Escherichia coli’s RfaH studied by all-atom Monte Carlo simulation

Aina Adekunle

Department of Physics and Physical Oceanography
Memorial University

2018 CAP Congress, Dalhousie University
Halifax, Nova Scotia

June 10 – June 15, 2018
Outline

1. Background to RfaH
2. Previous studies
3. Computational approach
4. Results
5. Full-length RfaH
6. Isolated C-terminal domain
7. Conclusion
Motivation

Some proteins can switch fold
RfaH

- Naturally occurring protein in *E. coli*
- 2 interfacing domains (CTD & NTD)
- Dual functional: Regulates transcription and enhances translation
- CTD shown experimentally to be able to switch fold

[Burmann *et al.*, 2012]
Previous computational studies

- Some computational studies using molecular dynamics including atomistic and coarse-grained models

- Common observation: NTD is more stable than CTD
Computational study of RfaH

- We employed atomistic Monte Carlo simulations
- Software: PROFASI with a simplified physics-based force field
- Investigated stability properties of full protein, αCTD and βCTD
- Simulations started from experimental structures
- Monitored RMSD and secondary structural content
Results: Full-length RfaH

- NTD is highly stable
- CTD is less stable
- Both helices in CTD have similar stability
Results: Isolated CTD

- Helix 2 becomes less stable
- Helix 1 completely loses its helicity
- Inter-domain interactions stabilize CTD
Results: Isolated CTD

- βCTD is more stable than αCTD
- all-α to all-β fold switch is thermodynamically favored
Conclusion

- Employed all-atom Monte Carlo simulation to investigate both full-length RfaH and isolated CTD
- Simulation able to identify fold switching region in this protein

The relatively low stability of αCTD indicates that it may be primed to switch into the βCTD structural form upon disruption of the stabilizing interface with the NTD.
Future work

PROFASI fails! what next?
Acknowledgements

- Dr. Stefan Wallin
- Natural Sciences and Research Council of Canada
- Memorial University
- Canadian Association of Physicists