10-16 June 2018
Dalhousie University
America/Halifax timezone
Welcome to the 2018 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2018!

How molecular crowding controls the spatial organization of biopolymers in a confined space

10 Jun 2018, 09:45
Dunn 101 (cap.82) (Dalhousie University)

Dunn 101 (cap.82)

Dalhousie University

Oral (Non-Student) / Orale (non-étudiant(e)) Soft Matter Canada 2018 Soft Matter Canada 2018 | Matière molle Canada 2018


Prof. Bae-Yeun Ha (University of Waterloo)


In a crowded space, a long chain molecule can be phase-separated into a condensed state, redistributing the surrounding crowders. Here we discuss how crowding influences the spatial organization of a ring polymer, consisting of two “arms," in a cylindrical space. In a parameter space of biological relevance, the distributions of monomers and crowders follow a simple relationship: the sum of their volume fractions rescaled by their size remains constant. Beyond a physical picture of molecular crowding it offers, this finding explains a few key features of what has been known about chromosome organization in an E. coli cell. For instance, it is consistent with the observation that crowding promotes clustering of transcription-active sites into transcription foci. Finally, crowding is essential for distributing the two arms in the way observed with E. coli chromosomes.

Primary author

Prof. Bae-Yeun Ha (University of Waterloo)

Presentation Materials

There are no materials yet.