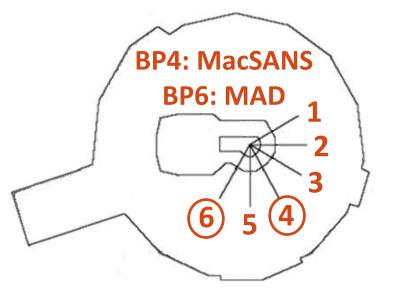


MacSANS: Small Angle Neutron Scattering for Nanostructured Materials at McMaster University

<u>Pat Clancy</u>¹, Zin Tun², Maikel Rheinstadter¹, Chris Heysel³, Bruce Gaulin¹ ¹McMaster University, ²Canadian Neutron Beam Centre, ³McMaster Nuclear Reactor

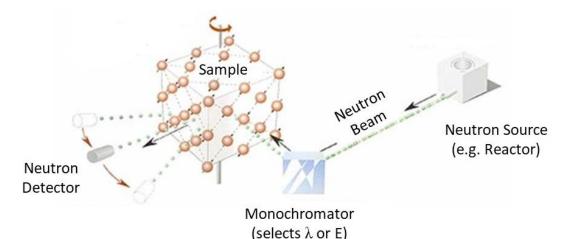
Take-Home Message:

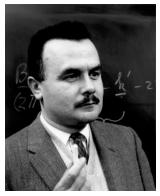
- As of April 1st, the McMaster Nuclear Reactor is Canada's only source of neutron beams for materials research
- MNR currently has 2 beamlines devoted to neutron scattering:
- McMaster Alignment Diffractometer (MAD) general purpose triple-axis spectrometer, open for proposals
- McMaster Small Angle Neutron Scattering beamline (MacSANS) under construction,
- commissioning experiments to begin in Spring 2019
- We are looking for new users and new experiments
- •Contact us: clancyp@mcmaster.ca or macneutrons@gmail.com


The McMaster Nuclear Reactor

- 5 MW open-pool reactor (operates 3 MW, ~ 80 hours/week)
- Core flux $\sim 1 \times 10^{14}$ neutrons/cm²/s
- In operation since 1959
- Multi-purpose research reactor:
 - Neutron scattering
 - Production of medical isotopes
 - Neutron irradiation/activation analysis
- Neutron radiography
- Intense positron beam facility

6 neutron beamports at MNR

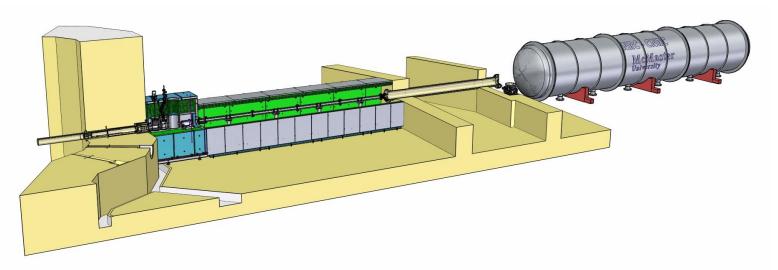




MAD: McMaster Alignment Diffractometer

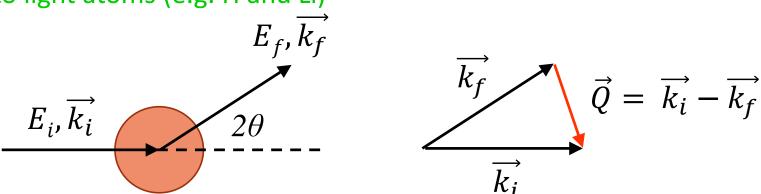
- Triple-axis neutron spectrometer located on Beamport 6
- Built on site of Brockhouse's original McMaster triple-axis
- Primarily used for elastic scattering (alignment, crystal quality)
- Operating since 2010, upgraded in 2017

Bertram Brockhouse (1918-2003) 1994 Nobel Prize in Physics McMaster Professor 1962-1984



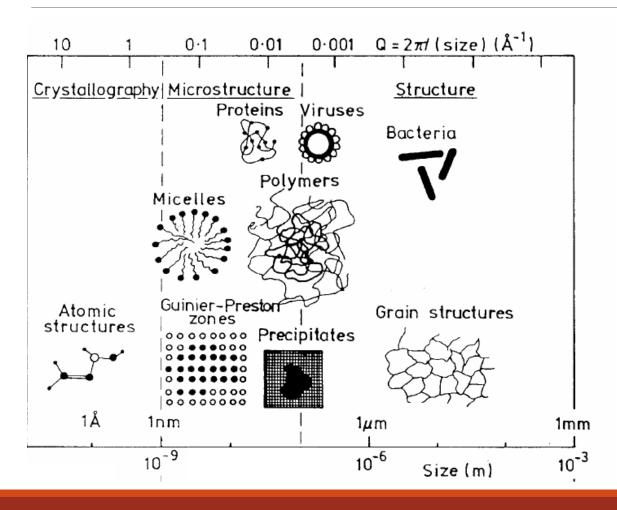
MacSANS: Small Angle Neutron Scattering

- State-of-the-art small angle neutron scattering (SANS) beamline for study of nanostructured materials (biological membranes, polymers, high temperature superconductors, novel magnets, metals and alloys)
- Currently under construction on Beamport 4
- Scheduled to begin commissioning experiments in Spring 2019


MacSANS Neutron Beam Hall (Completed Oct. 2017)

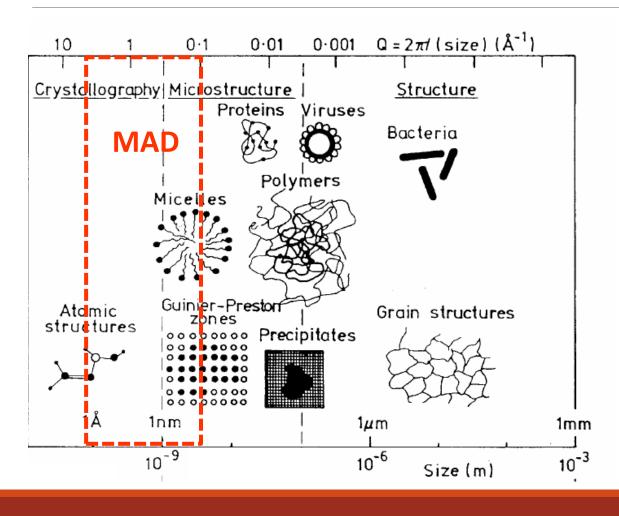
Why Small Angle Neutron Scattering?

- Neutrons are an ideal tool for investigating the structural and magnetic properties of materials
- Electrically neutral: non-destructive and very penetrating
- Magnetic dipole moment: sensitivity to magnetism
- Scattering length depends on properties of nucleus: elemental/isotopic contrast and sensitivity to light atoms (e.g. H and Li)


(elastic scattering) $n\lambda = 2d \sin \theta$ $Q = \frac{4\pi}{2} \sin \theta = \frac{2\pi}{d}$

• SANS is a diffraction (i.e. elastic scattering) technique: probes structure and static properties

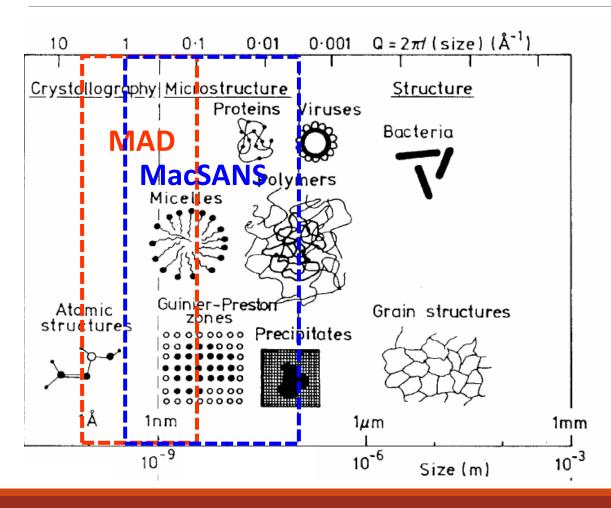
For larger length scales, need smaller angles...



$$Q = \frac{4\pi}{\lambda} \sin \theta = \frac{2\pi}{d}$$

For larger length scales, need smaller angles...

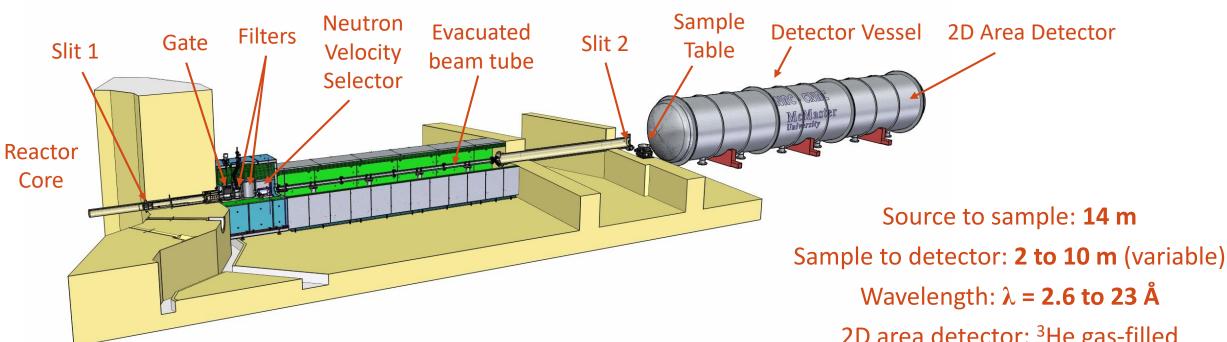
$$Q = \frac{4\pi}{\lambda} \sin \theta = \frac{2\pi}{d}$$


• MAD: wide angle neutron scattering $(Q_{min} \sim 0.1 \text{ Å}^{-1}$, length scales < 70 Å)

Adapted from C. Glinka, NCNR

For larger length scales, need smaller angles...

$$Q = \frac{4\pi}{\lambda} \sin \theta = \frac{2\pi}{d}$$

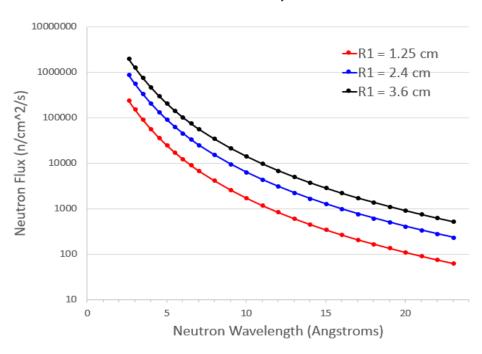

- MAD: wide angle neutron scattering $(Q_{min} \sim 0.1 \text{ Å}^{-1}$, length scales < 70 Å)
- MacSANS: small angle neutron scattering $(Q_{min} \sim 0.005 \text{ Å}^{-1}$, length scales < 1300 Å)
- Opens up many new opportunities for condensed matter science (hard and soft)

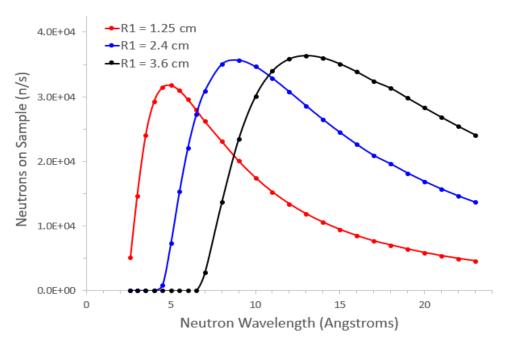
Adapted from C. Glinka, NCNR

MacSANS Instrument Design

MacSANS probes structure and magnetism on length scales ranging from 0.5 nm to 125 nm

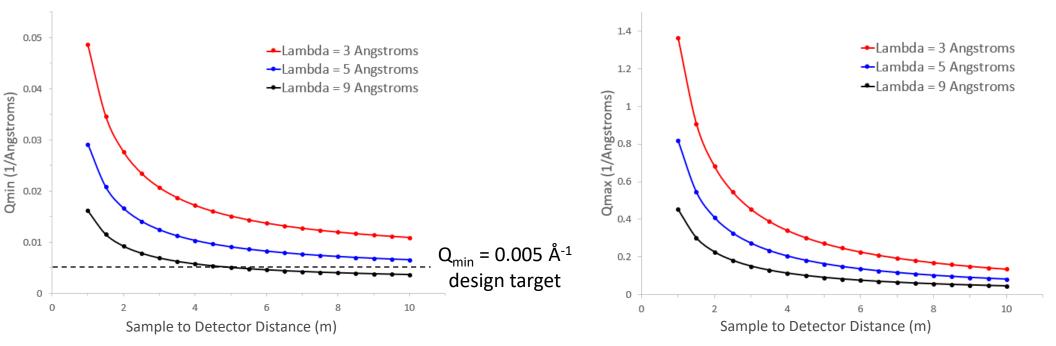
2D area detector: ³He gas-filled 1m × 1m area, 7 mm resolution


Q-range: **0.005 to 1.25** Å⁻¹



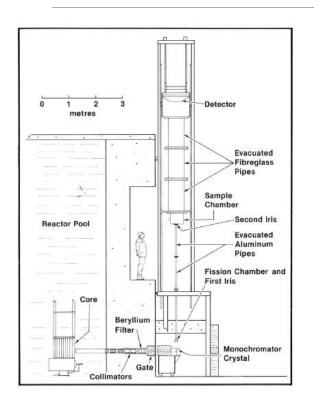
MacSANS Instrument Performance

Predicted instrument performance for high resolution setting:

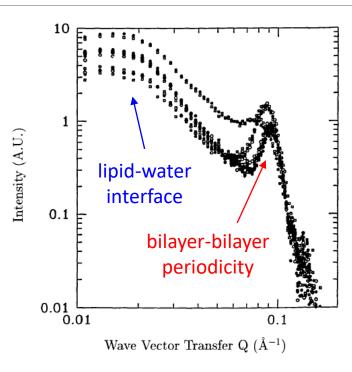

- Fix $Q_{min} = 0.005 \, \text{Å}^{-1}$, 10 m sample to detector distance, 3 possible choices for source aperture size (R1)
- ~3.5 × 10⁴ neutrons/sec at the sample position

MacSANS Instrument Performance

• Predicted instrument performance as a function of detector position:

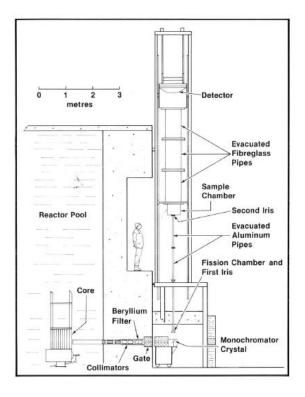


• Fix radii of source and sample apertures (R1 = 1.25 cm, R2 = 1.0 cm), 14 m source to sample distance (neglect horizontal detector translation)

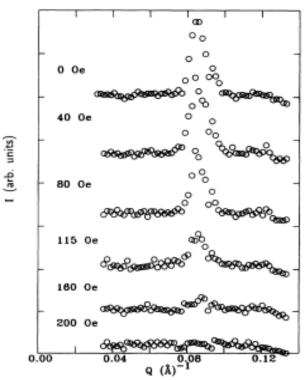


Flashback: Canada's First SANS Beamline

- DPPC lipid membrane suspension in D₂O
- 3 phases: gel, ripple, and liquid crystal
- Track temperature evolution with SANS


J. Avelar et al, Mat. Res. Soc. Symp. Proc. (1995)

- Beamport #3 at MNR: Vertical SANS (operational 1987 to 2003)
- Q-range: 0.012 to 0.085 Å⁻¹ (detector at 4.5 m), 0.04 to 0.3 Å⁻¹ (detector at 1.05 m)



Flashback: Canada's First SANS Beamline

- Magnetic ordering of Ni₈₀Co₂₀/Cu multilayers
- Measure bilayers 50Å-20Å-15Å thick
- Coalign 30 bilayers in sample
- Track field dependence of (0,0,0.5) magnetic Bragg peak with SANS

• Beamport #3 at MNR: Vertical SANS (operational 1987 to 2003)

- X. Bian et al, Phys. Rev. B (1994)
- Q-range: 0.012 to 0.085 Å⁻¹ (detector at 4.5 m), 0.04 to 0.3 Å⁻¹ (detector at 1.05 m)

MacSANS Timeline

October 2016: Construction of SANS Experiment Hall begins

Summer 2018: Fabrication of primary components March 2019: Area detector arrives

Fall 2018: Installation of primary components

Acknowledgments

Bruce Gaulin & Chris Heysel

Zin Tun

Derrick West

Mark Vigder

Marek Kiela

- The neutron scattering program at MNR is grateful for incredible support from the staff of the McMaster Nuclear Reactor and the Canadian Neutron Beam Centre at Chalk River
- Funding for MacSANS is provided by the Canadian Foundation for Innovation and the Ontario Innovation Trust

Take-Home Message:

- As of April 1st, the McMaster Nuclear Reactor is Canada's only source of neutron beams for materials research
- MNR currently has 2 beamlines devoted to neutron scattering:
- McMaster Alignment Diffractometer (MAD) general purpose triple-axis spectrometer, open for proposals
- McMaster Small Angle Neutron Scattering beamline (MacSANS) under construction,
- commissioning experiments to begin in Spring 2019
- We are looking for new users and new experiments
- •Contact us: clancyp@mcmaster.ca or macneutrons@gmail.com

