Critical failure can be tuned by material rheology:

A model ...

J. Baróa,b,c, J. Davidsena

... and a case study

... K.A. Dahmenb, G. Natafc,d, P. O. Castillo-Villac,e, E.H.K. Saljef, A. Planesc, E. Vivesc

a Complexity Science Group, Dept. of Physics and Astronomy, Univ. of Calgary

b Department of Physics, University of Illinois at Urbana Champaign

c Departament de la Matèria Condensada, Universitat de Barcelona

d Department of Materials Science, University of Cambridge

e CONACYT, Instituto Tecnológico de Oaxaca

f Department of Earth Sciences, University of Cambridge
Deformation Avalanches and Critical Failure

- Non-linear Deformation \rightarrow Avalanches

(Crystalline nano-pillars under compression)

$[N.~Friedman~et~al.,~PRL~(2012)]$
Deformation Avalanches and Critical Failure

- Non-linear Deformation → Avalanches
- Macro-Failure ≈ Phase Transition?
- Is failure predictable?
 - ‘Canonical’ State
 - Statistics of Avalanches: slips, acoustic emission, etc.

(Crystalline nano-pillars under compression)

[Crystalline nano-pillars under compression]

[N. Friedman et al., PRL (2012)]
Hypothesis: Failure is a Critical Point

Distribution of Sizes (Δ)

$$D(\Delta; |t_c - t|) d\Delta = \Delta^{-\kappa} D(\Delta|t_c - t|^{1/\sigma}) d\Delta$$

(in mean field models) \cite{Dahmen2011}

Accelerated Energy Release

$$d\Delta/dt \propto \langle \Delta \rangle \sim |t_c - t|^{\kappa - 2/\sigma}$$

(Crystalline nano-pillars under compression)

Salje EKH, Dahmen KA. 2014.
An experimental case: Soft uniaxial compression of SiO$_2$ porous materials

Agree with models of critical failure
- Brittle failure
- Accelerated E release: $dE/dt \sim (t - t_f)^{-m}$

Disagree with models of critical failure
- Stationary energies:
 - $P(E_{AE}|t - t_f) dE \sim E_{AE}^{-\epsilon} dE_{AE}$
 - constant $\langle E_{AE}(t) \rangle$

$E \sim \int |\text{Signal}(t)|^2 dt$ [Baró et al. PRL (2013), Baró et al. PRL (2018)]
An experimental case: Soft uniaxial compression of SiO$_2$ porous materials

Agree with models of critical failure
- Brittle failure
- Accelerated E release:
 \[\frac{dE}{dt} \sim (t - t_f)^{-m} \]

Disagree with models of crit. failure
- Stationary energies:
 - \[P(E_{AE} | t - t_f) dE \sim E_{AE}^{-\epsilon} dE_{AE} \]
 - constant $\langle E_{AE}(t) \rangle$
- Variations in activity rate dn/dt:
 - Precursors (foreshocks)

\[E \sim \int |\text{Signal}(t)|^2 dt \quad \text{[Baró et al. PRL (2013), Baró et al. PRL (2018)]} \]
An experimental case: Soft uniaxial compression of SiO$_2$ porous materials

Agree with models of critical failure

- Brittle failure
- Accelerated E release: $dE/dt \sim (t - t_f)^{-m}$

Disagree with models of crit. failure

- Stationary energies:
 - $P(E_{AE}|t - t_f)dE \sim E_{AE}^{-\alpha}dE_{AE}$
 - constant $\langle E_{AE}(t) \rangle$
- Variations in activity rate dn/dt:
 - Precursors (foreshocks)
 - Aftershock sequences

Could rheology explain it all?

$E \sim \int |\text{Signal}(t)|^2 dt$ [Baró et al. PRL (2013), Baró et al. PRL (2018)]
Viscoelasticity in a prototype model

Standard (democratic fiber bundle) Model

- Elastic Fibers

Brittle fibers of stochastic strengths S_i:

Mean field interactions:

$$\sigma_i = \begin{cases} \sigma/N & (\varepsilon < S_i) \\ 0 & (\varepsilon \geq S_i) \end{cases}$$

Avalanches from strength-distribution:

$$N(\varepsilon) \sim N(S_i < \varepsilon)$$

determines stability strain-stress: $\sigma(\varepsilon)$:

micro. avalanches + macro. failure
Viscoelasticity in a prototype model

Standard (democratic fiber bundle) Model

- Elastic Fibers
- Constitutive Equation

 \[\sigma(\varepsilon) = \varepsilon N(S_i < \varepsilon) \]
 (analytic)

- Brittle fibers of stochastic strengths \(S_i \):
- Mean field interactions:
 \[\sigma_i = \begin{cases} \sigma/N & (\varepsilon < S_i) \\ 0 & (\varepsilon \geq S_i) \end{cases} \]

- Avalanches from strength-distribution:
 \[N(\varepsilon) \sim N(S_i < \varepsilon) \]

- Determines stability strain-stress: \(\sigma(\varepsilon) \): micro. avalanches + macro. failure
Viscoelasticity in a prototype model

Standard (democratic fiber bundle) Model

- Elastic Fibers
- Constitutive Equation

 \[\sigma(\varepsilon) = \varepsilon N(S_i < \varepsilon) \]

 (analytic)

Viscoelastic Fibers

\[\sigma = \sigma(\varepsilon) + H(\varepsilon, t; h) \]

(also analytic !)

Brittle fibers of stochastic strengths \(S_i \):

\[\sigma_i = \begin{cases} \sigma/N & (\varepsilon < S_i) \\ 0 & (\varepsilon \geq S_i) \end{cases} \]

Avalanches from strength-distribution:

\[N(\varepsilon) \sim N(S_i < \varepsilon) \]

determines stability strain-stress: \(\sigma(\varepsilon) \):

micro. avalanches + macro. failure
From const. eq. an avalanche starts at S_i, stops at:

$$\sigma(\varepsilon, t; h) \geq \sigma(S_i)$$
From const. eq. an avalanche starts at S_i, stops at:

$$\sigma(\varepsilon, t; h) \geq \sigma(S_i)$$

$\xi(\Delta_i) > B(S_i|h)\Delta_i$

Avalanche Sizes \rightarrow Hitting Times

- $\xi(\Delta)$: Poisson counting process of Δ trials.
- Against a boundary proportional to Δ

[Baró & Davidsen, PRE (2018)]
Avalanche Sizes at Failure

- From const. eq. an avalanche starts at S_i, stops at:

$$\sigma(\varepsilon, t; h) \geq \sigma(S_i)$$

$$E_{\sigma} S_i + \Delta \sigma(E_{\sigma})$$

- Driving $\xi(\Delta)$:

Avalanche Sizes \rightarrow Hitting Times

- $\xi(\Delta)$: Poisson counting process of Δ trials.

- Against a boundary proportional to Δ
 - $B > 1$: Prob. $\Delta \rightarrow \infty$
 - $B < 1$: Size distribution: $D(\Delta; B)d\Delta = \Delta^{-3/2} \mathcal{D}(\Delta|1-B|) d\Delta$
 - $B = 1$: Critical

\[\xi(\Delta_i) > B(S_i|h)\Delta_i\]
Avalanche Sizes at Failure

From const. eq. an avalanche starts at S_i, stops at:

$$\sigma(\varepsilon, t; h) \geq \sigma(S_i)$$

- At failure: $B(\varepsilon_f | h) = (1 - h)$

Avalanche Sizes → Hitting Times

- $\xi(\Delta_i) > B(S_i | h)\Delta_i$

- $\xi(\Delta)$: Poisson counting process of Δ trials.

- Against a boundary proportional to Δ
 - $B > 1$: Prob. $\Delta \to \infty$
 - $B < 1$: Size distribution: $D(\Delta; B) d\Delta = \Delta^{-3/2} D(\Delta | 1 - B) d\Delta$
 - $B = 1$: Critical

$$\Gamma(1/2)$$

[Baró & Davidsen, PRE (2018)]
Avalanche Sizes at Failure

- From const. eq. an avalanche starts at \(S_i \), stops at:

\[
\sigma(\varepsilon, t; h) \geq \sigma(S_i)
\]

- At failure: \(B(\varepsilon_f | h) = (1 - h) \)
- Critical failure for \(h = 0 \).
- Subcrit. failure for \(h > 0 \).

\[\xi(\Delta_i) > B(S_i|h)\Delta_i\]

- Avalanche Sizes \(\rightarrow \) Hitting Times
 - \(\xi(\Delta) \): Poisson counting process of \(\Delta \) trials.
 - Against a boundary proportional to \(\Delta \)
 - \(B > 1 \): Prob. \(\Delta \rightarrow \infty \)
 - \(B < 1 \): Size distribution: \(D(\Delta; B)d\Delta = \Delta^{-3/2} D(\Delta|1-B)\ d\Delta \)
 - \(B = 1 \): Critical

[Baró & Davidsen, PRE (2018)]
Tuning Acceleration: Critical Failure or Foreshocks?

Standard Model \((h = 0)\): Critical Failure

\[
\langle \Delta \rangle \sim f^\beta (\tau - 2)
\]

Viscoelastic Model \((0 < h < 1)\): Foreshocks

\[
\langle \Delta \rangle \sim \text{cnt.}
\]
Tuning Acceleration: Critical Failure or Foreshocks?

Standard Model ($h = 0$): Critical Failure

- Critical Failure: $\langle \Delta \rangle \sim f^\beta (\tau^{-2})$
- Stationary activity: $\frac{dn}{dt} \sim \text{cnt.}$

Viscoelastic Model ($0 < h < 1$): Foreshocks

- Sub-critical Failure: $\langle \Delta \rangle \sim \text{cnt.}$
- Precursory activity: $\frac{dn}{dt} \sim f^\beta (\tau^{-2})$
Tuning Acceleration: Critical Failure or Foreshocks?

Standard Model \((h = 0)\): Critical Failure

- Critical Failure: \(\langle \Delta \rangle \sim f^\beta(\tau - 2)\)
- Stationary activity: \(\frac{dn}{dt} \sim \text{cnt.}\)
- Acc. Energy: \(\frac{d\Delta}{dt} = \langle \Delta \rangle \times \frac{dn}{dt} \sim f^\beta(\tau - 2)\)

Viscoelastic Model \((0 < h < 1)\): Foreshocks

- Sub-critical Failure: \(\langle \Delta \rangle \sim \text{cnt.}\)
- Precursory activity: \(\frac{dn}{dt} \sim f^\beta(\tau - 2)\)
- Acc. Energy: \(\frac{d\Delta}{dt} = \langle \Delta \rangle \times \frac{dn}{dt} \sim f^\beta(\tau - 2)\)
Critical failure can be tuned by material rheology:

- Models of critical failure do not reproduce some experimental observations:
 - Accelerated energy release without divergence of energy scales.
 - Variations in activity: aftershocks, foreshocks.

- Addition of rheology to models of critical failure can:
 - Generate event correlations (aftershocks) and preceding activity (foreshocks).
 - Prevent criticality at failure, preserving acceleration.

- Statistics of avalanches in the viscoelastic democratic fiber bundle model are universal and only depend on the distance to criticality (not to failure).

a case of study ...

⇒ Experimental evidence of accelerated seismic release without critical failure in acoustic emissions of compressed nanoporous materials,

... and a model

J. Baró, J. Davidsen,

⇒ Universal avalanche statistics and triggering close to failure in a mean field model of rheological fracture,

<table>
<thead>
<tr>
<th></th>
<th>V32</th>
<th>G26</th>
<th>SR2</th>
<th>slip MF</th>
<th>fracture MF</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>3.0 (4)</td>
<td>3.4 (4)</td>
<td>3.2 (4)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ε</td>
<td>1.40 (5)</td>
<td>1.40 (5)</td>
<td>1.50 (5)</td>
<td>4/3</td>
<td>4/3</td>
</tr>
<tr>
<td>m</td>
<td>1.02 (13)</td>
<td>1.11 (20)</td>
<td>0.99 (8)</td>
<td>1a</td>
<td>2b</td>
</tr>
<tr>
<td>$\sigma_{\nu z}$</td>
<td>0.50 (6)</td>
<td>0.45 (6)</td>
<td>0.48 (5)</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>κ</td>
<td>1.60 (8)</td>
<td>1.62 (8)</td>
<td>1.76 (8)</td>
<td>3/2</td>
<td>3/2</td>
</tr>
<tr>
<td>σ^a</td>
<td>0.40 (9)</td>
<td>0.34 (9)</td>
<td>0.24 (8)</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>σ^b</td>
<td>0.88 (12)</td>
<td>0.80 (16)</td>
<td>0.76 (7)</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>β^a</td>
<td>3.7 ± 0.8</td>
<td>4.6 ± 1.2</td>
<td>6.3 ± 2.1</td>
<td>3</td>
<td>3/2</td>
</tr>
<tr>
<td>β^b</td>
<td>1.67 (24)</td>
<td>1.83 (37)</td>
<td>2.00 (25)</td>
<td>3</td>
<td>3/2</td>
</tr>
</tbody>
</table>

Table: First three top rows: fitted exponents in experimental data, compared to the MF exponents for slip and fracture MF models. Bottom rows: fundamental exponents estimated from MF theory. Superscripts a and b denote two different interpretations of ASR in terms of MF theory.
<table>
<thead>
<tr>
<th></th>
<th>area A (mm2)</th>
<th>height h (mm)</th>
<th>driving rate dP/dt (kPa/s)</th>
<th>Th (dB)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vycor (V32)</td>
<td>17.0</td>
<td>5.65</td>
<td>5.7</td>
<td>23</td>
<td>34138</td>
</tr>
<tr>
<td>Gelsil (G26)</td>
<td>46.7</td>
<td>6.2</td>
<td>0.7</td>
<td>26</td>
<td>5412</td>
</tr>
<tr>
<td>Sands. (SR2)</td>
<td>17.0</td>
<td>4.3</td>
<td>2.4</td>
<td>23</td>
<td>27271</td>
</tr>
</tbody>
</table>

Table: Sample details: crossectional area A; height h; compression rate dP/dt; number N of recorded signals above threshold Th.
Filling the Checklist: Minimal Structured Model

- Model with minimal Structure (non-MF)

\begin{align*}
\text{Experiments in SiO}_2: & \\
\text{Vycor (SiO}_2) & \\
\text{Sandstone} & \\
\end{align*}
The Generalized Zener Element

- Adds **dissipation**, **temporal scales** and **power-law memory**.
- Reproduces the response of certain bulk amorphous materials

\[
\sigma_m = E_m \varepsilon_m
\]
\[
\sigma_X = \sigma_l = E \varepsilon
\]
\[
\sigma_l = X \frac{d^\alpha}{dt^\alpha} \varepsilon_X
\]

Constitutive equation for the generalized Zener Element:
\[
\left[1 + \frac{X}{E_m} \frac{d^\alpha}{dt^\alpha}\right] \sigma_l = \left[1 + \frac{X(E_m + E)}{E_m E} \frac{d^\alpha}{dt^\alpha}\right] E \varepsilon.
\]

\[
H_\alpha(t/\tau) := \frac{E_m}{E_m + E} E_\alpha \left(-\left(\frac{t}{\tau}\right)^\alpha\right) \begin{cases} H_{\alpha}(0) &=\frac{E_m}{E_m + E} := h \\ H_{\alpha}(t \gg \tau) &\rightarrow 0 \end{cases}
\]

\[
J_{GZ}(t) = \frac{1}{E} \left(1 - H_{\alpha}\left(\frac{t}{\tau}\right)\right)
\]
Magnitude Relations:

\[
D_{AE} = t - t_i | V < V_{th}
\]

- AE magn.

\[
A_{AE} = \max(V(t))
\]

\[
E_{AE} = \int_{t_i}^{t_i + D_{AE}} |V(t)|^2 dt
\]

- Signal Hypothesis:

\[
V(t) = G \int_{-\infty}^{t} v(t) e^{i\omega_0 t - \frac{t-t'}{\tau}} dt'
\]

- Parabolic shape:

\[
\tilde{v}(t/T) = 4 \left(\frac{t}{T} - \left(\frac{t}{T} \right)^2 \right)
\]
- Acceleration and energy exponent before failure:

![Graphs and plots showing data points and curves for different materials and parameters.](Figures/PRL2018)

- Critical parameters:
 - $f_k = 1 - P/P_c^k$
 - $m = 1.02(12)$ for V32
 - $m = 1.11(20)$ for G26
 - $m = 0.99(8)$ for SR2

Contact: jordi.barourbea@ucalgary.ca (UCalgary)
Deceleration and energy exponent after failure:

\[\frac{dE_{AE}}{dt} (\text{aJ/s}) \]

\[f_k^* = \frac{P}{P_c k^{-1}} \]

- **Figures PRL2018**

- **V32**
- **G26**
- **SR2**

- **a)**
- **b)**
- **c)**

- **d)**
- **e)**
- **f)**

- **g)**
- **h)**
- **i)**

- **m^* = 1.11(23)**
- **m^* = 1.13(50)**
- **m^* = 1.53(25)**

J. Baró: jordi.barourbea@ucalgary.ca (UCalgary)

Critical Failure & Rheology

2018 CAP Congress June 13, 2018
Complementary Cumulative Distribution of Energies:

V32: $k=2$

$1.1e-03 < f < 1.2e-03$

$1.2e-03 < f < 1.3e-02$

$1.3e-02 < f < 1.6e-01$

G26: $k=3$

$2.5e-07 < f < 1.1e-03$

$1.1e-03 < f < 1.2e-03$

$1.2e-03 < f < 1.3e-02$

$1.3e-02 < f < 1.6e-01$

SR2: $k=1$

$2.2e-07 < f < 7.4e-05$

$7.4e-05 < f < 2.3e-03$

$2.3e-03 < f < 1.2e-02$

$1.2e-02 < f < 2.6e-02$

V32: $k=3$

$2.5e-07 < f < 1.1e-03$

$1.1e-03 < f < 1.2e-03$

$1.2e-03 < f < 1.3e-02$

$1.3e-02 < f < 1.6e-01$

G26: $k=4$

$2.5e-07 < f < 1.1e-03$

$1.1e-03 < f < 1.2e-03$

$1.2e-03 < f < 1.3e-02$

$1.3e-02 < f < 1.6e-01$

SR2: $k=2$

$2.5e-07 < f < 1.1e-03$

$1.1e-03 < f < 1.2e-03$

$1.2e-03 < f < 1.3e-02$

$1.3e-02 < f < 1.6e-01$

V32: $k=4$

$2.5e-07 < f < 1.1e-03$

$1.1e-03 < f < 1.2e-03$

$1.2e-03 < f < 1.3e-02$

$1.3e-02 < f < 1.6e-01$

G26: $k=5$

$2.5e-07 < f < 1.1e-03$

$1.1e-03 < f < 1.2e-03$

$1.2e-03 < f < 1.3e-02$

$1.3e-02 < f < 1.6e-01$

SR2: $k=3$

$2.5e-07 < f < 1.1e-03$

$1.1e-03 < f < 1.2e-03$

$1.2e-03 < f < 1.3e-02$

$1.3e-02 < f < 1.6e-01$

J. Baró: jordi.barourbea@ucalgary.ca (UCalgary)
An experimental case: Uniaxial compression of SiO$_2$ porous materials

- Porous SiO$_2$ ($\Phi \sim 10\%-40\%$)
- Soft Uniaxial Compression
 - stress control (~ 1 kPa/s)
 - no lateral confinement

- Strain Monitoring ($\sim \mu$m)
- Acoustic Emission Recording ($\sim MHz$)
- Fractures & Crackling Noise (AE) (10$k - 30$k events)

$$E \sim \int |\text{Signal}(t)|^2 dt$$
An experimental case: Uniaxial compression of SiO$_2$ porous materials

Critical Failure?

Data Agree

- Ultimate brittle event (P_c^5)

Data Disagree

$E \sim \int |\text{Signal}(t)|^2 dt$ \[\text{Baró et al. PRL (2013), Baró et al. PRL (2018)}\]
An experimental case: Uniaxial compression of SiO$_2$ porous materials

Critical Failure?

Data Agree

- Ultimate brittle event (P_c^5)

Data Disagree

- Stationary energies: $P(E|t-t_f) dE \sim E^{-\varepsilon} dE$.

$$E \sim \int \left| \text{Signal}(t) \right|^2 dt \quad [\text{Baró et al. PRL (2013), Baró et al. PRL (2018)}]$$
An experimental case: Uniaxial compression of SiO\textsubscript{2} porous materials

Critical Failure?

Data Agree

- Ultimate brittle event (P_c^5) not random

Data Disagree

- Stationary energies:
 \[P(E|t-t_f)dE \sim E^{-\epsilon}dE. \]
- Brittle precursors (not SOC).

\[E \sim \int |\text{Signal}(t)|^2dt \quad \text{[Baró et al. PRL (2013), Baró et al. PRL (2018)]} \]

An experimental case: Uniaxial compression of SiO$_2$ porous materials

Critical Failure ?

Data Agree
- Ultimate brittle event (P_c^5) not random

Data Disagree
- Stationary energies: $P(E|t-t_f)dE \sim E^{-\epsilon}dE$.
- Brittle precursors (not SOC).
- Variations in activity rate $\frac{dn}{dt}$.

$E \sim \int |\text{Signal}(t)|^2 dt$ \[\text{[Baró et al. PRL (2013), Baró et al. PRL (2018)]}\]
An experimental case: Uniaxial compression of SiO$_2$ porous materials

Critical Failure?

Data Agree

- Ultimate brittle event (P_c^5) not random
- Accelerated E release: $dE/dt \sim (t - t_f)^{-m}

Data Disagree

- Stationary energies: $P(E|t - t_f)dE \sim E^{-\epsilon}dE$.
- Brittle precursors (not SOC).
- Variations in activity rate dn/dt.
- Aftershock sequences.

Rheology?

$E \sim \int |\text{Signal}(t)|^2 dt$ [Baró et al. PRL (2013), Baró et al. PRL (2018)]
An experimental case: Uniaxial compression of SiO$_2$ porous materials

Critical Failure?

Data Agree
- Ultimate brittle event (P_c^5) not random
- Accelerated E release: $dE/dt \sim (t - t_f)^{-m}$

Data Disagree
- Stationary energies: $P(E|t - t_f)dE \sim E^{-\epsilon}dE$.
- Brittle precursors (not SOC).
- Variations in activity rate dn/dt.
- Aftershock sequences. Rheology?

$E \sim \int |\text{Signal}(t)|^2 dt$ [Baró et al. PRL (2013), Baró et al. PRL (2018)]
Viscoelasticity in the Democratic (mean field) Fiber Bundle Model

Standard (democratic fiber bundle) Model

Micromechanics:

\[
\sigma_l = \begin{cases}
E \varepsilon & (E \varepsilon < S_i) \\
0 & (E \varepsilon \geq S_i)
\end{cases}
\]

Mean Field:

\[
\sigma_l = \frac{\sigma}{N_{\text{fibers}}}
\]
Viscoelasticity in the Democratic (mean field) Fiber Bundle Model

Standard (democratic fiber bundle) Model

- **Micromechanics:**
 \[\sigma_l = \begin{cases}
 E\varepsilon & (E\varepsilon < S_i) \\
 0 & (E\varepsilon \geq S_i)
 \end{cases} \]

- **Mean Field:**
 \[\sigma_l = \frac{\sigma}{N_{fibers}} \]

- **Macroscopic constitutive equation:**
 \[\sigma(E\varepsilon) = (1 - F(S = E\varepsilon))E\varepsilon \]
Viscoelasticity in the Democratic (mean field) Fiber Bundle Model

Standard (democratic fiber bundle) Model

- **Micromechanics:**
 \[
 \sigma_l = \begin{cases}
 E \varepsilon & (E \varepsilon < S_i) \\
 0 & (E \varepsilon \geq S_i)
 \end{cases}
 \]

- **Mean Field:**
 \[
 \sigma_l = \frac{\sigma}{N_{\text{fibers}}}
 \]

- **Macroscopic constitutive equation:**
 \[
 \sigma(E \varepsilon) = (1 - F(S = E \varepsilon))E \varepsilon
 \]
Viscoelasticity in the Democratic (mean field) Fiber Bundle Model

(generalized) Viscoelastic (democratic fiber bundle) Model

Micromechanics:

\[E \Delta \varepsilon(t) = (1 - H_\alpha(t/\tau)) \Delta \sigma_i \]

Transient:

\[
\begin{align*}
H_\alpha(0) & \rightarrow h \\
H_\alpha(\infty) & \rightarrow 0
\end{align*}
\]
Viscoelasticity in the Democratic (mean field) Fiber Bundle Model

(generalized) Viscoelastic (democratic fiber bundle) Model

- Micromechanics:
 \[E \Delta \varepsilon(t) = (1 - H_\alpha(t/\tau)) \Delta \sigma_i \]

 Transient:
 \[\begin{cases}
 H_\alpha(0) & \rightarrow h \\
 H_\alpha(\infty) & \rightarrow 0
 \end{cases} \]

- Macroscopic constitutive equation:
 \[\sigma(E\varepsilon, t) = E\varepsilon \left(\frac{1}{1 - F(E\varepsilon)} - \sum_{s_j < E\varepsilon} \phi_j(t - t_j) \right)^{-1} \]
Viscoelasticity in the Democratic (mean field) Fiber Bundle Model

(generalized) Viscoelastic (democratic fiber bundle) Model

- Micromechanics:
 \[E \Delta \varepsilon(t) = (1 - H_\alpha(t/\tau)) \Delta \sigma_i \]

Transient:
\[
\begin{align*}
H_\alpha(0) & \rightarrow h \\
H_\alpha(\infty) & \rightarrow 0
\end{align*}
\]

- Macroscopic constitutive equation:
 \[
 \sigma(E\varepsilon, t) = E\varepsilon \left(\frac{1}{1 - F(E\varepsilon)} - \sum_{j} \phi_j (t - t_j) \right)^{-1}
 \]

\[\sigma(E\varepsilon|h = 0) \quad \sigma(E\varepsilon, t|h) \]

Driving

\[S_i \quad E\varepsilon \quad \beta \quad E\varepsilon \quad S_i \]

\[2H(0) \quad 3 \]

\[S_i \quad S_{i+\Delta t} \quad S_i \quad S_{i+\Delta t} \quad S_i \quad S_{i+\Delta t} \quad S_{i+\Delta t+\Delta t'} \]

J. Baró: jordi.barourbea@ucalgary.ca (UCalgary)
Critical Failure & Rheology
2018 CAP Congress June 13, 2018 7/9
From const. eq.: An avalanche start at S_i, stops when: $\sigma(\varepsilon) \geq \sigma(S_i)$

Universal Avalanche Definition:

$$\xi(\Delta_i) > B(S_i|h)\Delta_i$$

(hitting times problem)

$\xi(\Delta)$: Poisson counting process of Δ steps.

[Baró & Davidsen, PRE (2018)]
From const. eq.: An avalanche start at \(S_i \), stops when:
\[\sigma(\varepsilon) \geq \sigma(S_i) \]

Universal Avalanche Definition:
\[\xi(\Delta_i) > B(S_i|h)\Delta_i \]
(hitting times problem)

\(\xi(\Delta) \) : Poisson counting process of \(\Delta \) steps.
- \(B > 1 \): Prob. \(\Delta \rightarrow \infty \).
- \(B < 1 \): Size distribution:
 \[D(\Delta;B)d\Delta = \Delta^{-3/2}D(\Delta|1-B)d\Delta. \]
- \(B = 1 \): Critical.

[Baró & Davidsen, PRE (2018)]
Universal Avalanche Statistics for Fibrous Models

- From const. eq.: An avalanche start at S_i, stops when: $\sigma(\varepsilon) \geq \sigma(S_i)$

Universal Avalanche Definition:

$\xi(\Delta_i) > B(S_i|h)\Delta_i$

(hitting times problem)

- Slope B is function of state:

$$B(S_i|h) = \frac{S_i \text{ pdf}(S_i)}{1 - F(S_i)} (1 - h)$$

- $\xi(\Delta)$: Poisson counting process of Δ steps.
 - $B > 1$: Prob. $\Delta \to \infty$.
 - $B < 1$: Size distribution: $D(\Delta; B)d\Delta = \Delta^{-3/2} \mathcal{D}(\Delta|1-B) d\Delta$.
 - $B = 1$: Critical.

[Baró & Davidsen, PRE (2018)]
From const. eq.: An avalanche start at S_i, stops when: $\sigma(\epsilon) \geq \sigma(S_i)$

Universal Avalanche Definition:

$$\xi(\Delta_i) > B(S_i|h)\Delta_i$$

(hitting times problem)

- Slope B is function of state:
 $$B(S_i|h) = \frac{S_i\text{ pdf}(S_i)}{1-F(S_i)}(1-h)$$

- At failure ($d\sigma/d\epsilon|_{\sigma_f} = 0$):
 $$B(E\epsilon_f|h) = (1-h)$$

- $\xi(\Delta)$: Poisson counting process of Δ steps.
 - $B > 1$: Prob. $\Delta \to \infty$.
 - $B < 1$: Size distribution: $D(\Delta;B)d\Delta = \Delta^{-3/2} D(\Delta|1-B) d\Delta$.
 - $B = 1$: Critical.

[Baró & Davidsen, PRE (2018)]
Universal Avalanche Statistics for Fibrous Models

From const. eq.: An avalanche start at S_i, stops when: $\sigma(\varepsilon) \geq \sigma(S_i)$

Universal Avalanche Definition:

$$\xi(\Delta_i) > B(S_i|h)\Delta_i$$

(hitting times problem)

- Slope B is function of state:
 $$B(S_i|h) = \frac{S_i \text{pdf}(S_i)}{1 - F(S_i)}(1 - h)$$

- At failure ($d\sigma/d\varepsilon|_{\sigma_f} = 0$):
 $$B(E\varepsilon_f|h) = (1 - h)$$

- Critical failure for $h = 0$.
- Subcrit. failure for $h > 0$.

- $\xi(\Delta)$: Poisson counting process of Δ steps.
 - $B > 1$: Prob. $\Delta \to \infty$.
 - $B < 1$: Size distribution: $D(\Delta; B)d\Delta = \Delta^{-3/2} D(\Delta|1 - B)) d\Delta$.
 - $B = 1$: Critical.

[Baró & Davidsen, PRE (2018)]
Triggering in experiments and model

Triggering in lab: [Baró et al., PRL (2013)]

Triggering in viscoelastic model: [Baró & Davidsen, PRE (2018)]

Under slow σ driving:

- Accelerated energy release?
 \[
 \frac{d\text{Energy}}{dt} \propto \frac{dF(E\varepsilon)}{d\sigma} \propto \frac{d(E\varepsilon)}{d\sigma}
 \]

- Avalanche sizes?

\[
\sigma_f
\]
Deformation as Avalanche Phenomena

- Non-linear Deformation \rightarrow Avalanche Dynamics:

 - Low Temperature
 - Quenched Disorder
 - Interactions

Crystalline nano-pillars

Tectonic Gouges

[N. Friedman et al., PRL (2012)]
[T. Hatano, C. Narteau, P. Schebalin, SREP (2015)]
Deformation as Avalanche Phenomena

- Non-linear Deformation → Avalanche Dynamics:

- Failure: Avalanche ≈ Phase Transition

\[\text{order} \quad \text{disorder} \]

\[\text{FOPT} \quad \text{CPT} \]

Crackling Snapping Popping

\[\begin{align*}
\text{Low Temperature} \\
\text{Quenched Disorder} \\
\text{Interactions}
\end{align*} \]

Crystalline nano-pillars

Tectonic Gouges

[\text{N. Friedman et al., PRL (2012)}] \[\text{T. Hatano, C. Narteau, P. Schebalin, SREP (2015)} \]
Deformation as Avalanche Phenomena

- Non-linear Deformation → Avalanche Dynamics:
- Failure: Avalanche ≈ Phase Transition

Low Temperature
- Quenched Disorder
- Interactions

Crystalline nano-pillars

- Failure Prediction?
 - Properties / State: (tomography, seismography)
 - Statistics of Avalanches: Acoustic Emission

[9. Friedman et al., PRL (2012)]

[T. Hatano, C. Narteau, P. Schebalin, SREP (2015)]

J. Barea: jordi.barourbea@ucalgary.ca (UCalgary)
Hypothesis: Failure is Critical

- Power Laws everywhere! (scale-invariance)

[A. De-Santis et al., BSSA (2011)]
[S. Goodfellow & P. Young, GRL (2014)]

- Acceleration of Activity / Energy Released

[D. Amitrano, JGR (2003)]
Hypothesis: Failure is Critical

- Power Laws everywhere! (scale-invariance)
 - Day w.r.t. main shock (6 Apr. 2009)
 - [A. De-Santis et al., BSSA (2011)]
 - [S. Goodfellow & P. Young, GRL (2014)]

- Failure is a Critical Point
 - Distribution of Sizes (Δ)
 \[D(\Delta; |t_c - t|)d\Delta = \Delta^{-\kappa}D(\Delta|t_c - t|^{1/\sigma})d\Delta \]
 (reproduced by most models) [K. Dahmen, et al. (2011)]

- Acceleration of Activity / Energy Released
 - [D. Amitrano, JGR (2003)]
Hypothesis: Failure is Critical

- Power Laws everywhere! (scale-invariance)

- Failure is a Critical Point

\[D(\Delta; |t_c - t|)d\Delta = \Delta^{-\kappa} D(\Delta|t_c - t|^{1/\sigma})d\Delta \]

(reproduced by most models) \[K.\ Dahmen, et al. (2011)]

- Acceleration of Activity / Energy Released

\[d\Delta/dt \propto \langle \Delta \rangle \sim |t_c - t|^{-\kappa - 2/\sigma} \]

[D. Amitrano, JGR (2003)]

[A. De-Santis et al., BSSA (2011)]

[S. Goodfellow & P. Young, GRL (2014)]