Modification of Landau levels and degeneracy due to a parallel linear electric field

Yann Audin

Bishop’s University

CAP Congress, Halifax, June 11th 2018

Collaborator: Dr Ariel Edery
Modification of Landau levels and degeneracy due to a parallel linear electric field

Yann Audin

Landau Levels

Lev Landau (1908-1968), Stalin prize (1946), Max Planck Medal (1960) and Nobel Prize in Physics (1962).
Modification of Landau levels and degeneracy due to a parallel linear electric field

Yann Audin

Classical Picture

\[R = \frac{m \nu}{eB} \]

\[T = \frac{2\pi}{\omega_c} \]

where \(\omega_c = \frac{eB}{m} \) is the cyclotron frequency.

\(\omega_c \) appears in the quantum version.
Landau Levels

Hamiltonian for an electron in a constant magnetic field:

\[
H = \frac{1}{2m_e} \left(\vec{p} - e\vec{A}(\vec{x}, t) \right)^2 - \frac{2\mu_e}{\hbar} \vec{S} \cdot \vec{B}(\vec{x}, t)
\]

where \(\mu_e = \frac{e\hbar}{2m_e} \) is the magnetic moment.

\[
\vec{B} = B_0\hat{z} \rightarrow \vec{A} = B_0x\hat{y} \quad \text{(Landau gauge)}
\]

The Hamiltonian reduces to:

\[
H = \frac{p_x^2}{2m_e} + \frac{1}{2m_e} \left(p_y - eB_0x \right)^2 - \frac{2\mu_e}{\hbar} s_z B_0
\]

\[
= \frac{p_x^2}{2m_e} + \frac{1}{2} m_e\omega_c^2 (x - x_0)^2 - \frac{\hbar\omega_c}{2} \sigma_z
\]
This is the Hamiltonian for the harmonic oscillator with centre at x_0 including a spin contribution.

The energies, called the Landau levels, are given by:

$$E_n = \hbar \omega_c n, \quad n \in \mathbb{N} \cup \{0\}$$
Degeneracy

The displacement x_0 is given by $x_0 = -\frac{\hbar k_y}{eB_0}$ where $p_y = \hbar k_y$ does not affect the energy.

On a rectangle $A = L_x L_y$ with periodic boundary conditions:

$$k_y = \frac{2\pi n_y}{L_y}, \quad n_y \in \mathbb{Z}$$

x_0 runs from $-\frac{L_x}{2}$ to $\frac{L_x}{2}$, hence:

$$-\frac{eB_0 L_x L_y}{2\hbar} < n_y < \frac{eB_0 L_x L_y}{2\hbar}$$

$$N = \frac{eB_0 A}{\hbar} \quad D = 2N$$ is the degeneracy (spin factor of 2).
Modification of Landau levels and degeneracy due to a parallel linear electric field

Yann Audin

Landau Levels
Classical Picture
Landau Levels
Degeneracy

Constant magnetic field and parallel linear electric field

Hamiltonian
Energy
Degeneracy

Extra Slide
Modification of Landau levels and degeneracy due to a parallel linear electric field

Yann Audin

Landau Levels
Classical Picture
Landau Levels
Degeneracy
Constant magnetic field and parallel linear electric field
Hamiltonian
Energy
Degeneracy
Extra Slide

General Hamiltonian for an electron under an external electromagnetic field:

\[H = \frac{1}{2m_e} \left(\vec{p} - e\vec{A}(\vec{x}, t) \right)^2 - e\phi(\vec{x}, t) - \frac{2\mu_e}{\hbar} \vec{S} \cdot \vec{B}(\vec{x}, t) \]

\[\vec{B} = B_0\hat{z} \quad \rightarrow \quad \vec{A} = B_0x\hat{y} \]

\[\vec{E} = kz\hat{z} \quad \rightarrow \quad \phi = -\frac{1}{2}kz^2 \quad \rightarrow \quad V(z) = \frac{1}{2}ekz^2 \]
Hamiltonian for constant magnetic field and parallel linear electric field:

\[H = \frac{p_x^2}{2me} + \frac{1}{2} m_e \omega_c^2 (x - x_0)^2 - \frac{2\mu_e}{\hbar} s_z B_0 + \frac{p_z^2}{2m_e} + \frac{e}{2} k z^2 \]

\[H = H_c + H_z + H_{sz} \]

where

\[H_c = \frac{p_x^2}{2m_e} + \frac{1}{2} m_e \omega_c^2 (x - x_0)^2 \]

\[H_z = \frac{p_z^2}{2m_e} + \frac{e}{2} k z^2 = \frac{p_z^2}{2m_e} + \frac{1}{2} m_e \omega_z^2 z^2 \quad \text{(with} \quad \omega_z = \sqrt{\frac{ek}{m_e}} \text{)} \]

\[H_{sz} = -\frac{2\mu_e}{\hbar} s_z B_0 = -\mu_e B_0 \sigma_z = -\frac{\hbar \omega_c}{2} \sigma_z \]
Modification of Landau levels and degeneracy due to a parallel linear electric field

Yann Audin

Landau Levels
Classical Picture

Landau Levels
Degeneracy

Constant magnetic field and parallel linear electric field

Hamiltonian
Energy
Degeneracy

Extra Slide
The energies can be rewritten as

\[E = \left(n \frac{\omega_c}{\omega_z} + n_z + \frac{1}{2} \right) \hbar \omega_z \]

We express the energy as a function of \(P = n \frac{\omega_c}{\omega_z} + n_z \).

\[E = \left(P + \frac{1}{2} \right) \hbar \omega_z \]

\(P \) is a function of \(\frac{\omega_c}{\omega_z} \) and two discrete variables. If the ratio of frequencies is rational, \(P \) can be a source of degeneracy.
Graph of the Energy depending on the frequency ratio

\begin{figure}
\centering
\includegraphics[width=\textwidth]{graph}
\caption{Graph of the Energy depending on the frequency ratio.}
\end{figure}
Graph of the Energy depending on the frequency ratio

Modification of Landau levels and degeneracy due to a parallel linear electric field

Yann Audin
Modification of Landau levels and degeneracy due to a parallel linear electric field

Yann Audin

Landau Levels
Classical Picture
Landau Levels
Degeneracy

Constant magnetic field and parallel linear electric field

Hamiltonian
Energy
Degeneracy

Extra Slide
Degeneracy

For rational \(\frac{\omega_c}{\omega_z} = \frac{l}{j} \ (l, j \in \mathbb{N}) \), if P is an integer the degeneracy is given by:

\[
g_{P=\text{integer}} = \left(2\left\lfloor \frac{P}{l} \right\rfloor + 1\right)N
\]

where \(N = \frac{eB_0A}{h} \) is the degeneracy of a single Landau level.

For a rational P (not an integer), the degeneracy is:

\[
g_{P\neq\text{integer}} = 2\left(\left\lfloor \frac{n_z}{l} \right\rfloor + \left\lfloor \frac{n}{j} \right\rfloor + 1\right)N
\]
Modification of Landau levels and degeneracy due to a parallel linear electric field

Yann Audin

Thank you!

Questions
Electron Spin Split

Energy difference between two close energy levels:

$$\Delta E = \frac{\hbar \omega_c \delta}{2}$$

Necessary temperature to jump between two close energy levels (for an electron in a one Tesla magnetic field):

$$E_{\text{Thermal}} = k_B T, \quad T = 0.000729 \text{ Kelvin}$$