproduce some experimental observations:
 - Accelerated energy release without divergence of energy scales.
 - Temporal correlations: aftershocks, foreshocks.

- Addition of **transient hardening** to models of **critical failure**:
 - Generate triggering (aftershocks) and preceding activity (foreshocks).
 - Prevent criticality at failure, preserving acceleration.

- Statistics of avalanches in the **viscoelastic democratic fiber bundle model** are **universal** and only depend on the **distance to criticality** (not to failure).

a case of study ...

⇒ Experimental evidence of accelerated seismic release without critical failure in acoustic emissions of compressed nanoporous materials,

... and a model

J. Baró, J. Davidsen,

⇒ Universal avalanche statistics and triggering close to failure in a mean field model of rheological fracture,

Critical Failure & Rheology

J. Baró: jordi.barourbea@ucalgary.ca (UCalgary)

Table: First three top rows: fitted exponents in experimental data, compared to the MF exponents for slip and fracture MF models. Bottom rows: fundamental exponents estimated from MF theory. Superscripts a and b denote two different interpretations of ASR in terms of MF theory.
<table>
<thead>
<tr>
<th></th>
<th>area A (mm2)</th>
<th>height h (mm)</th>
<th>driving rate dP/dt (kPa/s)</th>
<th>Th (dB)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vycor (V32)</td>
<td>17.0</td>
<td>5.65</td>
<td>5.7</td>
<td>23</td>
<td>34138</td>
</tr>
<tr>
<td>Gelsil (G26)</td>
<td>46.7</td>
<td>6.2</td>
<td>0.7</td>
<td>26</td>
<td>5412</td>
</tr>
<tr>
<td>Sands. (SR2)</td>
<td>17.0</td>
<td>4.3</td>
<td>2.4</td>
<td>23</td>
<td>27271</td>
</tr>
</tbody>
</table>

Table: Sample details: cross-sectional area A; height h; compression rate dP/dt; number N of recorded signals above threshold Th.
Filling the Checklist: Minimal Structured Model

- Model with minimal Structure (non-MF)

- Experiments in SiO$_2$:
The Generalized Zener Element

- Adds **dissipation**, **temporal scales** and **power-law memory**.
- Reproduces the response of certain bulk amorphous materials

\[
\sigma_m = E_m \varepsilon_m
\]
\[
\sigma_X = X \frac{d^\alpha}{dt^\alpha} \varepsilon_X
\]
\[
\sigma_e = E \varepsilon
\]

Constitutive equation for the generalized Zener Element:

\[
\left[1 + \frac{X}{E_m} \frac{d^\alpha}{dt^\alpha} \right] \sigma_I = \left[1 + \frac{X(E_m + E)}{E_mE} \frac{d^\alpha}{dt^\alpha} \right] E \varepsilon.
\]

\[
H_\alpha(t/\tau) := \frac{E_m}{E_m + E} E_\alpha \left(- \left(\frac{t}{\tau} \right)^\alpha \right)
\]

\[
\begin{align*}
H_\alpha(0) &= \frac{E_m}{E_m + E} := h \\
H_\alpha(t \gg \tau) &\to 0
\end{align*}
\]

Creep compliance:

\[
J_{GZ}(t) = \frac{1}{E} \left(1 - H_\alpha \left(\frac{t}{\tau} \right) \right)
\]
Magnitude Relations:

\[D_{AE} = t - t_i \mid V < V_{th} \]

\[A_{AE} = \max(V(t)) \]

\[E_{AE} = \int_{t_i}^{t_i + D_{AE}} |V(t)|^2 dt \]

Signal Hypothesis:

\[V(t) = G \int_{-\infty}^{t} v(t)e^{i\omega_0 t - \frac{t-t'}{\tau}} dt' \]

Parabolic shape:

\[\tilde{v}(t/T) = 4 \left(t/T - (t/T)^2 \right) \]
- Acceleration and energy exponent before failure:

\[\frac{dE}{dt} (\text{aJ/s}) \]

\[f_k = 1 - \frac{P}{P_c} \]

- Critical Failure & Rheology

J. Baró: jordi.barourbea@ucalgary.ca (UCalgary)

2018 CAP Congress June 13, 2018
Deceleration and energy exponent after failure:

\[\frac{dE}{dt} (\text{aJ/s}) \]

\[f_k^* = \frac{P}{P_c k^{-1}} \]

\[m^* = 1.11(23) \]

\[m^* = 1.13(50) \]

\[m^* = 1.53(25) \]
Complementary Cumulative Distribution of Energies:

V32: $k=2$

- $1.1e-03 < f < 1.2e-03$
- $1.6e-03 < f < 1.4e-02$

V32: $k=3$

- $8.3e-07 < f < 1.1e-03$
- $1.1e-03 < f < 1.2e-03$

V32: $k=4$

- $2.6e-07 < f < 1.8e-05$
- $1.8e-05 < f < 1.6e-04$

V32: $k=5$

- $2.8e-07 < f < 1.8e-05$
- $1.5e-06 < f < 2.1e-04$

G26: $k=3$

- $2.8e-07 < f < 4.4e-03$
- $4.1e-03 < f < 4.8e-03$

G26: $k=4$

- $2.6e-07 < f < 5.6e-03$
- $5.4e-02 < f < 4.5e-02$

G26: $k=5$

- $2.2e-07 < f < 1.8e-05$
- $7.4e-05 < f < 1.2e-03$

SR2: $k=1$

- $2.2e-07 < f < 7.4e-05$
- $7.4e-05 < f < 2.3e-03$

SR2: $k=2$

- $1.0e-06 < f < 3.5e-05$
- $7.4e-05 < f < 2.3e-03$

SR2: $k=3$

- $1.2e-06 < f < 3.2e-05$
- $3.2e-05 < f < 7.7e-05$

SR2: $k=4$

- $4.9e-08 < f < 2.2e-05$
- $2.2e-05 < f < 4.2e-05$

SR2: $k=5$

- $5.9e-07 < f < 3.6e-03$
- $5.0e-03 < f < 2.0e-02$

E (eJ)

N(E_{max})
Triggering in experiments and model

Triggering in lab: [Baró et al., PRL (2013)]

![Graph showing aftershock rate](image)

Triggering in viscoelastic model: [Baró & Davidsen, PRE (2018)]

![Graph showing energy release and avalanche sizes](image)

Under slow σ driving:

- **Accelerated energy release?**
 \[
 \frac{d(Energy)}{dt} \propto \frac{dF(E\varepsilon)}{d\sigma} \propto \frac{d(E\varepsilon)}{d\sigma}
 \]

- **Avalanche sizes?**