First common of dinosaur skin layers using synchrotron radiation

Mauricio Barbi

Department of Physics, University of Regina

CAP Congress, June 14, 2018

Overview

- Dinosaurs: How to tell their stories?

 Bones and evidences of preserved structures
- Applying synchrotron radiation and other techniques to studies in paleontology
- One of a kind discovery in Alberta: A well preserved 3-D hadrosaur skin
- Have we, unequivocally, observed preserved skin layers in a hadrosaur skin?
- Remarks

Fossilization and Diagenesis

-0000

Minerals replace organic matter

3-D skin

Discovery (2012) of a partially well preserved hadrosaur by Phil Bell - Grande Prairie, Alberta

3-D skin structures (initially thought to be just imprints).

Skin patches near the forelimb

3-D structure

Methods and Analysis

- What could be preserved?
 - Original organic matter?
 - Representation?
 - C3 DNA????
 - Skin structures?
 - Nothing?
- If there are preserved skin structures, can we compare it to avian species?
 - A direct comparison of this kind would be the first ever to be realized (evolutionary path).

- Want to study the sample at microscopic scale → structural and chemical composition
 - □ Is it just an imprint?
 - Does it differ in composition from the sedimentary matrix?
- The following techniques were used:
 - Synchrotron Radiation (SR)
 - Scanning Electron
 Microscopy (SEM)
 - Optical Microscopy

(Scanning Electron Microscope – SEM analysis – 20 μm section)

X-ray spectra were taken from each numbered point in the sample.

Elemental Mapping

Strong correlation between carbon distribution and darker area in the BES image

June 14, 2018, CAP/Halifax

Chemical Signatures (Canadian Light Source - CLS)

- Residue of the sking of the ski
 - Mapping chemical elements (VESPERS beamline)
- Organic traces (MidIR)
- Observing few chemical states (SXRMB and SM beamlines)

CLS

VESPERS

15 μ m step; 0.5 eV resolution

Infrared spectrophotometry

"Biology" map (carbon K-edge scan)

- These measurements seems to corroborate those from FTIR.
- Ketone can be produced from the breakdown of fat.
- Carbonyl might be remnant of carboxylic acid

Carbonyl map

Carbonyl (red) other compounds (cyan) map in a 65 \times 50 μ m area of the sample at 0.1 μ m steps

- Clear carbonyl-rich layer
- Visible substructures form the layer

Carbonyl-only map

Skin layer single substructure Ca, Fe and C map

Royal Society B 281, no. 1775, January

22, 2014) June 14, 2018, CAP/Halifax

Optical Analysis: 20 µm section (same used for SEM)

Evidence of three preserved layers (Epidermis)

Stratum germinativum (basale)

Stratum granulosum

Stratum corneum <

Avian Integument

Comparing to a chicken leg

- Remarkable similarities
- Strongly support the evolutionary correlations between birds and dinosaurs

Summary

- Several independent and different techniques used
- Skin layers formed of carbonyl-rich substructures with iron in the form of siderite concentrated in their center.
 - Iron probably correlated with this remarkable skin preservation
- First observation of preserved skin layers in a dinosaur skin
- Also, the first ever direct comparison between dinosaur and modern avian skin
 - Support to the evolutionary theory of birds and dinosaurs as coming from the same ancestor

Avians are indeed dinosaurs

June 14, 2018, CAP/Halifax

Collaborators (I didn't do all this alone)

- Phil Bell (Paleontology, University of New England, Australia)
 → Dinosaur discovery, preparation and taphonomy
- James Dynes (CLS) → Measurements at the SM beamline
- Josef Buttigieg (Biology, UofR) → Chicken skin preparation and comparisons (including the hypothesis about colour)
- Federico Fanti (Geology, University of Bologna, Italy) →
 Stratigraphic study
- Anezka Kolaceke (Physics, UofR, PhD student) → Data collection at CLS

Still not Convinced?

Different techniques show:

- SEM: Apparently well-organized layers of carbon-rich distributions in the sample
- SXRMB: Reduced sulphur in the region corresponding to the "skin" Very possibly of biological nature
- MidIR: tantalizing peaks that might correspond to organic compounds, mostly remarkably carbonyl.
- SM: Clear "biological" region defined by carbonyl in similar carbon-rich region observed with SEM. Carbonyl fingerprints a organized layered structure
- Skin layers formed of carbonyl-rich substructures
- Optical microscopy: remarkable similarities between chicken skin and hadrosaur "skin" – comparable morphology
- Evidences of 3 layers that might correspond to preserved epidermis cell layers

Speculations (why not?)

- No pigments found (yet). However:
- Hypothesis that *hadrosaurs* could display colour by flushing blood through the skin.
- Evidence (and just that for now) of different skin thickness:

Backup Slides

Life and death of dinosaurs

- Representation of the Plants absorb minerals from soil
- Merbivorous eat plants
- carnivorous eat herbivorous
- or another

- Some animals are completely destroyed (eaten, etc)
- Others are preserved under special circumstances

Synchrotron Radiation (SR) in a Nutshell

- -
- Radiation is an electromagneti (EM) waves
- EM waves are made of photon (quantum of light)

The Electromagnetic Spectrum

Synchrotron Radiation is produced by accelerated charged particles

June 14, 2018, CAP/Halifax

How do we use SR?

Identifying chemical elements

- The atom of an element is constituted of a nucleus (protons and neutrons) and electrons
- Quantum mechanics tells us that the electrons in an atom are found in discrete states of energy
- Each atom has its own set of discrete and characteristic energy levels → fingerprint.

Electrons can move between energy levels → absorption or emission of photons.

They can also be removed from the atom (ionization process)

- Electrons from higher orbits will want to move to the lower vacant orbit created by ionization
 - → emission of photon in the process.

Emitted photon energy given by $hf = \Delta E_{mn} = E_n - E_m$

→ Characteristic of each atom

Characteristic spectrum

Characteristic spectral lines (peaks) come with different probabilities given by quantum mechanics (some will be more intense than others).

 $\lambda = 4861 \text{Å}$

18,756A

 $\lambda = 4341$ Å

X = 12,821A

Several techniques available such:

X-ray Fluorescence Spectroscopy (XRF): for elemental identification

X-ray Absorption Spectroscopy (XAS): for elemental speciation

Fourier Transform Infra-red Spectroscopy (FTIR): probe complex molecular structure such as organic matter

Like electrons in atoms, each molecule has a characteristic spectral line representing a given vibration mode

Scanning Electron Microscopy (SEM)

Electron beams are accelerated at very high voltages and aim at a sample

Identifying mineral contents (Scanning Electron Microscope – SEM analysis – 20 μm section)

- Sample was coated with a thin layer of Carbon
- Rackscattered electrons
 - Brighter areas represent higher Z material.
 - Lower Z structures are expected to show as darker areas
- The white top layer is the top of a skin scale
- Thin darker areas under this white layer and above another sedimentary region can be observed

Complex Molecules And Chemical States of Fe, Ca, C, etc

- Want to probe possible organic compounds (MidIR beamline, CLS)
- Map the sample using chemical speciation (Spectromicroscopy (SM) beamline, CLS)

MidIR

SM

Fourier Transform Infrared (FTIR) spectrophotometry

- Region corresponding to carbon-rich area in the sample.
- Each cross
 represents a position
 used to collect a
 FTIR spectrum.

Region of the spectrum corresponding to organic signature

Fe map K-edge scan

- Fe in the form of siderite (iron carbonate with oxidation state Fe(II)) is found in the skin
- Goethite also present in the form of Fe(III)

Zooming in

Compatible with observation from CLS

Zooming further in

Few more optical images

- Consistent structure throughout the Crich layer
- However, some regions seem thicker than others

How does it compare to a ... chicken (extant avian dinosaur)

-0000

 "Extra Foods" chicken leg (featherless area) → similar scale structures

The rest of the chicken was eaten by one of my

@ Can Stock Photo - csp27844002

students

But, first, how does it compare to a mammal

Structures are very different

Comparison to Salt Water Crocodile

Map of few key elements - a more comprehensive analysis

- Mapping in 10 µm steps
- one spectrum per each point in the map
- Superposition of chemical map and microscopic image:
- red = Ca ; green = Sr ;
 blue = Fe
 yellow = superposition of
 Sr and Ca

□ Imaging using chemical maps

Ca also seems to mark Harvesian canals (calcite?)

Analysis of individual concentrations for each element → area under each respective peak per spectrum versus number of

Repeat chemical map superimposed to microscopic image for CB different concentration levels (zooming on a small area of the

map): Only spectra with high

Fe concentration

Only spectra with low Fe concentration -

Only spectra with high Concentration

Only spectra with low Ca concentration

Only spectra with low Sr concentration

Only spectra with low **Sr** concentration

Etc...

Ba follows distributions similar to that of Ca and Sr.

That is expected as **Sr** and **Ba** replaces Ca in apatite

Correlations between concentrations of different elements (scatter plots)

A Close look at few dinosaur fossils

XRF of a phalanx (toe bone) from a ~70 million-year old hadrosaur (duck-bill dinosaur), from Dinosaur Provincial Park, using the VESPERS (hard X-ray) beamline at CLS.

A Close look at few dinosaur fossils

Identification of elements (single point spectrum - not map)

XAS spectra: Use a T. rex bone (Scotty) and its matrix for comparison

- Green is T. rex bone compatible with apatite
- · Blue is T. rex bone/sediment transition still compatible wit apatite
- Red is sediment compatible with calcite
- · Magenta and cyan are hadrosaur skin compatible with calcite

XAS spectra: Use a T. rex bone and its matrix for comparison

- Clear differences between all regions.
- It's evident that Fe, S have different signatures in the skin.

XAS spectra: Using a T. rex bone and its matrix as references (SXRMB beamline, CLS)

- Blue and red are hadrosaur skin presence of reduced S (sulfide; organic nature?)
- Magenta is T. rex bone/sediment transition sulfate?
- Cyan is sediment sulfate?

XAS at K-edge of Fe using the SXRMB (soft X-ray) beamline

Data yet to be analyzed, but Fe likely coming from hematite (my guessing based on the spectrum above).