WaMI: The Waves Michelson Interferometer

Samuel Kristoffersen (UNB) and William Ward (UNB)

WaMI

- Field-Widened Interferometer
- Has a sectored mirror which generates four path differences without scanning
- Measures 557 nm (green line) and 1260-1280 nm (O₂) and 1316 nm (OH) emissions
- Designed to measure winds via Doppler shift in the airglow emissions

WaMI Concept

- Phase steps are deposited on the mirror – all exposures are made simultaneously.
- Eliminates issues with intensity variation.
- Achromatically field-widened for 557-1300 nm.

Basic optical design

- A dichroic beamsplitter allows for simultaneous observation of the IR and visible wavelengths.
- A prism, located at the aperture stop after each filter wheel, is used to separate the four sections of the sectored mirror in space.

Capacitive feedback mirror control

- Designed by Com Dev.
- Provides mirror control on the order of less than an angstrom.
- Capacitive bridge and 3 piezoelectric crystals provide 3dimensional control of the mirror.
- Mirror parallelization and stepping characterization were performed at UNB.

Step Size Determination

Sectored Mirror

He-Ne (633 nm) Haidinger Fringes

Sectored mirror step sizes (in rad)

Step Size (nm)	
$\lambda = 633nm$	$\lambda = 1310nm$
209.5 ± 1	230 ± 20
651 ± 1	660 ± 10
849 ± 1	860 ± 10

Wind Wheel

$$v_{LOS} = 4\pi r \cos(\theta) f$$

Single point wind wheel 'winds'

Wind Wheel Imaging (633 nm)

Wind Wheel Imaging (1.3 µm)

Conclusions

- The capacitive feedback system for mirror control is precise to on the order of 0.1 Å.
- The sectored mirror can be used to successfully create scans, eliminating the need to physically move the mirror, and reducing the time for each scan.
- Use of a retro-reflective 'wind' wheel has verified the capability to image winds with precisions of a few m/s.

Acknowledgements

- Funding support from CFI, CSA, NSERC, and UNB is gratefully acknowledged.
- Design and support of the capacitive feedback system for mirror control was provided by Com Dev.
- Thanks to my supervisor William Ward.